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An investigation into the architecture of multiple-valued quantum logic arithmetic
circuits is the subject of this research. In order to efficiently design multiple-valued
quantum logic circuits for the realization of unary arithmetic operations with inheritance,
universal sets of permutation gates are found and used. A universal gate set is defined as
a small set of gates that can produce all possible functions. Prior to the development of a
method for verifying quintary quantum logic universal gate sets, an investigation into
ternary quantum logic circuit design was performed. Multiplicative inverse, discrete
logarithm, and exponentiation circuits were designed in ternary quantum logic utilizing
the inheritance principle. The multiplicative inverse was selected to perform further
research into quintary quantum logic circuit design. Before designing multiplicative
inverse circuits in quintary quantum logic, universal gate sets of quintary quantum logic
permutation gates must be found. With the total number of permutations equal to
5! =120 for quintary quantum logic, small universal gate sets that can be used to generate
those permutations are important to future quintary quantum logic design. The method

used to fully determine whether or not a set of permutation gates forms a universal gate

il



set is to permute the order of the gates used to form the permutations and to permute the
gates chosen to form the universal gate set. The identity permutation is the arbitrary
starting point for forming permutations, so if a universal gate set isn’t found initially, one
of the previously generated permutations is used as a new starting point for testing the
same set of gates. Universal gate sets of four quintary quantum logic gates are
consistently achieved. One of the universal gate sets is used to successfully design
multiplicative inverse circuits in quintary quantum logic exploiting the inheritance

principle.
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Chapter 1

INTRODUCTION

Current technology employs binary logic, classical bits based on transistor logic. The
concept of binary bits of information is ingrained in classical computer science and
engineering. A faster, cheaper way to use these bits has been sought for decades.
Transistors have become smaller, faster, and more power efficient, but atomic size limits
are being reached. Regardless of the physical barriers to further development, technology
conscious consumers are continually demanding the fastest computing power money can
buy. Improvement in classical logic technology is slowing down. Dramatic
advancements must come from a different direction such as quantum logic. The qualities
of bijection and inherent parallelism in quantum logic lend themselves to a tremendous
increase in speed and efficiency for certain classes of algorithms. Quantum logic
modeling indicates that sometime in the future, faster computing can be provided by
quantum computers and quantum coprocessors [23, 24, 25].

The limits on transistor size are not the only barriers to progress for faster, more
efficient computing. Classical logic is dominated by base 2, binary logic to realize circuit
designs. This small radix logic does not offer as much computational power as a larger
radix that multiple-valued logic can provide. Larger radices allow more values to be

represented in fewer digits, among other benefits of multiple-valued logic. Research in



the use of quantum logic gates that exploits higher dimensions shows promise for
practical implementations of multiple-valued logic. Recently, an Australian group
published results in which radix 3 or ternary quantum logic gates that are more powerful
than any of the previously published developments were constructed and tested. The key
to this ground-breaking design created by the University of Queensland based group is
the ability to exploit the higher dimensions existing in quantum mechanics [21]. These
results regarding the ability to utilize higher dimensions to create more powerful quantum
logic circuit designs lend credence to the multiple-valued quantum logic investigation
performed in the research associated with this thesis.

The ability to perform arithmetic operations quickly is at the core of classical
computing. Quantum computing does not change this requirement; instead, a faster way
to perform necessary arithmetic operations is offered. This research demonstrates the
possibilities for multiple-valued quantum logic specifically in the area of unary arithmetic
operations. Unary arithmetic circuits are designed in ternary and quintary quantum logic.
Before creating quintary quantum logic circuits, universal gate sets must be verified. The
successful accomplishment of these tasks indicates the usefulness of research into
multiple-valued circuit design.

A significant amount of background research is essential to understanding the
processes and designs created and used in this project. Detailed discussion of quantum
circuit topics including the representation of quantum information, the standard notation
known as Dirac notation, the Hilbert space, and quantum gate structure and reversibility

are presented in Chapter 2. Quantum gate cascades are also examined. These topics



form the foundation for utilizing quantum logic to design multiple-valued logic unary
arithmetic circuits. Several topics in number theory, specifically the inheritance
principle, residue arithmetic, relatively prime numbers, and the sieve of Eratosthenes are
also included as especially pertinent to this research. This establishes the role of the
number theory concepts that support the methods employed in the design and verification
of arithmetic in quintary quantum logic circuits.

The background topics discussed at length in the previous chapter allow for the
exploration of the method used in designing unary arithmetic operations in quantum logic
and quintary quantum logic universal gate set verification in Chapter 3. Multiple-valued
logic design requires the information being manipulated to be encoded into digit sets.
Descriptions of the digit sets employed for the designs included and method of encoding
into the digit sets are a vital part of the design process. Before quintary quantum logic
designs for unary arithmetic operations can be created, a more thorough understanding of
multiple-valued logic is achieved by investigation of ternary quantum logic. These
results can be examined in the designs presented as part of this chapter.

The methods for verifying both the quintary and ternary quantum logic designs are
the focus of Chapter 4. The two verification methods utilized, exhaustive simulation and
a relatively new QMDD-based verification method, along with the designs for quintary
quantum logic multiplicative inverse circuits are part of this chapter. Observations
corresponding to the quintary quantum logic designs are included.

Discussion in Chapter 5 relates to the interesting results yielded by the research, the

significance of which is highlighted. As with many research topics, while very good



results are achieved, the exploration into the topic brings new areas of further research to

light. Such topics are also included in this chapter.



Chapter 2

BACKGROUND

This chapter discusses background topics that support this research. First, the notion
of quantum circuit cascades and supporting mathematical concepts such as Dirac notation
and Hilbert vector spaces are described. Next, quantum logic gates and their
representation are presented. Finally, the mathematical inheritance principle is described
that is exploited in designing quantum logic unary arithmetic circuits. Inheritance is a
property that is used in the implementation of the unary arithmetic multiplicative inverse
and discrete logarithm quantum circuits. In order to understand the construction of the
numerical tables used to specify the multiplicative inverse pairs, some basic concepts

from number theory are reviewed.

2.1 Quantum Circuits

Classical logic relies on binary representation of information using electronic circuits.
Quantum logic and quantum computing do not function in the same way. There are
several concepts that must be addressed to fully understand quantum logic and the design

of quantum circuits as will be discussed later in this work.



2.1.1 Quantum Information Representation

The smallest unit for representing information in classical logic is the bit. The
quantum logic counterpart of the bit is the quantum bit, also known as a qubit. The terms
bit and qubit imply a binary system, the term quantum digit in a d-ary system, also known
as qudits, have many properties and qualities that classical bits do not have based on

physical and mathematical constraints of quantum mechanics. [15]

2.1.2 Dirac Notation

Qudits are able to have a state in the sense that classical bits may have a state. These
qudit states are described by vectors, not as scalar values as in classical logic. The
standard notation used for the vector states of a qudit, as established in quantum
mechanics, is known as Dirac notation. The vector notation known as ket vectors appears

as |0), |1) and |2) to represent a ternary system for example. Ket vectors are column

1
vectors, the values of the ket vectors in a ternary system are [|0) = |0/,
0
0 0
1) =11 | and |2) = | 0|. The transpose of the ket vectors is referred to as a bra vector.
0 1

The relationship between ket and bra vectors is the Hermitian conjugate. The bra vector

values appear as (0|, (1| and (2| to continue with the established example. The bra vectors

are row vectors with values (0| = [1 0 O], 1] = [O 1 0] and (2| = [O 0 l] [14]. The states



described by Dirac notation are used to form superpositions, also known as linear
combinations, of the form |®) = a|0) + B|1) [15].

Dirac notation can also be used to represent inner and outer products of vectors. An

inner product for la) and |b) in Dirac notation is
bO
* * b] * * * . .
(alby = [ao a, ---a, ] . | = ayb,+a,b,+---+ab, . This product results in a complex
b

scalar value in general. When a vector space has an inner product, it is known as an inner

product space. An outer product for |a) and |b) in standard quantum mechanical notation

r * * *
a, ayb, ab, ---a.b,

is a matrix calculated by the equation |a) (b| = Cfl [bo* b’ -~-bn*] = ?lbo al_bl b,

% % %
a” _anbO anbl e anbn B

2.1.3 Hilbert Space
Quantum logic circuits are based on quantum mechanics and mathematics. A Hilbert
space is a concept from mathematics that is explained here before a discussion of

quantum circuits can proceed.

Definition: Hilbert Space - denoted as H,, is a complex vector space that can be n-
dimensional with an inner product. H, is isomorphic with C", the n-dimensional vector

space over the field of complex numbers.



The inner product may also be referred to as the scalar product because a Hilbert
space covers the field of complex numbers. A Hilbert space over n-dimensions can be
specified with n basis vectors. Furthermore, vectors in the Hilbert space H,, are generally
modeled as column vectors that have n complex components. For example, vectors in H;
have two complex components and the space spanned by two basis-state vectors.

It should also be noted that a Hilbert space is isomorphic with the field of complex
scalar numbers. This isomorphism means that a Hilbert space, H,, is bijective with C".
The property of being bijective in this case may be described as allowing a one-to-one
mapping between states in a Hilbert space. This is a useful quality for designing unary

arithmetic circuits that have the property of bijection. [14]

2.1.4 Quantum Gates

Quantum gates can be thought of as the building blocks for a quantum circuit and
they are conveniently modeled as a mathematical transformation describing the
manipulation of the quantum state of some particle. The focus will be on the
mathematical system in this case. The mathematical system takes the form of transfer
matrices whose products with initial vector states form the resulting vector states. The

general form of the transformation may be represented as |y,) = U | y,) [14]. For the

01
previous example using two basis states and allowing U;y = L 0} , then Uy |0) =|1). In

the case of ternary quantum logic design, the single qudit gates and their associated

matrices have been reasonably established in [4, 5, 6, 7, 8, 9, 10]. In Table 2.1, the six



quantum gates represent all permutations of the basis vectors for a ternary system |0), |1),
and |2) [19]. Permutations generated by each gate are made easier to recognize in the
table by denoting the transfer matrix, Uy = |i) (0] + [j) (1] + |k) (2], simply as (7, j, k). This
gate set is the basis of the design of the multiplicative inverse and discrete logarithm

circuits.

Table 2.1: Six Quantum Ternary Gates

Name Permutation | Symbol | Reference
(@), k)

Identity (0,1,2) I -
Modulo-add by 1 (1,2,0) Cl [4,5,7]
Modulo-add by 2 (2,0,1) C2 [4,5]

Negation (2,1,0) N [5,7]
Neg. Mod. 1 (0,2,1) NC1 [5,6]
Neg. Mod. 2 (1,0,2) NC2 [5,6]

The quantum gate denoted as Modulo — add by 1 in Table 1 forms the matrix U 2.

0 0 1
U0 =|1) (0] +[2) 1| +|0)(2|=[1 |[[L 0 O] +[0|[0 1 0] +|0]|[0 O 1]
0 1 0

000 000 001 001
U;=1100|+|/000|+]000|=]100
000 010 000 010



The transfer matrix U,y can now be used to calculate the resultant vector when it is
multiplied with a qudit vector. For the example, |1) can be multiplied with U, to

achieve the resulting qudit vector.

001][0] [o
Un®|=[100]|/1]|=|0
orollo] |1

2.1.5 Quantum Gates and Reversibility

The function of a quantum gate is based on mathematical computations.
Mathematical computations are reversible if, and only if, there is no loss of information.
Thus, quantum gates and circuits are reversible. A discussion of reversibility in gates and

circuits will start with binary reversible functions.

Definition: Binary reversible function (size n X n) — n inputs and » outputs, is a

unique and distinct mapping from {0, 1}" onto {0, 1}".

The mapping of the n x n binary reversible function is onto and one-to-one for
domain and range of {0, 1}". This function is a permutation of {0, 1}", which means that
it can be represented as a 2" x 2" permutation matrix. One example of a reversible gate is
the NOT gate. A NOT gate is also a self-inverse, meaning that it can cause the reversal.
Symmetric functions are not reversible, so reversible functions are not symmetric. This
is due to symmetry causing distinct sets, or subsets, of inputs to map to a common output,

violating the one-to-one correspondence required by reversibility. Familiar classical

10



logic gates, namely AND, OR, NAND, NOR, XOR, and XNOR, are symmetric and
therefore not reversible. This concept is generalized for use in multiple-valued logic

[20].

2.2 Quantum Gate Cascade Representation

Quantum logic circuits are constructed using cascades of quantum gates. In
diagrams, lines are considered to represent wires while they are not necessarily meant to
be physical wires. The lines actually represent the movement of a physical particle
through space or a passage of time [15]. An example of a very simple quantum logic

diagram can be found in Figure 2.1 representing a negation quantum gate.

Xo N Yo

Figure 2.1: Quantum Logic Circuit for Negation of Single Input

Assuming the gate shown in Figure 2.1 is describing a negation gate for ternary logic,

001
the matrix that describes the negation gate would appear as | 010 |.
100

Quantum logic gates may utilize control inputs. These control inputs only allow the
quantum gate to operate when the control condition is met. For example, the matrix Uz,

called C1 in Table 2.1, could have a control value of two. The C1 gate would not operate

11



on qudit x; unless x is a value of two. Figure 2.2 contains the schematic symbol used to

depict the C1 gate with a control input of 2 needed.

C

X

Vi

Figure 2.2: Controlled Ternary Gate Example

Assuming the gate in Figure 2.2 is once again in ternary logic, the matrix to describe

[100000000]
010000000
001000000
000100000

the operation of this gate is | 000010000 |.

000001000
000000001
000000100

1000000010

The permutation gates may have as many controls as are necessary to achieve the

desired logic, whether the number of controls is zero or many. For the creation of a

larger circuit more than one control signal for a single quantum logic gate is necessary to

achieve the desired output result. Figure 2.3 is the diagram of a simple quantum logic

circuit using a multiple control input gate.

12



X2 ct Y2

X; C1 Vi

X0 é Yo

Figure 2.3: Simple Single Control and Multiple Control Gate Circuit Cascade

13



The quantum gate with multiple controls shown in Figure 2.3 is represented by the

matrix;

[100000000000000000000000000]
010000000000000000000000000
001000000000000000000000000
000100000000000000000000000
000010000000000000000000000
000001000000000000000000000
000000001000000000000000000
000000100000000000000000000
000000010000000000000000000
000000000100000000000000000
000000000010000000000000000
000000000001000000000000000
000000000000100000000000000
000000000000010000000000000
000000000000001000000000000
000000000000000100000000000
000000000000000010000000000
000000000000000001000000000
000000000000000000100000000
000000000000000000010000000
000000000000000000001000000
000000000000000000000100000
000000000000000000000010000
000000000000000000000001000
000000000000000000000000100
000000000000000000000000010

1000000000000000000000000001 |

The output yy has the same value as the xo, because there is no quantum gate on that

line. The output y; has the value of x; plus 1 modulo 3 when the value on x is equal to 2,

14



but y; has the same value as x; when x; is not equal to 2. The output y, has the value x;
plus 1 modulo 3 when the value on x; is equal to 0 and the value on x is equal to 2, but y»

has the same value as x, when x; is not equal to 0 and x, is not equal to 2.

2.3 Inheritance Principle

The property of inheritance is described in [1]. The use of this property is confined to
the binary case relating to multiplicative inverses and later other functions such as the
discrete logarithm and exponentiation circuits. This concept was developed with classical
logic and is applied here to quantum circuits, both for the binary and the multi-valued

case.

Definition: Inheritance - Let f{ak;ak-2*agp) = bi-1br-2by be a one-to-one mapping of a
domain of A-bit strings to a co-domain of k-bit strings for all £~1. The function f
demonstrates the property of inheritance when flaiak2"ag) = bi-1br-2"by, and for all
k < n, flan-1Gn2"Ap1Gr2A0) = bu-1by-2biibr.rby. Thus, the n™ digit, b,.;, of £ is only

dependent on the digit values a; where i < n.

This allows the design of a circuit based on the lower order digit solutions. Higher
order digits may be ignored when designing for a particular output digit. However, it
should be noted that while ordinary integer addition and multiplication satisfy

inheritance, but are not one-to-one.

15



2.4 Residue Arithmetic
To specify the functionality of multiplicative inverse circuits, tables of multiplicative
inverse pairs are created. The foundation for developing multiplicative inverse tables is

based in residue arithmetic. Following [11] we employ the notation |a |, to denote the

standard residue 0 <i < n-1, such that a =i mod n.

Definition: Modular multiplicative inverse - a number, a, has a multiplicative

. 1 . -1 . . _ . .
inverse, denoted as a™, if a” satisfies the equation ‘aXa 1‘ . =1, where p is the radix, or
P

base of the number, and  is the number of digits used to represent the numbers a and a™'.

The modular multiplicative inverse is clearly a unary arithmetic operation that is
bijective over the set if values that have inverses and is an excellent candidate for
realization in a quantum logic gate cascade. The case where p is prime is of particular
interest; since all & digit integers that have non-zero low order digits will have
multiplicative inverses. Furthermore, the fixed-precision multiplicative inverse function
also obeys the property of inheritance. The fixed-point discrete logarithm and

exponentiation functions are also bijective and exhibit inheritance.

Definition: Modular discrete logarithm — the value e that satisfies n=| B° |pk , where p

is the radix, £ is the number of digits, and B is the logarithmic base [3, 19].

16



Definition: Modular exponentiation — the value n that satisfies the formula

n=|B* |pk , where p is the radix, k£ is the number of digits, B is the logarithmic base, e is

the discrete logarithm [3, 19].

These unary arithmetic operations are of interest due to their ability to reduce the
amount of computing power necessary for expensive arithmetic operations since
multiplications become addition operations and divisions become subtraction operations.
Multiplicative inverse values can also be used to implement the division operation,

because multiplying by an inverse is equivalent to dividing by the original number.

2.5 Relatively Prime Numbers

In developing multiplicative inverse pairs, the concept of numbers being relatively
prime to other numbers is reviewed here. The property of being relatively prime to the
base or radix of the multiplicative inverse circuit is used to determine whether or not a

number has a multiplicative inverse.

Definition: Relatively prime - A pair of integer values is relatively prime if their

greatest common divisor is one [18].

This means that the integer pair shares no common factors except one. For the
purposes of the multiplicative inverse circuit design, only numbers that are relatively

prime to the radix have multiplicative inverses. If a is not relatively prime to the radix,

17



then a will have common factors with the p* making it impossible to have an inverse that
will allow the product to have unity residue. The possible number of multiplicative
inverses that can be calculated is determined by the ratio (p — number prime factors of p)
/ p of all integers in the range of 0 to p*. For the ternary case, 2 / 3 of all integers in the
range of 0 to 3* have multiplicative inverses. For the case of p =6, only2/6,0or 1 /3, of
all integers in the range of 0 to 6 ¥ This makes the choice of p more significant. By
choosing a p value that is prime, a greater ratio of the integers have multiplicative

mnverses.

2.6 Sieve of Eratosthenes

Eratosthenes’ sieve [17] is another concept from number theory that is utilized to
develop multiplicative inverse tables. One of the oldest algorithms for finding prime
numbers can be altered to find numbers that are relatively prime to the radix. Any
number that has a previously determined prime number as a factor, is not prime. In the
case of relatively prime numbers, any number that has a prime factor of the radix as a
factor is not relatively prime to the radix. In the case of p = 6, six has prime factors two
and three. The numbers two and three will not have multiplicative inverses. The number
four will also not have a multiplicative inverse, because it shares the prime factor two

with six. [17]

18



2.7 Table Generation Method

Using the number theory concepts discussed, multiplicative inverse tables with user
defined radices, numbers of digits, and encodings can be generated. The radix, p, and the
number of digits, k, to be used are also specified parameters. This particular table
generation method uses the Eratosthenes’ sieve to determine which integers the system
with a particular radix may have as prime factors. It is sufficient to test for numbers
prime to p independent of k&. These prime factors are noted for use in confirming that the
integer value being considered is relatively prime to the radix.

The process is initialized with the smallest integer in the range of values determined
by the radix and number of digits. That starting integer is one for the natural digit
encoding and negative modulo equivalent for signed digit encoding. Before searching for
a multiplicative inverse, the integer is checked against the prime factor list using the
modulo operator. With no prime factors, the search for an inverse of the integer value is
allowed. An integer value, starting with the same starting value of one, is multiplied by
the current original integer value, then the modulus of p* is applied. If the residue is one,
the multiplicative inverse of the original value has been found.

The tables generated by this method can be used to manually design binary and
multiple-valued multiplicative inverse circuits and, may in the future, be used with

automated methods for designing circuits.
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2.8 Table Compaction

The number of entries in a table of multiplicative inverses is determined by the
formula n = p* x ((p - 1) / p), where p is a prime radix and & is the number of digits. As
an example, Table 2.2 contains the multiplicative inverse pairs for the ternary radix,
p = 3, and four digit values. The full table contains fifty-four multiplicative inverse

entries, in radix 10 and radix 3 number systems with k£ = 2 and k = 4 digits respectively.

Table 2.2: Multiplicative Inverses Modulo 3* in Decimal and Ternary Number

Systems
Decimal a | Decimal a”' | Ternary a | Ternary o™
01 01 0001 0001
02 41 0002 1112
04 61 0011 2021
05 65 0012 2102
07 58 0021 2011
08 71 0022 2122
10 73 0101 2201
11 59 0102 2012
13 25 0111 0221
14 29 0112 1002
16 76 0121 2211
17 62 0122 2022
19 64 0201 2101
20 77 0202 2212
22 70 0211 2121
23 74 0212 2202
25 13 0221 0111
26 53 0222 1222
28 55 1001 2001
29 14 1002 0112
31 34 1011 1021
32 38 1012 1102
34 31 1021 1011
2L AA 1029 1199
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37 46 1101 1201
38 32 1102 1012
40 79 1111 2221
41 02 1112 0002
43 49 1121 1211
44 35 1122 1022
46 37 1201 1101
47 50 1202 1212
49 43 1211 1121
50 47 1212 1202
52 67 1221 2111
53 26 1222 0222
55 28 2001 1001
56 68 2002 2112
58 07 2011 0021
59 11 2012 0102
61 04 2021 0011
62 17 2022 0122
64 19 2101 0201
65 05 2102 0012
67 52 2111 1221
68 56 2112 2002
70 22 2121 0211
71 08 2122 0022
73 10 2201 0101
74 23 2202 0212
76 16 2211 0121
77 20 2212 0202
79 40 2221 1111
80 80 2222 2222

It should be observed that the multiplicative inverse is a commutative function, since
axa'=a' xa. This allows half of the table entry pairs to be removed as redundant.
More table entries may be removed by recognizing that only one member of a subgroup
with the same primitive generator function needs to be included [12, 17, 18]. For
example, the multiplicative inverse pair (56, 68) can be used to generate the

multiplicative inverse pair (07, 58). This is accomplished by finding all the prime factors
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of both elements and using only the factors found to produce the other multiplicative
inverse pairs. To continue the example, the prime factors of (56, 68) are {2, 2, 2, 7, 2, 2,
17}. The (07, 58) pair is generated by selecting the 7 as one element, multiplying the
remaining prime factors and applying modulo 81 to achieve the second element of 58.

The combined reductions allow a compact table of only 14 entries, which is given in

Table 2.3.

Table 2.3: Multiplicative Inverses Modulo 3* With Redundant Entries Removed

Decimal a | Decimal a”' | Ternary a | Ternary o’
01 01 0001 0001
02 41 0002 1112
04 61 0011 2021
08 71 0022 2122
16 76 0121 2211
32 38 1012 1102
64 19 2101 0201
47 50 1202 1212
13 25 0111 0221
26 53 0222 1222
52 67 1221 2111
23 74 0212 2202
46 37 1201 1101
11 59 0102 2012

The ability to perform the compaction of the multiplicative inverse table also further

illustrates the one-to-one relationship within the set of values for this unary arithmetic

function. It should also be noted that |(p* —a)x(p" —ail)‘ _ =lcan be used to generate
P

inverses for ‘aXa’l‘ =1
P
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Chapter 3

DESIGN IMPLEMENTATION

In the case of ternary logic, unary arithmetic circuits are designed that exploit the
inheritance principle. Examples of ternary discrete logarithm and exponentiation circuits
are also provided. In order to explore the area of quintary quantum logic
implementations, a universal gate set was first determined. A method was established to
test for a universal gate set and a sample multiplicative inverse circuit is designed using

quintary quantum logic permutation gates.

3.1 Quantum Logic Digit Encoding

The digits of a function being used to design a quantum logic circuit may be encoded
in different ways in the circuit implementations. The first encoding utilizes a digit set
comprised of signed digits. The digits 0, 1, . . ., p-1 are used to represent the value,
where p > 2. When a negative modulo equivalent encoding is used, signed digits that
belong to the same modulo equivalence class as the larger positive digits are used to
create the truth table associated with the circuit to be designed. For example, when p =3
and a signed modulo equivalent encoding is used, the digit sets have the relationship {0,
1,2} — {0, 1, -1}. While alternative mappings may be used, experimental results show

that the resulting circuits are not as compact as the given mapping. A four digit ternary
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multiplicative inverse pair using negative digit encoding, (2, -40) — (0002, -1-1-1-1) for
example, uses the positive modulo equivalent digit to represent the control inputs in the
design. In the case of the example multiplicative inverse pair, -1 is represented by 2 in a

circuit design, but is interpreted as a signed modular equivalent by the designer.

3.2 Unary Arithmetic Quantum Circuits

As a starting point in the exploration of unary arithmetic quantum logic circuit design,
the ternary base circuits of multiplicative inverses and discrete logarithms were designed.
The method used for manually designing the circuits relies on exploitation of the
inheritance principle. The portion of the quantum logic gate cascade that generates the
least significant digit output is designed first. The least significant digit for ternary
multiplicative inverse does not require any operation to be performed, it remains the
same. The next digit may use the lower order digit as a control input. However, the
ternary multiplicative inverse sees the same digit change for both values ending in one
and two. The gates do not use control digits in this case. The numbers that end in zero
need not be considered for any of the digits, because they are in the same modulo
equivalence class as three, having no multiplicative inverse. The higher order digits do
use control digits to perform the proper transformations. The number of control digits
and gates used to realize the circuits can be reduced by finding groups of control qudits
that cause the same permutation of the original values.

The four digit ternary quantum logic multiplicative inverse circuit using a modular

digit value encoding will be used as an example to explain the design process. The
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principle of inheritance is exploited in the design of the unary arithmetic operations. This
means that the designer must first examine the lowest order digit values in the table. The
multiplicative inverse table has no entries that have a lowest order value of 0, because a
number with a zero in the lowest order digit has the radix as a root and cannot be
relatively prime to the base. After examining the lowest order digit values, it is observed
that the digits do not change from input to output. Figure 3.1 illustrates what this circuit

would look like for the single qudit.

X0 Yo

Figure 3.1: Ternary Multiplicative Inverse Circuit Design for a Single Qudit

The next digit higher order digit is examined to determine the changes from input to
output. It is determined that the output seen is that of an “N” and “C1” gates for all
inputs to achieve the correct output. Figure 3.2 is the diagram realizing this addition to

the ternary quantum logic circuit design of a multiplicative inverse of two qudits.

Xo Yo

Figure 3.2: Ternary Multiplicative Inverse Circuit Design for Two Qudits
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The next higher order digit is examined so that the design may be extended to include
the third digit. The pattern detected in the indicated output shows that to obtain the
correct output qudit, the “N” gate is the only gate necessary for all input values. A “C1”
gate with a control input from y; of 0, a “C2” gate with control inputs y; of 2 and yo of 1,
and a “C2” gate with control inputs y; of 1 and y of 1 complete the design. Figure 3.3 is

a circuit design of this description of the three digit circuit.

X, N

Cl (0% (0%
Xg Yo

Figure 3.3: Ternary Multiplicative Inverse for Three Qudits

The last digit is now examined to complete the design of the four digit ternary
multiplicative inverse with modular digit value encoding circuit. The pattern detected
between the inputs and outputs at this point once again indicates that all x3 inputs must
use an “N” gate. A “C1” gate with a control input from y; of 0 is also necessary. Due to
an inability to find functionally complete sets of inputs that see the same changes for
outputs, four controlled “C2” gates with multiple control inputs are necessary to complete
the design. There are two “C2” gates with two control inputs, one with control inputs y,
of 2 and y; of 1, the other with control inputs y, of 0 and y; of 2. There are two “C2”

gates with three control inputs, one with control inputs y, of 2, inputs y; of 2, and yo of 1,
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the other with control inputs y, of 1, y; of 1, and yy of 1. These gates complete the design
of the circuit. The four digit ternary multiplicative inverse with modular digit value

encoding circuit design is revealed in Figure 3.4.

X N c @ @ @ @ v,

00
-0 o 00—
. 00

Figure 3.4: Final Multiplicative Inverse Circuit Design for Four Digit Ternary with

Modular Digit Value Encoding

The use of the inheritance principle should be noted in the final design in Figure 3.4
of the multiplicative inverse circuit. This is not the only ternary circuit that was
designed. The multiplicative inverse circuit corresponding to the digit natural digit set is

shown in Figure 3.4.
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A 000
000
. oo 000

Figure 3.5: Multiplicative Inverse Circuit Design for Four Digit Ternary Logic

One other digit encoding was used in the design of ternary multiplicative inverse
circuits. The encoding, {0, 1, 2} — {-1, 0, 1}, is known as the balanced encoding. In
Figure 3.6, it should be observed that the balanced encoding based circuit requires more

gates to realize the multiplicative inverse operation than the preceding two encodings.

Figure 3.6: Multiplicative Inverse Circuit for Four Digit Ternary Logic with Balanced

Encoding
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The investigation into unary arithmetic operations in the area of ternary quantum
logic was not confined to the multiplicative inverse [3]. Circuits were designed for the
three digit discrete logarithm. One of the discrete logarithm circuits was designed

manually and can be found in Figure 3.7.

X, ct ct N o] N N o

00 .

Figure 3.7: Discrete Logarithm for Three Digit Ternary Logic

Another discrete logarithm circuit design was created using an automated method
[22]. The circuit design generated by the automated method is labeled as Figure 3.8

below.

Figure 3.8: Discrete Logarithm for Three Digit Ternary Logic Designed with Automated

Method
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The automated method uses more gates to realize the circuit than the manually
designed circuit. This is an interesting result that will assist those working with
automated circuit synthesis in improvement of their process. The last ternary circuit
designed is a three digit exponentiation circuit. The reversibility of quantum logic can be

noted in the exponentiation circuit in Figure 3.9 is the reversal of the discrete logarithm.

o N N @ N @ @ X,

N
. 00—

Figure 3.9: Exponentiation for Three Digit Ternary Logic

It should be noticed that the “C1” gates in the discrete logarithm circuit in Figure 3.7
must be exchanged for “C2” gates in the reversal circuit to correctly realize the
exponentiation circuit in Figure 3.9 since the matrix representing the “C1” gate realizes

the Identity matrix when multiplied by the matrix representing the “C2” gate.

3.3 Quintary Quantum Logic Universal Gate Set

Universal gate sets are a small collection of gates whose operations form a
functionally complete set over the algebra used to model the circuit function. Hence, a
universal gate set can be used to construct any possible logic circuit. In accordance with

the standard notation in mathematical combinatorics, the set of all permutation gates is
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denoted as Il with elements that are individual permutation gates denoted as T, with
the ijklm subscript indicating the permutation the gate performs in the mathematical

01234

notation
[i jklm

J. Observations about the nature of base five permutations allow for

the development of a technique to determine whether or not universal gates sets are

achieved by a set of gates.

3.3.1 Quintary Quantum Logic Gate Characteristics

The total number of possible permutation gates over radix 5 is 5! = 120. This number
of gates is somewhat unruly when contemplating the design of quintary logic for unary
arithmetic operations. Finding a smaller universal gate set is necessary to make circuit
design a more realistic endeavor.

One particular permutation gate that has characteristics that allow for the
development of many other permutation gates is T43210. This permutation gate allows any
permutation to be reversed. This reversion means that only half, or sixty, of the total

permutations must be found to have a universal gate set. As an example, the matrix 143210

is calculated using the equation Tta310 = |i) (0| + |j) (1| + |k) 2| +|]) (3| + |m) (4.

43210 =

[10000]+| 0[01000]+|1 [[00100]+|0|[00010]+|0|[00001]

- o O O O
o =B o o O
o o = o O
oS o o = O
oS O o o =
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[00000] [00000] [00000] [00000] [00001] [00001]
00000| |00000| [00000| {00010 | |00000| [00010
Tu210= 00000 |+ 00000 |+ 00100 [+[00000|+/00000|=[00100
00000| |01000 | [00000| {00000| |00000| [01000
110000 | |00000| [00000] |[00000| [00000] |10000

Figure 3.5 demonstrates the representation utilized in circuit design diagrams in this

thesis for Ts3210.

X9 N Yo

Figure 3.10: 143210 Gate Representation

Another permutation gate that has characteristics seen in many permutations is I1y;243.
This permutation gate is seen frequently in the ordered permutation list. The frequency
with which this gate is seen means that only half of the previous sixty gates need to be
found, or thirty gates. It should also be noted that permutation gates with a similar
permutation structure, for example: Toi243 Or Tip234, are seen with equivalent frequency.
This allows more varied universal gate sets to be found. These matrices are also created

by the previously described equation. As an example,

To1243 =

[10000]+|0([01000]{1 |[[00100]+|0|[00010]+|0{[00001]

oS o o o =
o o o = O
o o = o O
- o O O O
o =B o o O
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(100007 [00000] [00000] [00000] [00000] [10000]
00000| 01000 | [00000| |00000| [00000| (01000
To1245= 00000 |+/ 00000 |+ 00100 |+ 00000 |+/00000| ={00100
00000| [00000| [00000| |00000| [00001| {00001
100000] [00000] [00000| [00010] [00000] |00010

Figure 3.6 demonstrates the representation utilized in circuit design diagrams in this

thesis for To1243.

Xo S3 Yo

Figure 3.11: mo1243 Gate Representation

Yet another permutation that has characteristics that can be used to determine the
remaining permutations necessary for a universal gate set is Toj432. This permutation is
seen slightly less frequently than the previous two gates. This gate is observed in two
thirds of the remaining permutations, leaving only ten permutations to be found.

Matrices of this type are also created by the equation used for the previous examples.

[10000]+| 0[01000]+|0|[00100]+|0|[00010]+|1|[00001]

To1432 =

o o o o =
o o o = O
- o O O O
(= = R e R ]
oS o = O O

33



(100007 [00000] [00000] [00000] [00000] [10000]
00000| 01000 | [00000| |00000| [00000| (01000
To1a32= 00000 [+ 00000 |+[00000|+/00000 [+ 00001 | =|00001
00000| [00000| [00000| |00010| [00000| (00010
100000] [00000] [00100 | [00000] [00000] |00100

The permutation determined by this matrix calculation would appear similarly to
Figure 3.5 and Figure 3.6.

The few remaining permutations may be found with different permutation gates. For
the purposes of this example, 73214 will be used to find the final ten missing

permutations. This final matrix can be created as well.

[10000]+| 0[01000]+|1 |[[00100]+|0|[00010]+|0|[00001]

To3214 =

oS O o o =
o =B o o O
o o = o O
oS o o = O
- o O O O

(100007 [00000] [00000] [00000] [00000] [10000]
00000| |00000| [00000| [00010| |00000| [00010
To3214= 00000 |+/00000 |+ 00100 |+ 00000 |+/00000| ={00100
00000| |01000 | [00000| [00000| |00000| [01000
100000] [00000] [00000| [00000] [00001| |00001

Exhaustively producing all four gate quintary universal gate sets from the set of
fifteen basic quintary gates discussed in the next section is a complex problem with 15
choose 4, approximately 1365, possible sets that must be verified with factorial
verification time for each. This is due to the permutation necessary to prove the validity

or invalidity of a universal gate set. A process was developed to search a set of five gates
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for four gate quintary universal gate sets. By reducing the number of gates used to

perform the verification procedure, the complexity of the problem is greatly reduced.

3.3.2 Quintary Quantum Logic Universal Gate Set Verification

The universal gate set is defined as a set of gates that when applied together cyclically
generate every permutation gate that is not part of the gate set. An array containing five
values can be easily manipulated in functions to represent the changes performed by
using a particular gate. Each permutation must be checked in a list to determine whether
or not every permutation is achieved. A rank function is used to check the permutations,
the algorithm for which has been published in [18]. The manner in which the rank
function is implemented is relatively simple. The rank function uses a formula that
realizes an eventual result through recursion. The permutation array, number of elements
left in the permutation array, and the last element that was removed from the permutation
array are used in this recursive portion of the algorithm. If it is not the first time that the
function has been called, the most recently removed element is used to make the
remaining elements compatible with the new permutation array. This is achieved by
subtracting one from each element that is greater in value than the most recently removed
element. At this point the recursion is introduced with a return statement for when the
array still has elements and a return statement for the case when there is only one element
remaining. In the return statement for multiple elements, the formula requires that the
first element in the permutation array minus one is multiplied by the factorial of the

number of elements left in the array minus one. In the return statement, the previous
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calculation is added to the next instance of the function that is called reflecting the
removal of the first element. This produces a value that reflects the position of the
current permutation in relation to the rest of the permutations in an ordered permutation
list. For example, if the permutation created is {1, 2, 0, 4, 3}, then the permutation sent
to the rank function is {2, 3, 1, 5, 4}, the rank function would be calculate the position by
the following equation.

rank position = [(2-1) % (4!)] + rank{2, 1, 4, 3}

[(2-1) x (3!)] + rank {1, 3, 2}
[(1-1) x (2!)] + rank {2, 1}
[(2-1) x (11)] + rank {1}
0

rank position =1 x 24] +[1 x 6]+ [0 x 2] +[1 x1]+0=24+6+0+1+0=31

This rank calculation is used with a list of possible permutations to determine which
permutations have been observed and which have yet to be achieved.

The assumption that all gates in a universal gate set should be applied an equal
number of times to achieve all possible permutations is used in this case. The order in
which the gates were applied should be varied. Applying the gates in different orders
allows more permutations to be achieved. This behavior can be observed with a simple
example. When the permutation gate, known as 243, 1S modified by another

permutation gate, 71432, the result is the permutation gate myi342. When the order of these

two gates is reversed, the resulting permutation gate is m1423. This observation indicates
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that varying the order of the gates may allow a universal gate set with fewer gates to be
found.

It was determined that a quintary universal gate set can be made with five gates using
the simple order variation of rotating through the set of gates. By permuting the order of
the permutation gates, a slightly smaller universal gate set is realized. To perform this
test, a table of the twenty-four permutations of four numbers to set the order in which
gates will be called is used. A table of the five combinations of four gates that consist of
a universal set is also used. These tables are used together as a fast way to test for
universal gate sets. This allows the simulation of the combination of the gates in a
particular order while denoting which permutations are seen using the previously
discussed ranking procedure and permutation list. It cycles through the possible order of
the gates, then checks the permutation list for permutations that are not included. If any
permutation is not produced by the four gates, it is not a universal gate set. It is then
cycled through the other possible groups of four gates to check for universal gate sets,
repeating the process.

There is one other way that this method ensures that a set of gates is a universal gate
set. If all permutations aren’t realized in the previously described steps, the process is
started again with the same gates utilizing a permutation that has already been generated
as the starting permutation. It does this by finding the index of a permutation that has
already been generated by the set of gates. When the index is found, the starting
permutation is taken from a five digit permutation table. If using the permutations

previously generated by the gates does not help generate the missing permutations, the
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gates do not form a universal gate set. An outline of the operation of this method is

provided by the flowchart in Figure 3.12.
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Start

Request and Store
Gates

Start order permutations YES
of all gate sets checked?

Gate set order
permutations of gates
checked?

YES

Perform designated
gate operations and
check the permutation
list

Has one set of gates been
run?

Test the set again with
a created permutation as
the starting point?

YES

Is the gate set Universal?

Print Universal Gate Set Print Universal Gate Set
to the screen failure to the screen

Figure 3.12: Flowchart of Universal Gate Set Verification Method
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The method developed utilizes a letter and number classification for the testing of the
gate sets. In Table 3.1, the permutation gates in the set of permutation gates available for

use with this method are detailed.

Table 3.1: Quintary Quantum Logic Permutation Gates

Name in Program Permutation Permutation Symbol
@, j, k, I, m)
N 4,3,2,1,0) 43210
Cl1 (1,2,3,4,0) 012340
C2 (2,3,4,0,1) 23401
C3 (3,4,0,1,2) 34012
C4 4,0,1,2,3) 40123
S1 (1,0,2,3,4) 10234
S2 0,2,1,3,4) 02134
S3 0,1,3,2,4) 01324
S4 0,1,2,4,3) 01243
L1 (2,1,0,3,4) 21034
L2 0,3,2,1,4) 03214
L3 0,1,4,3,2) 01432
El 3,1,2,0,4) 31204
E2 0,4,2,3,1) T04231
E3 4,1,2,3,0) 41230
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Table 3.1 should be used to determine which gates are chosen for verifying sets of
four permutation gates forming universal gate sets from sets of five permutation gates.
Permutation gates in Table 3.1 with the same starting character perform similar

permutations.

3.4 Quintary Quantum Circuit Design

Using three-digit quintary radix tables for the multiplicative inverse and the basic
permutation gates established for use in finding the quintary quantum logic universal gate
set, quintary quantum logic circuits can be designed. The first circuit design did not
utilize the negative modulo equivalent encoding feature of the multiplicative inverse table
generation technique. The circuit design in Figure 3.13 was developed with the quintary

quantum logic gate set {N, C1, S3, L1}
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2.3.4.0.0.0.0.1.1.1.1.2.2
2 2 2 3 3 3 3 3 3 3 3 3 3

4

Figure 3.13: Multiplicative Inverse Circuit Modulo 5’

In Figure 3.13, the most frequently occurring quintary quantum logic gate type is of a

rotational type. The gates denoted with “C” for the letter in the name use matrices that

can be described as “adding” the numeral in the name and using modulo of the base to

find the resulting value. It should be observed that of the fifty-two gates used in this

design, only five are not “C” gates.

Using the table generation process with the negative modulo equivalent option

exercised, another three digit radix five table was created for designing a second circuit.
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This circuit follows the same design concepts used to create the previous multiplicative

inverse quintary quantum logic circuit.

C1 C1

Figure 3.14: Multiplicative Inverse Circuit Modulo 5° with Negative Modulo

Yo

Equivalent Encoding

In Figure 3.14, as in Figure 3.13, the most frequently occurring quintary quantum
logic gate type is the “C” gate. In the case of the quintary negative modulo equivalent
encoded multiplicative inverse circuit design, five of the thirty-five gates are not “C” type
gates. It should also be noted that the negative modulo equivalent encoded circuit uses

fewer gates to realize the resulting output than the normally encoded circuit.

43



Chapter 4

CIRCUIT VERIFICATION

4.1 Design Validation Methodology

Two distinct methods of quantum logic circuit verification were used in this research.
The first verification method was simulation of the proposed quantum logic circuits. The
second verification method was a quantum circuit verification tool utilizing functional

equivalence checking.

4.1.1 Design Simulation

The designs for circuits were verified using simulation of the circuit designs. Each
input was simulated with relation to the changes that the gates in the quantum logic
circuit would achieve. The outputs were then compared to the known correct output
resulting digits. The design is correct when the output digits are the same for circuit and
the known values.

The simulation method may be employed with any user defined radix, while there are
some limitations to other verification methods. It is necessary to use this method to
verify the quintary quantum logic circuit designs due to the current constraints on other

quantum logic verification methods.
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4.1.2 QMDD-Based Verification

Quantum Multiple-valued Decision Diagrams, or QMDDs as they are commonly

known, are the only decision diagram structure that can be used with qudit quantum logic

[13]. QMDDs are directed acyclic graphs that must adhere to the following properties:

1)

2)

3)

4)

5)

A single terminal vertex with an associated value of 1. Terminal vertex means
that it has no outgoing edges.
Some number of nonterminal vertices, each has a label determined by p*-valued
selection variable. The nonterminal vertices have p* outgoing edges, denoted as
€0, €1, -0y €
There is one start vertex that has only one incoming edge that has no source
vertex itself.
Each of the edges in the QMDD have a complex-valued weight associate with it.
This includes the edge to the start vertex with no source.
Selection variables are ordered and satisfy two rules:
a. On each of the paths from start vertex to terminal vertex, each selection
variable will appear only once.
b. A nonterminal vertex, labeled as x;, has an edge pointing to another
nonterminal vertex, labeled as x;, j <i or the terminal vertex. Thus, x; , for
the largest value of k, labels the start vertex, while xy is closest to the

terminal vertex.
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6) None of the nonterminal vertices is redundant, meaning that no nonterminal
vertex may have all p* outgoing edges pointing to the same vertex with the same
weights.

7) The outgoing edges of the nonterminal vertices are normalized so that on any
edge the largest weight on any edge is 1.

8) Nonterminal vertices must be unique, meaning that no two nonterminal vertices
labeled as the same x; have the same outgoing edges, defined by the same weight
and destination.

There is an extreme case of a QMDD with only a start vertex and no nonterminal
vertices; however, due to the dependency of this case on a constant valued matrix, it was
not necessary to examine this particular type of QMDD for this research [20].

In the case of ternary quantum logic, the circuit designs are verified using a system
that parses two circuits into a QMDD. Due to the canonical nature of QMDDs, when two
different quantum logic circuit cascades are parsed into QMDDs with same structure, the

circuits are functionally equivalent [22].

4.2 Design Results

The design of the quintary multiplicative inverse circuit was accomplished manually
using a multiplicative inverse table generated by the method described previously and a
universal gate set determined by the technique described. The property of inheritance
was exploited in this design. This allowed each successive higher-order digit to be

designed for without re-evaluating the previous design. These designs serve to
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demonstrate the ability to design quintary quantum logic unary arithmetic operations

exploiting the inheritance principle.
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

This research of the design of multiple-valued quantum logic arithmetic circuits, led
to the development of automated varied radix and digit set multiplicative inverse table is
a step forward in the capability of designing more quantum logic circuits for future use.
The unary arithmetic operations explored in this research exploit a major characteristic
inherent in quantum logic, bijection. The use of bijective operations and residue
arithmetic allow the development of concise design solutions.

The ability to find and prove a four permutation gate universal gate set in quintary
quantum logic is a significant development. The property of inheritance and small
universal gate sets are exploited to great effect in the design of the quintary quantum

logic multiplicative inverse circuit.

5.2 Future Quantum Logic Development
While this research has yielded interesting results, there are many more areas to
pursue in this topic. Only one unary arithmetic function was studied more extensively by

examination in the realm of quintary logic. Other unary arithmetic operations should be
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investigated in different logic bases. This would allow for a determination of the most
efficient multi-valued logic base for performing these arithmetic operations.

An automated synthesis tool for creating quantum logic circuits is a logical step in the
progress of quantum logic research. Such tools exist for work with classical logic,
creating an automated synthesis tool for quantum logic would help to increase the
number of circuits that are designed. Automated synthesis tools can also be used to help

increase the efficiency of circuit designs.

5.3 Future Universal Gate Set Development

Universal gate sets are not confined to quintary quantum logic. Any quantum logic
base with permutation gates will have universal gate sets. Finding those universal gate
sets is a problem that becomes more complex as the value of the base increases. To
examine the universal gate set problem for sectary quantum logic, quantum logic with a
base of seven, the total number of permutations expands to 7!, or 5,040 total
permutations. A consistent and efficient method for finding universal gate sets regardless
of base is an area for further development and research.

The universal gate sets should also, in future, be expanded to include quantum logic
gates that are not defined as permutation gates. An example of one of these gates is the
swap gate [7]. The controlled swap gate is not defined by a permutation matrix, but

instead swaps the assigned qudits.
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