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Advances in fabrication methods and components are enabling practical
implementations of Quantum Photonic Integrated Circuits (QPIC) anal-
ogous to the 1970’s era for electronic integrated circuits (IC). As was
the case more than 50 years ago in electronics, designers are faced with
a choice regarding the physical quantities to use for encoding discrete
information in a QPIC. Among the alternatives, models for information
representation include binary and higher-radix, approaches. In the spirit
of seminal writings from Professor K.C. Smith regarding the choice of
radices for electronic switching circuits, we survey higher-dimensioned
QPIC implementations. We address various means for photonic rep-
resentation of information and the tradeoffs that result in view of the
current state of the art in available QPIC components and manufactur-
ing capabilities. These alternatives are intended to inform the multiple-
valued logic community of QPIC design choices and to draw an analogy
to Professor Smith’s earlier work in higher-radix electronic IC.
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1 INTRODUCTION

One of Professor K.C. Smith’s seminal papers entitled “Circuits for Multiple
Valued Logic – A Tutorial and Appreciation” authored in 1976 [1] began with
this sentence:

“It has been stated often in the past that practical acceptance of multi-
valued logic awaits the development of suitable electronic means for
fabricating a sufficiently powerful and general-purpose logic.”
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Since Professor Smith’s 1976 quotation and the time of writing of this
paper, many engineers, scientists, mathematicians and others have investi-
gated what is now known as “multiple-valued logic∗ ,” with a significant
percentage of these investigations motivated by the pursuit of exploiting
higher-radix systems to achieve classical electronic circuit solutions that offer
advantages in comparison to binary switching implementations. While lim-
ited success has been achieved in some applications such as four-valued
memory circuits and three-valued arithmetic circuits, it has generally been
the case that the advantages gained from electronic integrated circuit scal-
ing has outweighed any potential advantage that multiple-valued electronic
circuitry could provide. One reason for this situation is that voltage-mode
CMOS-based circuitry has emerged as the predominant form, likely due to
its desirable power dissipation properties. The use of voltage-mode circuits
in conjunction with increased component density due to fabrication advances
causes the power rail voltages to correspondingly decrease and hence the
noise margins around each represented logic value must also decrease. There-
fore, increasing the number of logic values and their accompanying noise
margin ranges while also compensating for ever-decreasing overall rail-to-
rail voltage ranges becomes impractical as was aptly stated by Professor
Smith in his tutorial article [2]. This leads to a design choice wherein the first
choice is to use fewer and larger transistors to practically implement higher-
radix circuitry versus the second choice of using more and smaller transistors
to implement binary-radix circuitry. In considering the predominant design
choice made for electronic switching circuits over the past 50 years as empir-
ical evidence, it is this latter case of binary-radix switching circuitry that has
generally predominated indicating that the binary-radix usually provides the
better engineering solution.

Here, we respectfully propose that one response to Professor Smith’s
visionary quote above is that perhaps the “practical acceptance of multival-
ued logic” may not necessarily result from “suitable electronics,” in part due
to the reasons provided above, rather it may be “suitable quantum photon-
ics” that ushers in an era of “practical acceptance of multivalued logic.” This
proposition is based upon the observation that the quantum characteristics of
a photon offer the choice of several different measurable characteristics that
naturally lend themselves to the realization of systems that are conveniently
modeled with a multiple-valued logic framework as compared to the rather
limited set of quantities available in classical electronic circuits.

In another of Professor Smith’s early papers entitled “The Prospects for
Multivalued Logic: A Technology and Applications View” [3], he identifies

∗ The term “multiple-valued logic” is commonly used, although the lesser-used term “many-valued
logic” may be a more literal and precise description of this topic.
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three measurable characteristics of electronic circuitry that could potentially
be used to represent multiple-valued logic variables; namely ‘charge,’ ‘volt-
age’ and ‘current.’ In a similar manner, it is the objective of this paper to
likewise present and discuss the various measurable characteristics of quan-
tum photonic circuits that may serve as encodings of a multiple-valued logic
framework. We note that in the contemporary literature on this topic, the more
common adjective for describing discrete variable non-binary quantum pho-
tonic systems is “higher-dimensioned” rather than “multiple-valued,” and we
shall henceforth use that term for the purposes of adhering to common con-
vention, although the concepts are very similar.

In quantum photonic circuits, the measurable quantities, or “observables,”
suitable for encoding multiple logic values in a higher-dimensioned system
arise from forms of the several conjugate uncertainty variable pairs such as
position and momentum. For single photon systems, these measurable quanti-
ties include the location of a photon, its frequency, temporal angular momen-
tum or polarization and spatial angular momentum. For systems comprising
a small number of photons, a measurable characteristic is the number of pho-
tons within a time or space interval, known as the “number” or “Fock state,”
as well as their coherent phase, polarization and frequency values.

At the present time, many of the quantum photonic variables that were
previously shown to be of use in table-top circuit implementations are now
emerging for use in integrated circuit realizations due to optical components
being available and configured in the form of “quantum photonic integrated
circuits” (QPIC). New fabrication materials and processes as well as new
miniaturized components are emerging and fabrication foundries are begin-
ning to offer cell libraries and “software design kits” (SDK) to support fab-
less design of QPICs [4, 5]. QPICs offer an exciting alternative to classical
electronic “application specific integrated circuits” (ASIC) in terms of infor-
mation processing due to their potential to exploit the “quantum advantage”
which is the ability to process information much faster than would be possible
through using an ASIC [6].

In the spirit of Professor Smith’s interest in realizing electronic multiple-
valued logic circuits, we likewise discuss some of the measurable quantities
of photons that are suitable for encoding and processing information within
QPIC realizations.

2 QUANTUM PHOTONIC BACKGROUND

A photon is the smallest possible unit, or quantum, of electromagnetic (EM)
field energy often colloquially described as a “particle of light” although it
has a zero-valued rest mass. Photons have the same properties as classical
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EM waves such as frequency, wavelength, polarization and others. Due to
the concept of “matter waves” [7] photons also have properties such as posi-
tion and momentum that are more commonly associated with particles com-
prising mass. Although photons are usually considered in terms of light, the
visible portion of EM energy, photon quanta exist across the entire EM spec-
trum. Furthermore, photons are always moving† with a constant speed c in a
vacuum.

The concept of light particles or photons is generally attributed to Ein-
stein’s famous explanation of the photoelectric effect in his 1905 paper [8]
where he generalized Planck’s blackbody radiation studies five years earlier
although the concept was also proposed by earlier philosophers and physi-
cists including Newton. Prior to Einstein’s seminal work, the predominant
theory of light was considered classically as continuous traveling waves that
adhere to Maxwell’s equations or the “classical field theory” of EM. A few
years following the initial emergence of the theory of quantum mechanics
(QM), Dirac is credited with “quantum field theory” (QFT) resulting from
the so-called “second factorization” that provided a unifying framework for
classical field theory, special relativity and quantum mechanics. After the the-
oretical developments of QM and QFT in the early part of the 20th century, a
flurry of theoretical and experimental results followed. Of particular interest
in this paper, are the results that taught us how photons interact with other par-
ticles at the quantum level and the applications of such interactions in terms
of information representation and processing, or quantum informatics [9].
These results have led to the ability to design and fabricate engineering arti-
facts, including QPICs, based upon the quantum properties of photons.

Engineering artifacts are produced through innovation and invention moti-
vated by societal needs. This creative process uses scientific discoveries as an
underlying basis to enable new systems and processes to be devised with a
goal of benefiting humanity. A QPIC is an example of such an engineering
artifact that is enabled, in part, by QM/QFT theory.

“Quantum Informatics” (QI) is an engineering field wherein the sensing
or acquisition, transfer or communication, and transformation or processing
of information is accomplished through the application of QM/QFT in the
design of an artifact such as a QPIC. This leads to the fundamental concept
of using quantum theory to encode or represent information. Fortunately, the
quantum nature of the photon can be used in a variety of different ways to
encode information [10, 11].

A primary goal of this paper is to describe several of the different ways
that information can be represented or encoded using photons. Another goal

† “Always moving” is a typical state although photons can be confined to small volumes such as within
a resonant cavity or portions of a waveguide where differences in the index of refraction of the two
materials whose interface forms a boundary, confine their location due to total internal reflection.
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of this paper is underscore the analogy among different choices for pho-
tonic information representation as described here and those of electronic
information representation as considered in the early papers of K.C. Smith
that were mentioned in the previous section. While many of the ideas pro-
posed for multiple-valued information representation in electronics did not
find widespread usage in electronic information systems, we hypothesize that
this may not be the case for quantum photonic information artifacts such as a
QPIC or others within the field of QI.

2.1 Salient Points of Quantum Photonic Informatics
While a comprehensive review of quantum photonic theory and its applica-
tion in QI is beyond the scope of this paper, many excellent textbooks and
other works are available for the interested reader including [12–14]. Never-
theless, a summary of some of the key points of quantum photonics are given
with the hope that this paper will be accessible to non-practitioners of quan-
tum photonics in QI, but whom have a familiarity with multiple-valued logic
and its application in information representation. Additionally, we introduce
some of the notation that is commonly used in the quantum photonics com-
munity so that concepts of quantum photonic information representation can
be provided in a precise manner.

2.2 Oscillators, the Hamiltonian and State Vectors
Although basic QM theory can be described in a variety of different ways,
a common method is consideration of the quantum harmonic oscillator as a
starting point [15]. At the birth of QM, Planck modeled atoms that absorb
and emit EM radiation as an oscillator. However, the key difference Planck
introduced in his oscillator model of the atom is that the total energy of an
atom can only exist at discrete quantities, the process of quantization, thus
causing his model to take the form of a “quantum” harmonic oscillator. In
comparing the quantum harmonic oscillator to a continuous harmonic oscil-
lator; for example, a mechanical clock’s pendulum in a constant gravitational
field but without the presence of energy loss due to practical factors like bear-
ing friction or air resistance, then the total energy of the idealized pendulum,
Epen, would be the sum of its kinetic energy, Tpen, due to its momentum and
its potential energy, Vpen, due to the gravitational force that pulls it to its verti-
cal position Epen = Tpen + Vpen. In this clock pendulum example, we assume
that an amount of energy is initially transferred to the pendulum at time, t0,
due to the work imparted by an external force, fx , that pulls the pendulum to
one side and moves it to a vertical distance of, zo, relative to the x-axis, to
initiate its oscillatory motion as shown in Figure 1a. After the initial transfer
of energy into the idealized clock pendulum occurs at time t0 due to the work
performed by the initial force, fx , at time, t0, the pendulum begins swinging
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FIGURE 1
Idealized Clock Pendulum as Simple Harmonic Oscillator; a) Initial Energy Transfer into the
Pendulum by Performing Work; b) Discretized Model of the Ideal Pendulum with N = 5 Finite
Energy States.

back and forth in a continuous motion, oscillating about the vertical axis, z,
and moving along the path indicated by the blue dashed arc in Figure 1.

If a quantization were to be applied to the clock pendulum, then an anal-
ogy to the non-relativistic quantum harmonic model would emerge that indi-
cates the position of the pendulum could only be allowed to occupy certain
discrete initial positions in space and it would no longer swing in an arbi-
trary continuous arc back and forth with respect to the vertical. Rather, to
model discrete changes in total energy, Epen, it would instantaneously move
from one discrete position to another as indicated by the dashed outlines
of the pendulum in Figure 1b. Likewise, the kinetic and potential energies
of the clock pendulum would only occupy a discrete set of specific val-
ues denoted by

{
T0, T, T2,T3,T4

}
and {V0, V1, V2, V3, V4} respectively but

wherein, due to the conservation of energy principle, Epen = Tj + Vj , ∀ j .
Moreover, if the allowable sets of kinetic and potential energies were mod-
eled as countably finite rather than countably infinite with N allowable pairs,{
T0, T1, T2, · · · , TN−1

}
and

{
V0, V1, V2, · · · , VN−1

}
, then the energies could

be modeled as discrete N -dimensional vectors. In fact, the total energy of
the clock pendulum, whether modeled as a continuous or a discrete harmonic
oscillator is the well-known Hamiltonian energy operator of the pendulum
since it is the sum of its kinetic and potential energies. As will be described
more fully in the following sections, if the size of the pendulum were reduced
to be on the order of an atomic particle, Schrdinger’s equation would emerge
that dictates the temporal and spatial evolutions of this idealized and quan-
tized “quantum” pendulum oscillator in terms of its Hamiltonian.

The Hamiltonian can take on many different forms and is more properly
considered a mathematical operator, Ĥ . Considering the continuous model of
the pendulum in Figure 1, we could express the instantaneous kinetic energy
to be Tpen = 1

2 mv2 where m is the point mass modeling the pendulum and
v is its instantaneous speed or magnitude of the velocity vector. Likewise,
we could model its potential energy to be Vpen = mgz where g is the magni-
tude of the constant force of gravity pulling the pendulum down toward the



HIGHER-RADIX QUANTUM PHOTONIC INFORMATICS 217

vertical position and z is its vertical distance above the x-axis. In this case,
the Hamiltonian is time-varying, Ĥ = 1

2 mv2 + mgz, since the two observ-
able characteristics, speed (or momentum since the mass, m, is constant)
and vertical distance, are functions of time, v (t) and z (t). This Hamilto-
nian could be rewritten in terms of the pendulum’s momentum, p = mv, as
Ĥ = p2

2m + mgz. In this case, the “state” of the pendulum is uniquely speci-
fied by the pair of measurable values, or observables‡ , {p, z}.

In the case of the discrete harmonic oscillator model with a countable
number of observables, N , the Hamiltonian is likewise Ĥ = p2

j

2m + mgz j

where the observables are the pair
{

p j , z j
}

for any of the j th discrete observ-
able values. We can express the state of the quantum system with an N -
dimensional vector for either the observable p j or z j and since these values
are fixed for a given total energy, Epen, the N -dimensional state vector can be
of the form of a unit-normed vector with N − 1 zero-valued components and
single unity- or one-valued component corresponding to a particular value
of pi or zi . We observe that the collection of all possible such state vectors
form an orthonormal basis of an N -dimensional vector space. Thus, for the
particle-sized generalization of the pendulum, a quantum harmonic oscillator
model results with the state of the particle-sized pendulum being represented
as an element in the N -dimensional vector space element known as the sys-
tem (or “pendulum”) state vector.

2.3 Matter Waves
The mechanical clock pendulum example is a macroscopic entity with a
mass, m, comprised of an enormous number of particles and hence, it bet-
ter obeys Newton’s theory of motion that express its observable characteris-
tics such as position, speed, energy and momentum as deterministic variables
in the continuum. One way to consider whether the quantum theory versus
Newton’s theory should be used to model a system, or more precisely, the
‘degree’ to which QM versus Newton’s theory should be used, is to con-
sider de Broglie’s matter waves [7] and the uncertainty principle [16, 17].
de Broglie’s 1924 work resulted in the concept that all matter comprised of
mass has a wave-like property which coincidentally also implied that zero
rest mass particles such as a photon likewise have properties normally con-
sidered only for objects with mass, such as momentum. de Broglie’s for-
mula equated a particle’s wavelength, λ, to the ratio of Planck’s constant, h,
with the particle’s momentum, p, or λ = h

p . Due to the extremely small mag-

nitude of Planck’s constant, h ∼= 6.62607015 × 10−34, this formula results
in a wavelength of a small object with a macroscopic mass, such as a toy

‡ An “observable” is a measurable characteristic of a system where the outcome of the measurement,
or observation, is represented by a real value such as speed v, momentum p or height in the vertical, z.
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marble, being more than 20 orders of magnitude smaller than the statisti-
cal/empirical average radius of a hydrogen atom, clearly an imperceptible
and practically immeasurable length. However, as the mass or momentum of
an object decreases to a very small magnitude, the de Broglie wavelength
becomes a significant characteristic.

In considering such particles of tiny scale, the wavelike nature becomes
much more dominant leading to the concept of the particle’s “wave function”
that can be expressed in terms of its measurable characteristics, or quantum
observables, such as position, momentum and others as dependent variables.
The values of these measureable characteristics are obtained by applying
an observable operator to either the functional form, or, the N -dimensional
quantum state vector form of the wave function resulting in a real-valued
quantity as the measurement outcome or observation. When the observable
operators are in the form of a matrix, their application to the wave function
state vector results in a real-valued measurement outcome that happens to be
an eigenvalue of the corresponding operator matrix. Furthermore, the uncer-
tainty of such observables, before measurement, becomes significant as well.

2.4 Uncertainty
Conjugate variables obey a generalized uncertainty principle that can be
derived using basic statistical principles of distributions of random variables
in view of their Fourier transform relationship. Alternatively, if two observ-
ables of a system are related as a Fourier transform pair, they are said to
be “conjugate variables.” For particles at the quantum scale, the matter-wave
relationship results in observables taking the form of random variables of a
distribution due to the wave-like nature causing them to be ‘spread’ out, or to
have variance, σ 2. The generalized uncertainty expression provides a lower
bound on the product of the standard deviations, σ , of the distributions of a
conjugate variable pair and is provided in Equation 1 for the example con-
jugate variable observables in functional form, x̂ and p̂x , where the angle
bracket notation is equivalent to the statistical expected value operator of a
random variable, A, or E {A} = 〈A〉. The constant i is the ‘imaginary num-
ber’ satisfying i2 = −1.

σxσp ≥
∣∣∣∣ 1

2i
〈̂x p̂x − p̂x x̂〉

∣∣∣∣ (1)

The expression, x̂ p̂x − p̂x x̂ , indicates the commutative relationship among
the example observables, x̂ and p̂x . When these observables are conjugate
variables, they do not commute in general. A commonly used operator is the
“commutator” denoted with square brackets and defined in Equation 2.

[̂x, p̂x ] ≡ x̂ p̂x − p̂x x̂ (2)
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The generalized uncertainty relation of Equation 1 can be rewritten in terms
of the commutator as given in Equation 3.

σxσp ≥
∣∣∣∣ 1

2i
〈[̂x, p̂x ]〉

∣∣∣∣ (3)

One of the axioms of the theory of QM is the “canonical commutation” rela-
tion that states the N × N -dimensional operator matrices, X̂ and P̂X , that are
equivalent to the functional forms, x̂ and p̂x , of the observable operators for
a conjugate pair are non-commutative and their commutativity relationship
is equal to a constant. In terms of the position observable operator, X̂, and
the momentum operator expressed as a function of the position basis, P̂X ,
the canonical commutation relation is given in Equation 4 where IN is the
N × N identity matrix.

[
X̂, P̂X

] = i2πhIN = ih̄IN (4)

The canonical commutation relation is attributed to Heisenberg, Born and
Jordan who are pioneering founders of the theory of QM and serves, in part,
as a definition of QM theory. When the generalized uncertainty principle of
Equation 3 is combined with the canonical commutation axiom, in Equa-
tion 4, we arrive at the so-called “Heisenberg uncertainty principle” given in
Equation 5 where σx is the standard deviation of the position conjugate vari-
able and σp is the standard deviation of the momentum conjugate variable.

σxσp ≥ h̄

2
(5)

For macroscopic-sized objects, such as the toy marble, the de Broglie wave-
length is so tiny, that the marble’s wave function approaches a volume that is,
for all practical purposes, a miniscule collection of single points in space, thus
the uncertainty of its position or momentum is extremely tiny and approaches
zero. This means the toy marble and the mechanical clock pendulum has
fixed or constant localized positions and momenta at any instant in time and
there is no perceptible uncertainty in either measurable characteristic. How-
ever, when the particle is small, its wave function, expressed in terms of the
position basis, can become significantly ‘spread out’ in terms of its position
and likewise, when its wave function is expressed in terms of momentum,
there is a similar ‘spread’ or, more formally, variance among the collection
of points. This causes the canonical commutation value of

[
X̂, P̂X

] = ih̄In to
become significant and leads to oft-used descriptions such as “the position of
an atomic particle is considered to exist as a probability point cloud.”
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This description of de Broglie’s matter waves and Heisenberg’s uncer-
tainty along with Schrodinger’s wave equation can be used to rigorously
define QM theory and we shall not go further into this development, rather
our goal is to provide enough background to the MVL community such that
the remainder of this paper is easily accessible. However, one more impor-
tant point remains, and that is to clarify the behavior of conjugate variables of
quantum particles. When a particle’s mass/momentum is small enough that
these quantum mechanical characteristics are non-negligible, then observ-
ables such as position and momentum become discrete and are no longer
accurately modeled within the continuum such as would be due to Newton’s
theory of motion. Furthermore, its characteristic observables, when extracted
from its wave function through the application of an observable operator,
such as x̂ or p̂x that signify position and momentum respectively, become
significant in terms of Heisenberg’s uncertainty. In fact, an application of x̂
to the wave function will result in a single real-valued position point as a
result of the measurement, but it will also likewise cause the uncertainty of
its conjugate variable momentum, if it were to be subsequently measured by
applying p̂x to the same wave function, to have a much larger spread of pos-
sible outcomes. Thus, the standard deviations of these observables, σx and
σp, vary inversely with one another and their respective observables, posi-
tion and momentum, are said to be conjugate variables. Conjugate variables,
when extracted from wave functions via the application of observable opera-
tors such as x̂ or p̂x , are those that are Fourier transform pairs of their respec-
tive wave functions and they furthermore have statistical distributions whose
variances change inversely with respect to one another due to the application
of observable operators.

2.5 Information Encoding with Conjugate Variables
While the uncertainty, wavelike and discrete nature of observables of quan-
tum particles, such as photons, may seem to be unsettling at first, it is pre-
cisely these relationships that enable the promise of QI to overcome many
of the limitations present in classical systems such as classical electronic cir-
cuits leading to the so-called “quantum advantage.” The discrete nature of
quanta allows for the use of an inherent and natural quantization for arti-
facts based on QM as contrasted to defining continuous voltage, current or
charge ranges and assigning a “logic” value to them as is done in classical
electronic switching circuits. The probabilistic nature of measuring observ-
ables that results from uncertainty likewise leads to the extremely powerful
concept of “information parallelism” through “quantum superposition.” By
constraining quantum engineering artifacts to confine the observables to only
two possible wave function basis states, we can assign a logic value of zero,
|0〉 = [

1 0
]T

, to first state and a logic value of one, |1〉 = [
0 1

]T
, to the
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second state resulting in a quantum bit or “qubit.” Due to the uncertainty prin-
ciple, a qubit can be represented by a quantum particle’s wave function, �,
that is expressed as a function of one of its conjugate variables and described
as a two-dimensional vector since only two allowable states are considered,
|�〉 = [

α0 α1
]T = α0 |0〉 + α1 |1〉. The wave function, |�〉 , can thus rep-

resent both zero and one simultaneously with some a priori probability of the
outcome of their measurements – this is “information parallelism” or “quan-
tum superposition.” However, there is no inherent reason that engineering
artifacts must be limited to only two states, it is theoretically just as easy
to build artifacts that limit the states to N>2 states¶ for some of the conju-
gate variables of a photon resulting in quantum digits, or “qudits,” rather than
qubits as shown in Equation 6. Such higher-dimensional quantum systems,
particularly when the observables of a photon encode information, are thus
the subject of the following portions of this paper.

|�〉 =
N−1∑
j=0

α j | j〉 (6)

Specifically, we consider a photon’s location, frequency, polarization and spa-
tial angular momentum observables for the purpose of representing informa-
tion in a QPIC. These characteristics correspond to the position, energy, and
momentum conjugate variables and thus are subject to existing in a state of
superposition among a discrete set of basis wave functions due to their uncer-
tainty and wavelike behaviors that, in turn, offer the promise of a quantum
advantage. We note that other measurable characteristics could also be used
to encode information, but we focus on these four examples here. Finally, we
also note that use of the photon as a carrier of quantum information offers a
very important practical engineering consideration in that it is the only quan-
tum information carrier that does not require an extreme degree of refrigera-
tion to retain coherence; thus, offering the advantage to design and fabricate
QI artifacts that operate at room temperature.

3 QUANTUM PHOTONIC POLARIZATION ENCODING

Historically, quantum photonics has embraced the exploitation of the state
of polarization of a photon as a primary carrier of information. Although

¶ “Theoretical ease” does not imply ease in engineering development, more supporting components are
generally required to support higher-dimensioned quantum systems in engineering artifacts; however,
such higher-dimensioned artifacts have been produced and it is currently an active area of engineering
research to determine if higher-dimensioned quantum artifacts will ultimately dominate – this is one of
the points of this paper.
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the intention of this paper is to survey higher-dimensioned quantum pho-
tonic information encoding for the multiple-valued logic community, the
widespread use of photon polarization as an information carrier, which is
naturally limited to a binary basis, is included in this section for both com-
pleteness as well as to provide context for polarization-based QPIC imple-
mentation issues. Furthermore, as will be discussed in this section, the use of
polarization-encoding can augment other forms of N -dimensional conjugate
variable encoding to enable a doubling of the dimension or radix to yield a
2N -dimensional hybrid-encoded QPIC.

The use of photon polarization for information encoding allows a single
photon’s wave function to be expressed in terms of two orthogonal polariza-
tion basis vectors, | h〉 and | v〉, where polarization is a manifestation of the
temporal angular momentum conjugate variable of the wave function. Thus, a
single photon with polarization-based information encoding results in a two-
dimensional state vector or qubit. This is observed to be the case since the
photon’s direction of propagation is given by its instantaneous Poynting vec-
tor and the corresponding state of polarization is entirely described within a
plane perpendicular to the Poynting vector. Therefore, the polarization basis
comprises any two chosen orthogonal vectors within the plane that we gen-
erally refer to here as | h〉 and | v〉. We note that polarization should not be
confused with the spatial angular momentum conjugate variable of a photon,
manifested as “orbital angular momentum” (OAM) and discussed more fully
in Section 6, does not suffer from this binary basis limitation and does allow
for higher dimensioned QI applications. In fact, the dimensionality of OAM
encoding may be doubled in some QI applications by augmenting it with the
polarization encoding discussed here.

In a tabletop bulk optics realization of a QI artifact, polarization-encoded
qubits are a sensible choice. Traditionally a variety of key QI components
or ‘gates’ were realizable using the polarization observable and hence the
photonic circuitry for important early quantum computing algorithms and
communications protocols was able to be physically constructed and demon-
strated [18–24].

For many reasons, an overwhelming majority of photonic integrated cir-
cuits to date have been based on the use of rectangular cross-sectional waveg-
uides to constrain the direction of EM propagation that is predominantly
single mode and hence, only supports a single polarization basis. While
these rectangular cross-section waveguide dimensions and the contrast of the
indices can allow higher order EM modes, these higher-order modes come
with significant loss and group velocity differences between modes. How-
ever, waveguides of square cross section allow for degenerate modes with
equal loss and group velocity, and these modes in superposition provide an
on-chip approach to forming and stably propagating any state of polarization.
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FIGURE 2
Electric Field Components Vertically/Horizontally Polarized Lower Modes

FIGURE 3
Amplitude and Phase of h + v Mode.

Changing the cross-sectional waveguide to one with a square cross-section
introduces a symmetry that allows for a wide range of QI applications based
on polarization including polarization-encoded qubits. Furthermore, careful
breaking of the square symmetry allows for realizing a variety of useful com-
ponents or “gates” that evolve the photonic wave function to a new state and
that may be arranged as a quantum circuit within QPICs to realize algorithms.
Importantly, the square waveguides and their variations that provide compo-
nents may be fabricated with the same standard photolithographic techniques
that are used in electronic semiconductor foundries [24].

Figure 2 shows the electric field components for the vertically polarized
and the horizontally polarized lowest order modes in the proposed square
cross-sectional waveguide. To avoid confusion, these respective mode com-
ponents are labeled relative to the invariants of the photonic integrated circuit
(PIC) geometry envisioned herein, namely horizontal, h, vertical, v, and for
the direction of propagation, prop. As verified numerically, these modes are
orthogonal. Further, linear combinations of the h and v modes also propagate
at the same velocity as the individual h and v modes. Figure 3 shows the
amplitude and phase plots of an h + v mode.
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FIGURE 4
Propagation of h and v Modes Through Typical Y-coupler.

The degeneracy of the h and v modes result from the square symmetry of
the waveguide and gives rise to utility, particularly in the context of polariza-
tion encoding of single and few-photon QI applications. Judicious breaking
of this symmetry enables further utility in the form of polarization-sensitive
components. For example, curving, narrowing or widening the waveguide in
one dimension, or placing additional waveguides parallel to the first waveg-
uide affects the two modes differently.

Not all broken symmetries distinguish significantly between h and v mode
components. Figure 4 shows the propagation of the h and v modes through
a typical Y-coupler component, although redesigned for waveguides with
square cross-sections. In QI, the ability to equally split single photons of
arbitrary polarization is useful and represents the operation of evolving a
basis state into a state of superposition. The Bell inequality test for quan-
tized behavior, for example, is widely deployed for this purpose. Homodyne
detection for enhanced signal-to-noise ratio (SNR) is another application. In
the Y-coupler shown, the v-mode splitting is perfectly symmetric with -3.30
dB in each branch. The h-mode is mildly asymmetric with -3.35 dB in the
top branch and 3.31 dB in the bottom branch.

Conversely, a mode splitter – a polarizing beamsplitter or Hadamard oper-
ator from a QI point of view – may be realized using two closely spaced
parallel waveguides, because the v-mode exhibits stronger coupling than the
h-mode. Figure 5 shows a top view of the coupling behavior of two parallel
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FIGURE 5
Electric Field in Waveguides After Mode Splitting.

550 nm × 550 nm square Si/SiO2 waveguides separated by 100 nm. The v

mode couples quickly with a coupling period of ˜13.5 μm, compared with a
coupling period of ˜37.5 μm for the h mode. Interestingly, good crosstalk-
free v-mode coupling occurs at three periods. At this point, 97% of the v

mode and 1% of the h-mode are coupled with a loss of 2%.
By adjusting the spacing and the total interaction length, equal splitting for

both modes may be simultaneously achieved. One example of suitable dimen-
sions for this component is a 75 nm gap between the two parallel waveguides
with a ˜38 μm coupling length. The modes for this splitter are less distorted
than those computed for the Y-coupler results shown in Fig. 3-3.

A ‘microring resonator’ (MRR) evanescently coupled to a waveguide is
often used for the nonlinear optical production of entangled signal-idler pho-
ton pairs since it can induce a four-wave mixing (FWM) process. Evanescent
coupling for more complicated geometries is, however, made more difficult
by the different interaction lengths. It is challenging, for example, to find a
robust design for a MRR that supports both h mode and v mode FWM oper-
ations equally. One challenge is to balance the coupling that is different for
the two orthogonal modes. However, with the mode splitter shown in Fig.
3-4, single mode MRRs may be used. Furthermore, two separate single mode
MRRs may be implemented – one on each of the two output waveguides of
the mode-splitter in Fig. 3-4.

A further example of a polarization component that can be realized in a
square waveguide geometry is a λ/2 waveplate based on a taper. Since the
effective index of a square waveguide is a function of the dimensions of the
waveguide, tapering in one direction provides a different propagation speed
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FIGURE 6
Input and Output Mode Character of V-shaped Taper.

FIGURE 7
Electric Field Phases at Input and Output of Taper.

for the h-mode relative to the v-mode thus imparting the action of a wave-
plate with polarization encoding. Using this break in symmetry introduces a
π -phase shift (180◦) between the h mode and the v mode which is equivalent
to a Pauli-Z operation in terms of QI. Figure 6 shows the input and output
mode character of a V-shaped taper. In Figure 6, the horizontal width of the
waveguide first tapers down to 400 nm within a length of 7.5 μm and then
increases back up to 550 nm within a second 7.5 μm length of expanding
taper. The input mode in Figure 6 is a 50:50 superposition of h-mode and
v-mode components thus representing the generation of quantum superpo-
sition in a polarization-encoded qubit. The output is also an equal mixture
of h-mode and v-mode, but with the phase difference rotated by 90◦, which
implements an S-gate for a superimposed polarization-encoded qubit. The
loss in this waveplate is ˜1%.

Figure 7 shows the phases of the electric fields at the input and the output
of the taper.
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Coupling on and off the PIC has also been addressed. Edge couplers that
transition between a fiber and a waveguide can also be designed. Interest-
ingly, coupling losses for a typical (circular shaped) SMF-28 fiber optic cable
to a square Si waveguide can be a factor of 5 or more times smaller than for a
comparable rectangular waveguide. Symmetry, here too, plays the key role in
this improvement as it is apparently easier to approximately ‘square a circle’
than to ‘rectangle a circle.’

Thus, it is both possible and useful to design and fabricate square waveg-
uides whose symmetry allows stable, dispersion-free propagation of
polarization-encoded qubits. In addition, a variety of integrated couplers,
waveplates and polarizers can be realized. A qubit encoded in polarization
in a square waveguide may thus be written as a superposition of a hori-
zontal and a vertical component, |�〉 = α| h〉 + β| v〉 as it is in free space
polarization-encoding and processing. Similarly, the components described
here allow analogs of diagonal basis states | ±〉 = 1√

2
(| h〉 ± | v〉) and by

retarding the phase of one of the components, with circular polarization
| L

R

〉 = 1√
2

(| h〉 ± i | v〉), which corresponds to a QI S-gate operation. This
set of bases encoded in polarization follows exactly those used in free space
polarization-based processing. With this advance it is possible to double the
number of logical levels from N to 2N by using polarization in an integrated
photonic architecture since it can augment another independent conjugate
variable, such as the location-encoded variable that has N bases [24].

4 QUANTUM PHOTONIC LOCATION ENCODING

As previously discussed, rectangular cross-sectional waveguides are typically
employed within a QPIC to constrain the position and propagation direction
of a photon although we provided new results regarding the use of square
cross-sectional waveguides. Independently of the shape of the waveguide,
when it is desired to use the position conjugate variable only to represent
information, N multiple waveguides can be implemented within the QPIC
and labeled as corresponding to different position basis states of a single pho-
ton’s wave function. When N = 2, the binary case, the QPIC supports qubits
and location encoding is sometimes referred to as “dual-rail encoding,” due to
the structural similarities among a QPIC and ASIC that employs differential-
mode electrical signaling. When N > 2, the location-encoded QPIC supports
qudits that are represented as higher dimensioned quantum state vectors. This
multiple waveguide implementation can support the propagation of a photon
when it exists in a quantum superposition with respect to its position observ-
able. Regardless of the value of N , this form of quantum information encod-
ing within a QPIC is referred to by various names including ‘path encoding’



228 MITCHELL A. THORNTON AND DUNCAN L. MACFARLANE

FIGURE 8
Diagram of Location-encoded QPIC with External Pump and Detectors.

and ‘location encoding.’ The common theoretical principle for this form of
information representation in a QPIC is the exploitation of the wave func-
tion’s position conjugate variable to represent and process quantum informa-
tion. Figure 8 contains a diagram of a single photon location-encoded QPIC
that implements four-dimensional, N = 4, qudits with an external single pho-
ton source, the “pump,” and four external “single photon detectors (SPD) for
each basis state. The red lines represent waveguides and fiber optic cables.
The red lines that are external to the QPIC boundary, from the pump output
to the leftmost edge of the QPIC and from the rightmost edge of the QPIC to
the input of the SPD devices, are fiber optic cables that connect to the QPIC
substrate via input/output edge couplers on the QPIC package. The red lines
internal to the QPIC are waveguides that are each annotated with the location
basis vectors they represent, |0〉 through |3〉. The external SPD are devices
that convert the energy present in a photon wave packet into an electrical
pulse; thus, the solid black lines that represent the SPD outputs are electrical
conductors that drive the signals Det-0, Det-1, Det-2, and Det-3.

To illustrate how the use of N waveguides on a QPIC encodes informa-
tion via the position conjugate variable, we first give the general form of a
single photon wave function as the photon is propagating in free space and
then compare it to the form of the wave function when it is constrained to
propagate within N = 4 waveguides implemented on a QPIC such as that in
Figure 8. This wave function is the generalized solution to Schrdinger’s wave
equation with the initial condition that the photon is located at the three-
dimensional spatial coordinate system origin, r0 = 0, at time, t = 0, where
0 is the three-dimensional null vector. Equation 7 shows the wave function,
� (r, t), in traditional linear algebraic notation where non-italicized bold font
indicates a vector and italicized non-bolded font indicates a complex-valued
scalar. In Equation 7, the position of the photon at time, t , is indicated by a
real-valued three-dimensional spatial vector, r (t), in units of meters, the spa-
tial frequency or angular wave vector, k, with units of radians per meter and
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the temporal wave frequency, ω, in units of radians per second. Without loss
of generality, the wave functions in this Section are given with a phase angle
offset of 0◦.

� (r, t) = |� (r, t)| ei(k·r−ωt) (7)

Likewise, this same wave function is expressed in Dirac’s ‘braket’ notation
in Equation 8.

|� ( |r〉 , t)〉 = 〈�|�〉 ei(〈k|r〉−ωt) (8)

In Equations 7 and 8, the wave functions are written in terms of the position
conjugate and the photon can be intuitively considered as simultaneously
existing in a plurality of three-dimensional free-space locations specified
within some uncertainty volume whose position is indicated by the r = |r〉
random position vector before it is measured. More specifically, the photon
is probabilistically present within a volume whose location is indicated by
r = |r〉 in accordance with the probability distribution, |� (r, t)|2 = 〈�|�〉,
and with a standard deviation of σr=

[
σx σy σz

]T
in accordance with

the uncertainty relation in Equation 5. In this case, the wave function is
of the form of a three-dimensional vector whose component wave func-
tions are each in terms of the projection of the general form in Equations
7 and 8 with unit vectors along each axis of the coordinate system defin-
ing the position vector r = |r〉. These explicit component wave functions
are provided in Equations 9, 10 and 4-5 where r = |r〉 = [

rx ry rz
]T

is used to indicate the components of the position vector projected to the
unit vectors defining the coordinate system, or free-space position basis,{
ux , uy, uz

} =
{[

1 0 0
]T

,
[
0 1 0

]T
,
[
0 0 1

]T
}
.

�x = 〈�x |�x 〉 ei(kxr x −ωt) (9)

�y = 〈
�y

∣∣�y
〉
e

i
(
kyr y−ωt

)
(10)

�z = 〈�z|�z〉 ei(kzr z−ωt) (11)

In contrast, when the photon is constrained to propagate along the axis of one
of N = 4 waveguides implemented within a QPIC, as depicted in the diagram
of Figure 8, its wave function is likewise a solution of Schrdinger’s wave
equation as in the free-space case but with boundary conditions imposed by
the spatial geometries of the N = 4 waveguides as well as the initial condi-
tions. In this case, the wave function can be expressed as a four-dimensional
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vector, |�〉, in terms of the waveguide labels that are present in the four-
dimensional vector |z〉 as annotated in Figure 8. We choose the variable
“z” to represent the axial directional axis of a waveguide since each waveg-
uide constrains the location of the photon to be contained within their inte-
rior boundaries due to the idealized total internal reflection occurring at
the cross-sectional waveguide boundaries and thus having a net propaga-
tion direction, Poynting vector, in the axial or “z-direction,” of each waveg-
uide. Thus, the wave function is still dependent upon a position conjugate
variable, it just happens to be constrained to lie along the one-dimensional
path defined by the z-axis of each waveguide due to its spatial geometry
as placed and routed on the QPIC substrate. It is unnecessary to use actual
spatial coordinates related to the physical position of each waveguide’s z-
axis, it is only necessary to define a four-dimensional orthonormal basis vec-
tor set such that each independent basis vector is attributed to one of the
N = 4 waveguides and that represents a position coincident with each waveg-
uide’s axial path of wave function propagation. Conventionally, the canonical
four-dimension “computational basis” is used, |z〉 ∈ { |0〉 , |1〉 , |2〉 , |3〉} ={[

1 0 0 0
]T

,
[
0 1 0 0

]T
,
[
0 0 1 0

]T
,
[
0 0 0 1

]T
}

.

Equation 12 contains the wave function expressed in terms of the N = 4
waveguides’ position variable, |z〉. Although Equation 12 is similar in struc-
ture to Equation 8, the wave function of Equation 12 is four-dimensional
since N = 4 waveguides are used rather than the three-dimensional free-
space wave function of Equation 8.

|� ( |z〉 , t)〉 = 〈�|�〉 ei(〈k|z〉−ωt) (12)

Each component of the four-dimensional vector in Equation 12 represents the
orthogonal wave function component of the photon as it propagates through
the N = 4 waveguides as given in Equations 13 through 16 where the wave
number, k, is assumed constant for all components since the same waveguide
fill material is used for all waveguides fabricated on a QPIC, thus the spatial
frequency, k, is the same for each waveguide.

�0 = 〈�0|�0〉 ei(kd0−ωt) (13)

�1 = 〈�1|�1〉 ei(kd1−ωt) (14)

�2 = 〈�2|�2〉 ei(kd2−ωt) (15)

�3 = 〈�3|�3〉 ei(kd3−ωt) (16)
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The real scalar values {d0, d1, d2, d3} in Equations 13 through 16 repre-
sent the distance along each waveguide that the wave function has prop-
agated since the initial condition for the time variable, t0, to the current
time, t . We note that the relationship, d = vpt , is used to express the dis-
tance, d, the wave function has propagated since the initial time condition,
t0, as the product of the phase velocity, vp, with the current time variable,
t . Because the wave function is injected into the input ports of the N = 4
waveguides at the same instant of time, d0 = d1 = d2 = d3 ≡ d = vpt , and
Equations 13 through 16 can be rewritten by substituting each kd j term for all
j ∈ {0, 1, 2, 3} with kvpt , thus causing all the exponential terms to become
identical as ei(kvpt−ωt) = ei(kvp−ω)t . Therefore, the only distinguishable dif-
ferences among the wave function components for the N = 4 waveguides,
are complex scalars that multiply each exponential term, {�0, �1, �2, �3}
that are known as the ”probability amplitudes” of the wave function.

The quantum state vector for the N = 4 waveguides QPIC is given in
Equation 17 and is simplified given the previous observation that it is the four-
dimensional wave function vector in terms of the waveguide label or location
variable, |z〉. In this example, |z〉 is represented by the computational basis,
{ |0〉 , |1〉 , |2〉 , |3〉}, as is typical in QI applications and the ei(kvp−ω)t term is
assumed to be present, but suppressed since it is identical in each orthogonal
component of the wave function as shown in Equation 17.

|�〉 = �0 |0〉 + �1 |1〉 + �2 |2〉 + �3 |3〉 (17)

Due to uncertainty in the position conjugate, |z〉 is a random vector with
probability mass function 〈�|�〉. Each complex-valued probability ampli-
tude scalar, � j , in Equation 17 can be used to compute the probability that
the wave function collapses to a single waveguide, or position observable,
during a measurement as shown in Equation 18.

Prob {event that photon localizes to waveguide | j〉} = �∗
j � j = ∣∣� j

∣∣2
(18)

When the photon is in a state of superposition with respect to its position con-
jugate, we can abstractly consider the single photon to be spatially present
within all four waveguides simultaneously and this is indicated when more
than one probability amplitude of Equation 17 is non-zero. Of course, a mea-
surement of a superimposed photon wave function results in observing the
photon to be present in a single waveguide, |m〉, with probability as given in
Equation 18, and the quantum state vector evolves into a single basis state
due to the measurement indicated by �m = 1 and � j = 0, ∀ j �= m.
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Initially, photons must be generated and injected into the location encoded
QPIC and this is typically accomplished by coupling a source, or “pump” to
a single waveguide within the QPIC as shown on the leftmost side of Figure 8
which clearly represents a corresponding quantum state as a single basis state
or collapsed form, |�〉 = |m〉, where m is any arbitrary waveguide position
basis vector with a probability amplitude of unity (one). It is generally the
case that the wave function must be evolved into a state of superposition to
derive any quantum advantage with respect to the processing method embod-
ied within the QPIC; this requires the implementation of a QPIC component
or gate that transforms the single basis state into a superimposed state. Such
a gate is represented in Figure 8 by the box labeled “Gate 1.” In principle,
there are a variety of such components that could be used to accomplish the
generation of a superimposed wave function, or state vector, with the only
requirement being that they are realizable and capable of being implemented
as QPIC gates. One family of such theoretically possible QPIC gates are those
that are characterized by transfer matrices of the form of a “complex-valued
Hadamard matrix” (CHM). CHM are a family of matrices clearly of interest
in QI, but for which there has also interest in other applications for over 100
years [25]. There remain unsolved questions regarding both the mathemat-
ics of CHM as well as engineering questions regarding their implementation
that continue to be actively under investigation [26]. It is possible that new
CHM research results will result in the availability of new and more desirable
components with CHM transfer matrices for use in QPIC design. Increased
interest in designing and fabricating location-encoded QPICs will likely con-
tinue to motivate this line of research.

For binary or qubit based QPICs, the well-known real-valued 2 × 2
Hadamard gate has a transfer matrix of, HHad =

(
1√
2

)
( |0〉 〈0| + |0〉 〈1|+ |1〉 〈0|− |1〉 〈1| ),

and is typically employed to generate superposition from a single basis state
since it corresponds to a power-splitter or Y-coupler as discussed in Sec-
tion 3. Mathematically, the Hadamard transfer matrix is the discrete Fourier
transform matrix over GF (2), thereby permitting one to consider its action
as transforming the input single basis state, viewed as a discrete modulo-2
Dirac delta functional, into a spread of superposition among the two dual-
rail waveguides whose corresponding probability amplitude magnitudes are
numerically equal. When the magnitudes of the probability amplitudes are all
non-zero and their magnitudes are equal in value, ‘perfect superposition’ is
said to be achieved. For the higher dimensioned case, N > 2, the higher-radix
generalization of the Hadamard gate is the Chrestenson gate with a trans-
fer matrix denoted as, CN , that likewise represents the discrete modulo-N
Fourier transform matrix [27] and is one choice for the generation of perfect
superposition in a higher dimension location-encoded QPIC when the wave
function is initialized to a single collapsed basis state. A recently described
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QPIC gate that evolves a photonic wave function, initially in one of the four
basis states, |0〉 through |3〉, into a state of perfect superposition is the radix-
4 Chrestenson gate described in [28]. Mathematically, this gate would evolve
a basis state of, for example, |�〉 = |0〉, into the state of perfect superposi-
tion, |�〉 = 1

2 ( |0〉 + |1〉 + |2〉 + |3〉), and represents a viable choice for the
QPIC component annotated “Gate 1” in Figure 8.

A measurement of the photon’s location can be implemented by coupling
four distinct single photon detectors (SPD) to each waveguide as depicted in
Figure 8. Clearly, since a photon is an indivisible quantum of EM energy and
assuming ideal operation where the practical possibility of photon loss in the
QPIC is discounted, only a single SPD will “fire” or register the presence
of energy, even when the photon wave function is in a superimposed state
among the N = 4 fiber optic cables providing input to the SPDs.

The use of additional photonic components that transform the quantum
state is accomplished in a QPIC by connecting their input and output ports to
one or more of the waveguides in the QPIC. Figure 8 contains some abstract
example components, or gates, that are coupled to internal QPIC waveguide
segments labeled as “GATE 2” through “Gate 6.” The selection, placement,
and transfer functions of the gate components, some of which may be non-
linear, define the functionality of the QPIC as determined by the designer.
Note that the components labeled “Gate 2” and “Gate 3” are single-photon,
or single qudit gates, and only couple to a single individual waveguide while
others, labeled “Gate 4,” “Gate 5” and Gate 6,” are multi-photon and couple
to two waveguides. Although multi-photon components may be used in the
QPIC, it is emphasized that single photon qudits are being described here and
the multi-photon gates function with the single photon superimposed wave
function.

In terms of information representation within a location-encoded QPIC,
the objective is to use some aspect of the quantum state in Equation 17 to
encode information. Although a variety of different methods exist to encode
information within the quantum state of a qudit [29], the most common
method is “basis encoding.” Basis encoding uses the basis vector labels
or values to represent information. In the four-dimensional QPIC example
described here, the information is represented with a radix-four, digit set,
|z〉 = {0, 1, 2, 3}, since the position conjugate is constrained and encoded to
be in the discrete computational basis set, { |0〉 , |1〉 , |2〉 , |3〉}. In terms of
QI, the quantum advantage with respect to QPIC functionality is achieved
through the exploitation of QM properties such as superposition and entan-
glement as is true of other forms of DV quantum information processing.
Higher-dimensioned entanglement among the photon wave functions [27]
can be achieved, typically through using multi-photon components such
as an MRR that can impart the FWM nonlinear effect and offers many
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well-known and desirable advantages in QI. An example of a recently fab-
ricated QPIC that uses a single heralded photon is a true random number
generator (TRNG) as disclosed in [30] where both a binary radix and a radix-
4 QPIC are described.

5 QUANTUM PHOTONIC WAVELENGTH/FREQUENCY
ENCODING

Another form of the uncertainty principle states that energy, E , of a parti-
cle is a conjugate variable with respect to time, 	E	t ≥ h̄

2 , although it is
noted that time, t , is not a quantum observable of a particle, rather it is an
independent system variable in Schrdinger’s equation. While position and
momentum are measurable characteristics of a quantum particle, there is no
concept of measuring a particle’s ‘time characteristic’ nor is there an observ-
able operator, t̂ . However, as discussed in Section 2, there is an observable
operator for energy, E ; the Hamiltonian, Ĥ . In fact, when the energy ver-
sus time uncertainty is discussed, 	t is generally a quantity considered to be
intrinsic or inferred with respect to some other observable that does happen
to be a conjugate with respect to E .

More specifically, if we assume a particle has some generalized conjugate
observable q̂ that obeys generalized uncertainty, or in other words, is a conju-
gate with respect to E , then following the derivation in [15], we can express
the generalized uncertainty in terms of Ĥ and q̂ , followed by applying the
canonical commutation axiom of QM to arrive at Equation 19.

σHσq ≥ h̄

2

∣∣∣∣d 〈q〉
dt

∣∣∣∣ (19)

Next, the definition, σH ≡ 	E , is assumed and the ‘intrinsic time’ term, 	t ,
is obtained from Equation 19 by defining it as a ratio of σq with respect to the
first-order time derivative of q̂ as given in Equation 20.

	t ≡ σq∣∣∣ d〈q〉
dt

∣∣∣ (20)

Equation 20 is essentially a mathematical definition of ‘intrinsic time,’ 	t ,
as inferred from a true observable, q̂ , since it relates the standard deviation,
σq , of the legitimate particle observable, q̂ , with its time rate of change of its
average value, 〈q〉. Observing Equation 20 clearly shows that 	t is the time
interval required for the expected value of observable q to change by one
standard deviation, σq , as normalized by its average rate of change. Because
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the observable q̂ exists and is truly a measurable characteristic of a quantum
particle, we can infer the intrinsic value of 	t .

As energy E has been established to be a conjugate variable with respect
to some other observable q and the intrinsic time 	t can be inferred from
q̂ , we can now examine the use of the E variable in more detail for the QI
purposes of encoding information. With respect to a single photon, it is a
well-established fact that its energy is directly proportional to its frequency,
ω, in units of radians per second as given in Equation 21.

E = h̄ω (21)

Equation 21 is the typical case for a photon of a single color; however,
because its energy, E , is a conjugate variable, the uncertainty relationship
holds as previously discussed and this fact enables the use of ω to encode
information in the photon’s quantum state or wave function. In this case, the
total energy, E , of the photon is sharply known, but there is uncertainty with
respect to its frequency content. The implication is that it must be possible
to evolve the wave function into a state of superposition with respect its fre-
quency observable thus producing a ‘multi-colored’ photon, at least prior to
measurement when it will collapse into a single color. In such a case, we
associate a vector basis set with each frequency or color, and the result is a
QI approach generally referred to as “frequency-bin encoding” [31, 32]. We
note that the overall idea of using different frequencies to represent informa-
tion is not a new concept as the telecommunications industry has used this
approach classically for many years, often termed “wavelength division mul-
tiplexing” (WDM) and therefore, the QPIC and QI communities can benefit
from using many of the previously developed WDM devices and methods by
applying them to QI applications.

In terms of the higher dimension DV QI approaches that are considered
here, we design our QPIC to host and process only a fixed discrete set of
allowable wavelengths. In practice, this restriction is not difficult to imple-
ment within a QPIC as single photon sources can be derived from very spec-
trally pure generators such as high-quality monochromatic lasers. Thus, such
a laser can serve as a ‘pump’ that generates single-colored photons to couple
into a QPIC waveguide. To preserve spectral purity of such an injected wave
function, it is important that all QPIC components operate in a highly linear
manner as nonlinearities can cause an injected spectral line within a wave
function to generate higher-ordered terms that cause frequency harmonics to
appear within the wave function.

As an example of the generation of harmonics due to a nonlinear QPIC
component, assume that the nonlinear component transfer function is in the
form of an operator over the wave function, T̂nl (•), and is of the form of an
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nth-degree polynomial as given in Equation 22.

T̂nl (•) =
n∑

m=0

am (•)m (22)

For the sake of mathematical simplicity and without any loss of generality,
we express the initial spectrally pure wave function as shown in Equation 23
where the spatial frequency terms and phase angles are suppressed and |0〉 is
the computational basis vector that encodes the pump frequency, ω0.

�0 = |�0| e−iω0t (23)

Applying the nonlinear operator, T̂nl, in Equation 22 to the initially generated
single-colored photonic wave function of Equation 23 causes the spectrally
pure wave function, �0, to evolve into �τ where the subscript, τ, indicates
the nonlinear component has a processing delay of τ seconds as depicted in
Equation 24.

�τ = a0 |�0|0 + a1|�0| e−iω0t + a2|�0|2 e
−i2ω0t + a3|�0|3 e

−i3ω0t

+ · · · + a j |�0| j e
−i jω0t + · · · + am |�0|m e−imω0t

(24)

As is observed, the resultant wave function is polluted with harmonic fre-
quencies of the form

{
2ω0, 3ω0, 4ω0, · · · , jω0, · · · , mω0

}
where each har-

monic of the form jω0 is referred to as the jth-order harmonic. Furthermore,
these higher-ordered harmonics may not fall into the selected frequency-bins
that were chosen by the QPIC designer to represent data and this could result
in a frequency-bin measurement wherein the wave function collapses to a
single higher-ordered harmonic that is not detectable within the QPIC and
the qudit could be considered as ‘lost,’ or even worse, to be detected as col-
lapsing into an erroneous frequency-bin. Alternatively, if the one or more
of these higher-ordered harmonics did happen to coincide with a designer-
selected frequency-bin for representing information, the nonlinearity could
also cause a measurement to yield an incorrect result from a QI processing
point of view since the probability amplitudes would be incorrect.

Since the higher-ordered harmonics are integer multiples of the origi-
nal monochromatic frequency comprising the wave function in Equation 23,
they are typically spaced far enough away in the frequency spectrum that
bandpass filters can be applied to null them out. However, a more severe
issue can occur due to the generation of “intermodulation products” (IM).
IM products can arise when a multi-colored photon encounters a nonlinear-
ity within the QPIC, that is, the wave function is superimposed among two
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or more frequencies and couples to a component with nonlinear character-
istics. It would be expected that a QPIC employing frequency-bin encoding
would support wave functions of multi-colored photons since the objective
of frequency-bin encoding is to represent different information values with
different designer-selected frequencies.

Consider the example wave function, �xy , as given in Equation 5-7.

�xy = |�x | e−iωx t + ∣∣�y

∣∣ e−iωy t (25)

When a wave function of the form of Equation 25 encounters a nonlinear
component, the two frequency components ωx and ωy interact and IM prod-
ucts are produced. If we consider only the 2nd-order term of the nonlinear
operator, a2 (•)2, and expand the wave function �xy into Sine and Cosine
functions by applying Euler’s relation, e±θ = cos (θ ) ± i sin (θ ), the result-
ing wave function component due only to the 2nd-order term of the nonlinear
operator contains terms of the form cos (ωx t) cos

(
ωyt

)
, cos (ωx t) sin

(
ωyt

)
,

sin (ωx t) cos
(
ωyt

)
, and sin (ωx t) sin

(
ωyt

)
. Using the trigonometric prod-

uct identity, we observe that new IM product frequency terms will pollute
the wave function that are of the form ωx + ωy and

∣∣ωx − ωy

∣∣. While the
“second-order IM products” (IM2) can cause problems similar to those iden-
tified with respect to higher-ordered harmonics, they also tend to fall outside
the frequency range of ωx and ωy and can at least be eliminated by incorpo-
rating a bandpass filter into the QPIC wherein the passband excludes the IM2
products while keeping the original two frequencies of ωx and ωy in the filter
passband

When we consider the “3rd-order IM products” (IM3), a more severe prob-
lem can occur. IM3 contains several newly-generated frequencies that can be
filtered since they also fall outside the frequency band containing ωx and ωy ,
however; two of the newly generated frequencies are 2ωx − ωy and 2ωy − ωx

and these frequencies tend to fall in between ωx and ωy and thus cannot be
easily filtered. This means that the frequency-bin wave function will con-
tain these components and thus, there will be a nonzero probability that
a measurement will collapse into one of these undesired IM3 basis states.
Furthermore, higher-ordered IM products continue this same pattern. The
trigonometric relationships indicate that for even-valued IM products such
as IM4, IM6, IM8, etc., newly generated frequencies fall outside the pass-
band of ωx and ωy , so the problems that even-valued IM products cause are
less severe since they can be filtered. However, the higher-order odd-valued
IM products such as IM5, IM7, IM9, etc. continue to generate frequencies
that fall between ωx and ωy , often causing them to be impossible to filter.
While frequency-bin encoded QPICs have several desirable properties that
make them attractive to a designer, care must be taken to properly deal with
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harmonics and IM during the basis set frequency choices as well as due to
nonlinearities that are often present in components that are predominantly
linear. For example, sufficiently long runs of fiber optic cable can cause
harmonics and IM to form. As a designer increases the radix by including
more frequencies in the basis set, more opportunities for unwanted nonlinear
effects are present.

Most nonlinear effects are stronger at lower-ordered products since the
scalar coefficients in Equation 22, shown as ak , are relatively much larger
in magnitude for low values of m. For this reason, a QPIC designer who is
employing frequency-bin encoding will generally pay the most attention to
the IM3 products since they tend to dominate the problems that occur due to
nonlinearities.

Thus far, we have described the problems that can arise in frequency-bin
QPICs due to nonlinear components since the nonlinearities can introduce
unwanted superimposed frequencies within the wave function. However,
these effects can and often are also used to the advantage of the frequency-bin
QPIC designer. In the location-based encoding Section 4, we describe how
QPIC components with transfer matrices in the form of Hadamard, Chresten-
son, and in general, CHM matrices, are typically employed to evolve a gen-
erated photon’s wave function into a state of superposition after it is initially
coupled into the QPIC waveguide. The same need is present for frequency-
bin QPICs since single photon sources often produce spectrally pure, single-
colored photons by using high-quality monochromatic lasers. Even if this
were not the case for the single photon generator, it could cause problems for
the QPIC designer if the initially generated information-carrying photons did
not have wave functions in a known state. For frequency-bin QPICs, it is typi-
cally the case that nonlinearities are purposely designed into the QPIC for the
purpose of evolving spectrally pure single-color photon into a superposition
state.

Various QPIC components have been developed and used to generate
multi-colored photons, or equivalently, to evolve wave functions that are ini-
tially in a basis state into a state of superposition. In [33], a process known
as “Bragg-scattering four-wave mixing” (BSFWM) is used to generate two-
color photons. The apparatus consists of a 100m length of fiber optic cable
that is pumped with two laser beams of unequal frequencies with the pump
frequency difference dictating the difference in the resulting single photon
wave function. BSFWM is a nonlinear process that manifests in components
that contain structural variations and are comprised of materials with a high
Kerr susceptibility coefficient, χ (3), that can induce a polarization field that
couples the wavelengths among two photons. While this approach is interest-
ing, it results in a qubit since there are only N = 2 superimposed wavelengths
in the photon’s wave function and furthermore, it is not a higher dimensioned
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approach. Also, this approach requires the use of a large spool of fiber optic
cable to be coupled to the QPIC since the nonlinear properties of the fiber are
exploited for BSFWM in [33].

To use frequency-bin encoding within a QPIC, it is desirable to use a com-
ponent that can be fabricated directly onto the device substrate that evolves
a photon’s wave function into a state of superposition with respect to fre-
quency content, preferably with N > 2 superimposed frequencies to enable
high dimensional qudits that can then be used for higher-radix QI applica-
tions. One such approach is to construct a frequency comb generator directly
as a component within the QPIC circuitry.

There have been several recent results concerning QPIC-based frequency
comb generators. A commonly used QPIC component for generating a fre-
quency comb generator is the “microring resonator” (MRR) as discussed in
previous Sections of this paper [34–36]. MRRs are a form of cavity that is
physically constructed as a closed circular waveguide. Photons are coupled
into and out of the MRR by co-locating a waveguide very near an external
point of the MRR to create a “coupling region” where some percentage of
pump photons in the external waveguide tunnel into (and back out) of the
MRR. The circumference of the MRR is designed to be equal to an integer
number of wavelengths, nλpump, of the pump photon and one of the supported
resonant frequencies is then fres = 1

λpump
, however; the MRR has a multiplic-

ity of resonance frequencies. This causes a circular standing wave to develop
within the MRR whereby large numbers of photons accumulate as “clumps”
at certain points within the MRR.

Due to nonlinearities within the MRR, a nonlinear “four-wave mixing”
(FWM) process occurs that generates multi-colored photons by converting
one photon, for the case of “spontaneous FWM,” or two photons for the case
of “stimulated FWM,” into two photons that are multi-colored. FWM in gen-
eral is an effect that can occur when two or more incident photons interact
with each other in a nonlinear medium that causes them to interact in such
a way that they convert into two photons with changed frequency and phase
values in their wave functions. The MRR photons resulting from the FWM
process are time-coincident and they can tunnel out of an MRR across a suit-
ably spaced coupling region back into a waveguide that is external to the
MRR. Due to the MRR’s multiple resonant frequencies, it can serve as a fre-
quency comb generator that generates photons whose wave functions com-
prise a superposition of resonant frequencies that are evenly spaced in the
frequency spectrum by an amount known as the “free spectral range” (FSR).
Thus, the use of MRRs to promote the occurrence of FWM is an example of
purposely relying upon nonlinear effects to achieve a design goal, in this case
to design a frequency comb generator, within a QPIC that employs frequency-
bin QI encoding. A QPIC designer can complement the MRR frequency
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comb with a bandpass filter to limit the number of frequency-bins and thus
set the dimension, N, to be the number of resonant MRR frequencies that fall
within the filter passband to be used for QI applications. Examples of the use
of MRRs for frequency-bin encoded QPICs are described in [37–40].

Another component that is typically employed to transform or evolve the
wave functions of frequency-bin encoded photons is the “electro-optic modu-
lator” (EOM). EOMs use the electro-optic effect of a material to modulate the
phase term of a photonic wave function with an applied voltage that causes
an electric field to exist across the material, where the applied voltage is typ-
ically in the radio frequency (RF) range [41,42]. The EOM essentially varies
the optical refractive index in a nonlinear crystal in proportion to the magni-
tude of the externally applied RF voltage; however, in terms of its operation
in evolving the photonic wave function, it can be characterized as a purely
linear device. When an EOM is driven by a RF voltage that is periodic with
frequency, ωeom, and the frequency component within a photon’s wave func-
tion, ωpump, the EOM evolves the wave function to contain frequency com-
ponents at ωpump ± nωeom. While some of the generated frequencies may fall
outside the finite set of N frequencies selected by the QPIC designer to rep-
resent information, these can be removed by coupling the output of the EOM
to passband filters that move energy from the unwanted frequency compo-
nents back into the desired frequency components. EOMs have been avail-
able as discrete packaged components for several years and more recently
miniaturized designs appropriate for implementation as QPIC components
are described in [43, 44].

In terms of evolving the quantum state of frequency-bin encoded wave
functions within QPICs, EOMs are frequently complemented with another
structure that performs “Fourier-transform pulse shaping” (FPS). FPS com-
ponents consist of a frequency-domain demultiplexer and multiplexer pair
with a set of phase-shifting elements known as “pulse shapers” as shown in
Figure 9 where the WDM component represents a wavelength demultiplexer
or a wavelength multiplexor depending on which ports are coupled to incident
photonic wave functions. The leftmost WDM essentially performs a Fourier
transform by separating out the frequency components of the incident wave
function coupled to its input port. The components labeled “PS” represent
the pulse shaping transfer functions that modify the phase of each individual
separated frequency band of the incident photonic wave function.

The FPS is coupled to a frequency-bin encoded input wave function,
|�〉, that is then demultiplexed in the frequency domain to separate it into
its frequency-bin components such that the pulse shaper components PS
apply arbitrary phase shifts to each frequency bin and then the phase-shifted
frequency-bins are multiplexed back together to produce the evolved wave
function, Hfps |�〉. The transfer function, Hfps, is then ideally modeled as
an N × N unitary diagonal matrix with each diagonal element representing
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FIGURE 9
Diagram of Fourier-transform Pulse Shaping (FPS) Structure.

individual frequency-bin PS operations. Practically, the transfer matrix, Hfps,
is modeled as a cascade of the ideal unitary in cascade with a probabilistic
loss transfer function to account for the case where the photon is dropped.
FPS structures have been designed as QPIC components typically by using
MRRs in a drop-add filter configuration [45, 46].

By implementing a cascade of alternating EOM and FPS, the so-called
“quantum frequency processor” (QFP) structure results that can theoreti-
cally be used to implement any arbitrary unitary transform for frequency-bin
encoded wave functions. The QFP is a powerful structure due to its generality
and is scalable in terms of the QI dimension, N . Because MRR, EOM and
FPS have been demonstrated as QPIC components, frequency-bin encoding
is one of the more attractive options in terms of implementing frequency-bin
QI applications using QPICs [38, 40, 47].

Processed photon wave functions can be detected with SPD by coupling
the incident wave function to another WDM in a demultiplexing configura-
tion with separate SPD on each output port to measure the presence of indi-
vidual frequency-bin components. Alternatively, encoding translators can be
used to convert the frequency-bin encoding into another form such as time-
bin encoding and detector structures for those encoding methods can be used.
When frequency-bin wave functions are measured directly in the frequency
domain, other approaches include the use of homodyne and heterodyne detec-
tors.

6 QUANTUM PHOTONIC SPATIAL ANGULAR MOMENTUM
ENCODING

There has recently been excellent work in free space, demonstrating high
dimensional quantum states using propagating photon beams that are shaped
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into distributions that support “orbital angular momentum” (OAM) [48–51].
The spatial component of angular momentum, in contrast to the temporal
angular momentum component or polarization of Section 3, for a given quan-
tum state arises from the spiral nature of the traveling or propagating phase
front associated with the state the net perpendicular unit vector of this sur-
face, known as the Eikonal, rotates around the axis of propagation and this
precession is the OAM. Each order, or mode index, corresponds to the num-
ber of complete rotations, also referred to as ‘the number of spirals,’ occurring
within a spatial wavelength of propagation. The integer order is the photon
eigenstate number, q and we can thus write a quantized angular momentum
associated with q as L = qh̄ [52].

OAM states are solutions to the paraxial wave equation,

[
∇2

t + 2ik
∂

∂z

]
� (r) = 0 (26)

where ∇2
t is the transverse Laplacian, r is the position vector, and k is the

magnitude of the propagation vector k. The vector k is perpendicular to the
average, or planar phase front, that carries the linear momentum.

The averaging nature of the of the Laplacian gives rise to a Gaussian mag-
nitude distribution as a solution to Equation 26. In addition, this Gaussian
may be modulated by a polynomial. Appropriate families of modulating poly-
nomials are in the form of Laguerre, Ince or Hermite, and the choice of which
family to use depends on the boundary conditions. OAM states are Laguerre-
Gaussian (LG) states, and the order of the Laguerre polynomial is equal to
the photon eigenstate number. Conveniently the Laguerre-Gaussian solutions
of different order are orthogonal to each other.

Two other families of orthogonal polynomials provide solutions to Equa-
tion 26, and these are the Ince polynomials and the Hermite polynomials.
Thus, each Ince-Gaussian state is orthogonal to other Ince-Gaussian states,
and the same may be said for the Hermite-Gaussian family of states.

Whether a photon state should be decomposed into Laguerre-Gaussian,
Ince-Gaussian or Hermite-Gaussian eigenstates depends on the boundary
conditions, and the ellipticity of the appropriate coordinate system used to
describe those boundary conditions. Laguerre-Gaussian solutions to Equa-
tion 26 arise for the special case where the ellipticity is zero-valued. In any
material or structure this case is difficult to ensure and thus the OAM states
are, in engineering practice, fragile. Hermite-Gaussian solutions arise for infi-
nite ellipticity. For ellipticities between zero and infinity the relevant photon
states are best described by Ince-Gaussians. We note that these different clas-
sifications are equivalent to selecting a coordinate system from among the
choices of cylindrical, elliptical cylindrical, or rectangular, respectively.
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FIGURE 10
a) Comparison of Generated/Measured Hermite-Gaussian Modes (black and white) with The-
oretical Computations (color); b) Comparison of Generated/Measured Ince-Gaussian Modes
(black and white) with Theoretical Computations (color).

Many optical fibers and PIC processes provide waveguides that are best
described by elliptical cylindrical coordinate systems, and hence our research
has included detailed theoretical and experimental study of Ince-Gaussian
modes [53]. Thus Ince-Gaussian states are demonstrably robust in integrated
waveguide architectures and may be preferred as a photon quantum state
expansion modality for higher radix spatial mode QI processing.

The use of OAM states to encode information in QPIC implementations
is still largely a research endeavor and future results are forthcoming and
will dictate the utility and popularity of this form of higher dimensional
information encoding for QI applications. Figure 10 shows several recent
experimental results obtained by generating both Hermite-Gaussian and Ince-
Gaussian modes and measuring them as they exit a 100m elliptical core.
These measurements are in the form of black and white images captured with
a ‘charge-coupled device’ (CCD) camera. Theoretical Hermite-Gaussian and
Ince-Gaussian modes are computed using MATLAB as shown in the color
images in Figure 10 and compared to the experiemental results indicating
good agreement among the experimental measurements and theoretically
predicted results.

7 SUMMARY AND CONCLUSIONS

Five decades ago, as electronic integrated circuits were rapidly scaling and
maturing, there was considerable research activity involving the investigation
of an appropriate radix for representing information in electronic switching
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circuits including the pioneering work by Professor K.C. Smith. The clas-
sical physical characteristics of electrical charge, current and voltage were
all considered as candidates for information representation; however, due to
the macroscopic nature of these physical quantities, discretization required
that ranges be defined and assigned to digits within a chosen corresponding
fixed-radix finite number system.

As it is observed that a large majority of information processing electronic
switching circuits at the time of this writing are based on binary encodings
and number systems, it would appear that, in most cases, an N = 2 radix is
considered to be the best choice, likely due to the fact that increased scaling
of the total number of transistors per device due to electronic device minia-
turization necessarily requires that the discretization ranges proportionately
decrease in scale thus causing precision and noise margin issues to require
limiting the radix to the binary case.

Here, we contrast this important topic in classical electronic switching
circuit design and multiple-valued logic with the emerging, but highly anal-
ogous, topic of choosing the appropriate photonic wave function observable
and a corresponding vector space dimension, N , in the design and fabrica-
tion of QPICs designed quantum informatics applications. Unlike the earlier
case of electronic circuitry, QPICs do not require the specification of ranges
of macroscopic physical quantities or a discretization process to convert a
continuous physical measurement into a discrete set of values that encode
information since there are a variety of different quantum observables asso-
ciated with photonic wave functions that are already physically discrete and
are thus viable candidates for representing information. Additionally, QPICs
offer the possibility to exploit the quantum advantage in terms of information
processing and are currently the only practical means for implementing QI
processing applications at room temperature.

While no single photonic wave function conjugate variable has emerged as
the best or dominant approach for QI applications, some of the most popular
observables are discussed here including, polarization, location, frequency
and spatial angular momentum terms. The quantum nature of these variables
is surveyed with respect to their fundamental QM principles to allow this
paper to be accessible to the MVL community who are familiar with the con-
sideration of using macroscopic electrical quantities for information repre-
sentation. An overview of recent results in using single photon wave function
conjugate variables to represent information is provided in the hope that more
readers interested in multiple-valued logic can engage and contribute further
research and development in the emerging field of QPIC design. Finally, we
emphasize that the important topic of information representation in integrated
circuitry, as initially described by Professor K.C. Smith continues to remain
very important and is a testament to his legacy.
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