

INTEGRATED TECHNIQUES FOR THE FORMAL

VERIFICATION AND VALIDATION

OF DIGITAL SYSTEMS

Approved by:

Dr. Mitchell A. Thornton (Chair & Dissertation Director)

 Dr. Hesham El-Rewini

 Dr. Theodore Manikas

 Dr. Sukumaran Nair

 Dr. John Provence

 Dr. Stephen A. Szygenda

INTEGRATED TECHNIQUES FOR THE FORMAL

VERIFICATION AND VALIDATION

OF DIGITAL SYSTEMS

A Dissertation Presented to the Graduate Faculty of the

School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

With a

Major in Computer Engineering

By

Lun Li

(B. S. E. E., Beijing Jiatong University)
(M. S. E. E., Beijing Jiatong University)
(M. S. E. E., The University of Tulsa)

May 20, 2006

iii

ACKNOWLEDGEMENTS

So many faculty members, persons, and students helped and influenced my work at

Southern Methodist University. First, I gratefully acknowledge Dr. Mitchell A. Thornton,

my dissertation advisor, for his guidance, encouragement and support throughout the

research phase of this dissertation. Without him, I would not have been able to complete

the projects and this dissertation. I have learned a great deal through my years of studying

under Dr. Thornton, and highly respect him as both a mentor and a friend. He also helped

me publish my work and urged me to attend a variety of national and international

conferences. It is a great pleasure and honor to work with him.

I also wish to express my sincere appreciation to Dr. Hesham El-Rewini, Dr.

Theodore Manikas, Dr. Sukumaran Nair, Dr. John Provence, and Dr. Stephen Szygenda

for their precious time and advice as my committee members.

In addition, I would like to extend my hearty thanks to all my collaborators, Dr.

David W. Matula, Dr. Marek Perkowski, and Dr. Rolf Drechsler. I especially enjoyed

the discussions and collaborations with Dr. Matula on the integer power operation

algorithms and circuits sponsored by Semiconductor Research Corporation.

I greatly appreciate the CAD methods group for providing me such a wonderful

environment to conduct my study and research. I really enjoyed the discussions with

iv

Kenneth Fazel, Jason Moore, Mahsan Amoui, Poramate Ongsakorn, David Goodman,

and Laura Spenner. I would like to express my sincere appreciation to my friends, Chris

Wynne, Ganglei Liu, Yue Jia, Yu Meng, Li Ma, as well as others who helped me a lot in

Dallas.

My parents played a vital role in my education. From early grade school, they taught

me how to study and the importance of education. They have followed my progress with

a great deal of enthusiasm and helped in many ways too numerous to mention.

Finally, I must express my deepest appreciation to my family, especially to my wife,

He Jin. From the beginning of our marriage, she has taken many additional

responsibilities around our home to support my education. She is the person with whom I

can share my feelings and frustrations, and she is the person who knows what to say to

help me over hurdles. Without her love, encouragement and support this dissertation

would not have been possible. The happiness of completing my degree belongs as much

to her as it does to me. Our daughter, Grace Li, brings us lots of fun during and

tremendous relief when I am under pressure. I also wish for my coming son to enjoy the

happiness of our family. I am truly blessed to have such great wife, daughter and son.

v

Li, Lun B. S. E. E., Beijing Jiatong University, 1997
 M. S. E. E., Beijing Jiatong University, 2000
 M. S. E. E., The University of Tulsa, 2002

Integrated Techniques for the Formal
Verification and Validation of
Digital Systems

Advisor: Professor Mitchell A. Thornton

Doctor of Philosophy conferred May, 20, 2006

Dissertation completed April, 25, 2006

Chip capacity follows Moore's law, and chips are commonly produced at the time of

this writing with over 70 million gates per device. However, ensuring correct functional

behavior of such large designs becomes more and more challenging.

Simulation is a predominantly used tool to validate a design in industry. Simulation

can validate all possible behaviors of a design in a brute-force manner. However, rapidly

evolving markets demand short design cycles while the increasing complexity of a design

necessarily dictates that simulation coverage is less and less complete. Formal

verification validates the correctness of the implementation of a design with respect to its

specification by applying mathematical proofs.

Image/Pre-Image computation is a core algorithm in formal verification. Binary

Decision Diagram (BDD) -based methods are usually faster but can exceed memory

capacity for some types of designs which therefore limits scalability. Satisfiability (SAT)

solvers are less vulnerable to memory explosion but slow when all the satisfied solutions

vi

are required in image computation. In this work, a genetic algorithm based conjunctive

scheduling solution is presented to enhance BDD-based image computation. A way of

combining BDD and SAT approaches for image computation is also presented to solve

the state space explosion in image computation. A BDD-based approximation method is

used to calculate the over- and under- boundaries of reachable states. A SAT solver is

used to find the remaining states. The SAT solver is enhanced by techniques referred as

“early detection” and “expansion” to find a satisfiable assignment containing more don’t

cares.

Formal verification itself cannot solely accomplish the validation task. Thus,

combining different approaches together to serve the purpose of validation of digital

circuits attracts our attention. The third part of this work focuses on the Integrated Design

Validation (IDV) system that develops an integrated framework to the design validation

and takes advantage of current technology in the areas of simulation and formal

verification resulting in a practical validation engine with reasonable runtime. To

demonstrate the ability of the IDV system, IDV is applied to two practical application

circuits designed in our lab for the SRC sponsored arithmetic circuit project.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

LIST OF TABLES.. x

LIST OF FIGURES ... xi

CHAPTER .. 1

1. INTRODUCTION ... 1

2. BACKGROUND ... 6

2.1 Fundamental Data Structures and Algorithms... 6

2.1.1 Boolean Functions and Finite State Machines.. 6

2.1.2 Image Computation Using the Transition Relation 9

2.1.3 Symbolic FSM State Space Traversal... 12

2.1.4 Binary Decision Diagrams.. 13

2.1.5 The Boolean Satisfiability Problem.. 15

2.2 Existing Techniques for Verification... 17

2.2.1 Equivalence Checking .. 17

2.2.2 Model Checking.. 20

3. NEW APPROACHES FOR IMAGE COMPUTATION .. 23

3.1 Related work .. 23

3.1.1 BDD-based Approach... 23

3.1.2 SAT based Methods.. 27

viii

3.1.3 Hybrid Approaches ... 29

3.1.4 Summary of Past Approaches for Image Computation 30

3.2 A Genetic Algorithm Approach for the BDD-based Method............................ 31

3.2.1 GA Based Ordering Algorithm... 32

3.2.2 Affinity Based Clustering Algorithm.. 37

3.2.3 Ordering for Image Computation.. 38

3.2.4 Experimental results.. 40

3.3 A Hybrid Method... 44

3.3.1 Narrowing Down the Search Space .. 44

3.3.2 Modified SAT Procedure.. 47

3.3.3 Results of Extended Image Computation Approach................................. 51

3.4 Summary of Image Computation... 52

4. INTEGRATED DESIGN VALIDATION SYSTEM.. 54

4.1 System Description .. 55

4.1.1 Complexity Analyzer .. 55

4.1.2 Design Partitioning ... 56

4.1.3 Coverage Analysis .. 57

4.1.4 Verification and Simulation Tools Comprising IDV................................ 57

4.2 Validation Flow with IDV ... 62

4.3 IDV Implementation Architecture ... 63

5. VERIFICATION RESULTS ... 65

5.1 Types of Digital Circuits Suitable for IDV.. 65

ix

5.2 Integer Powering Circuits .. 66

5.2.1 DLSiter Conversion/Deconversion Circuit... 70

5.2.2 DLStable Conversion/Deconversion Circuit .. 76

5.3 Verification Procedure and Results ... 87

5.3.1 DLSiter Circuit Verification ... 88

5.3.2 DLStable Circuit Verification... 98

5.4 Summary.. 103

6. CONCLUSIONS AND FUTURE WORK .. 104

6.1 Conclusions.. 104

6.2 Future Work ... 105

REFERENCES ... 109

x

LIST OF TABLES

Table Page

1.1 Comparison of Equivalence Checking Tools ... 4

1.2 Comparison of Model Checking Tools... 4

3.1 Genetic Result on Image Computation ... 43

3.2 Upper/Under Bound for S1269... 47

3.3 Comparison of Property Checking.. 52

5.1 Technology Library Parameters.. 74

5.2 Comparison of Layout Result ... 75

5.3 Conversion Table from the 5-bit DLS Number to the 5-bit Integers [0,31] 77

5.4 Comparison of Results for Two DLStable conversions 87

5.5 Verification/Simulation Result ... 91

5.6 Verification/Simulation result... 100

xi

 LIST OF FIGURES

Figure Page

2.1 Huffman Model... 7

2.2 FSM Traversal Using Breadth-First Search.. 8

2.3 Example for FSM Traversal.. 9

2.4 TR Projection .. 11

2.5 Least (greatest) Fixed Point Computation .. 12

2.6 Symbolic FSM Traversal .. 13

2.7 BDD Representation ... 15

2.8 Basic SAT Procedure.. 17

2.9 MITER .. 18

 2.10 Product Machine for Comparing Two FSMs.. 19

3.1 State Diagram of 3-bit Counter... 24

3.2 A Chromosome for 3-bit Counter ... 33

3.3 Dependency Matrix for a Chromosome.. 34

3.4 PMX.. 36

3.5 MUT.. 36

3.6 Genetic Algorithm Routine... 37

3.7 Dependency Matrices for Two Chromosomes ... 39

xii

3.8 Dependency Matrix Before Ordering ... 42

3.9 Dependency Matrix After Ordering.. 42

 3.10 Narrowing Search Space... 45

 3.11 Pre-image Computation Procedure ... 46

 3.12 zChaff_ALL Procedure... 48

4.1 Architecture of the Integrated Design Validation System 55

4.2 Validation Flow of IDV System ... 63

4.3 Architecture of IDV System ... 64

4.4 Command Line Input Example... 64

5.1 Squaring and Multiply Based Powering Operation Algorithm......................... 67

5.2 Serial Odd Integer Powering Algorithm Based on DLS................................... 69

5.3 Parallel Integer Powering Algorithm.. 71

5.4 State Diagram for DLSiter Implementation.. 73

5.5 Speed Trend of the Two Circuits .. 75

5.6 Area Trend of the Two Circuits .. 75

5.7 Lookup Tree for Odd Integer Binary to DLS Conversion................................ 80

5.8 Lookup Tree for Even Integer Binary to DLS Conversion............................... 80

5.9 Lookup Tree for DLS Odd number to Integer Binary Conversion................... 81

 5.10 Table Lookup Architecture .. 82

 5.11 15-bit Table Lookup Architecture ... 83

 5.12 13-bit Table Lookup Architecture ... 86

 5.13 Graph Representation of Design Hierarchy... 89

xiii

 5.14 Possible Interconnection Errors vs. Coverage of System Level Simulation 94

 5.15 Graph Representation of Design Hierarchy for DLStable................................ 99

1

CHAPTER 1

1. INTRODUCTION

VLSI design sizes grow as VLSI fabrication technology can handle smaller and

smaller feature sizes. With the success of CAD tools in logic synthesis and the use of

hardware description languages, such as Verilog and VHDL, chip capacity (in terms of

the number of transistors per chip) follows Moore's law and chips are commonly

produced at the time of this writing with over 70 million gates per device. Large gate

counts and high operating frequencies allied with new chip architectures lead to

considerable increases in processing power.

However, ensuring correct functional behavior of such large designs becomes more

and more challenging. Simulation, emulation, and formal verification are three

techniques available for validating a design.

Simulation is a predominantly used tool to validate a design in industry. Simulation can

validate all possible behaviors of a design in a brute-force manner where input patterns

are applied to the design and the resulting behavior is compared with expected behavior.

Simulation allows some measure of functional and timing validation, and offers ease of

use, relatively low cost, and sophisticated debugging. It can also handle very large

circuits. However, rapidly evolving markets demand short design cycles while the

2

increasing complexity of a design necessarily dictates that simulation coverage is less and

less complete. A design with n inputs has 2n possible input vectors, which is clearly too

complex for using simulation for the purposes of verification. This exponential growth of

simulation requirements results in significant simulation times making simulation an

impractical approach even for the validation of the absence of specific design errors.

Emulation made its appearance to accelerate simulation by hardware in the 1980’s.

Instead of simulating a software model of the design, a designer could run the stimuli on

a hardware prototype of the design. Programmable logic, such as Field Programmable

Gate Arrays (FPGAs), enabled emulation by programming/implementing any arbitrary

logic design into these devices. Although emulation provides two to four orders of

magnitude speedup over software simulation on average, it comes at a cost. Fitting the

design under validation into FPGAs is a complex task. Even with the speed benefits,

emulation retains the important limiting characteristic of simulation resulting in the

validation of only a small fraction of the possible input stimuli. Therefore, it is very hard

for simulation/emulation to find the so-called corner-case bugs.

Formal verification validates the correctness of the implementation of a design with

respect to its specification by applying mathematical proofs. Hence, formal verification

conducts an exhaustive exploration of all possible behavior implicitly instead of explicit

enumeration of an exponential number of possible behaviors that simulation and

emulation require. Formal verification has attracted a lot of attention in the past few

years. The most successful methods to date are equivalence checking [HC98], model

checking [CE81], theorem proving [Hoa69], and symbolic trajectory evaluation [HS97].

3

Equivalence checking methods have led to significant success in industry.

Correctness is defined as the functional equivalence of two designs (i.e. a gate-level

design matches its desired behavior as specified at the Register Transfer Language (RTL)

level). Because of the computational complexity of formal equivalence checking, a

design methodology typically adopts specific rules to make the problem tractable for

large designs. In practice, the specification and implementation of a design often have a

large degree of structural similarity in terms of internal nets that implement the same

function. For example, equivalence checking can check if the designs have corresponding

latches. Once the correspondence between latches of a reference design and an

implementation has been discovered, equivalence checking is just a matter of showing

that corresponding latches have the same next-state function. This has proven to be very

valuable in validating that an implemented gate-level design matches its desired behavior

as specified at the RTL.

Another promising direction is model checking. The focus of model checking is to

check whether the design, either in its specification or its implementation form, satisfies

certain properties. Unlike equivalence checking, which limits itself to one step in time,

model checking considers all time steps in the future. For example, checking that a design

never deadlocks, or that each request is eventually responded to, requires the

consideration of sequences having an unbounded length. Recently, model checking is

beginning to be accepted by industry for integration into the verification flow. It is

typically used in establishing the correctness of interfaces between components, as well

as in uncovering difficult-to-find corner case bugs in designs [PM04].

4

Three leading Electrical Design Automation (EDA) vendors, Cadence, Synopsys and,

Mentor Graphics, offer equivalence checking tools as a mature technology. They started

to market their model checking tools recently. There are a number of smaller companies

specializing in formal tools, all established within the last several years. Typically these

companies specialize in property verification. Lar [Phi01] conducted a survey on

commercial tools in equivalence checking and model checking in 2001. Tables 1.1 and

1.2 describe commercial equivalence checking tools and property checking tools. Some

information is extracted from [Phi01] and is updated in the following tables.

Table 1.1 Comparison of Equivalence Checking Tools

Product Formality Encounter Conformal Formal Pro
Manufacturer Synopsys Cadnece Mentor GraphicsBasic

Website www.synopsys.com www.cadence.com www.mentor.com
BDD * * *
SAT * * *

Symbolic methods *
Data Structure

ATPG * * *

Table 1.2 Comparison of Model Checking Tools

Product Verifier
Design

Verity-Check
imPROVE-

HDL Solidify Verix
Manufacturer HDL Veritable TransEDA Averant RealIntent Basic

Website www.athdl.
com

www.veritabl
e.com

www.transeda
.com

www.avera
nt.com

www.realinten
t.com

Design
decomposition * * * * *

Property
decomposition * * *

Data
Structure

Abstraction * * * *
Language

name Verilog PEC HPL

Language style Verilog Forms Keywords Verilog Keywords
Inline * * *

Separate from
design * * * *

Property
Specification

Simulatable * *

5

In the above introduction, three techniques for the validation of digital designs are

mentioned. The first part of this research is focused on formal methods where the existing

methods are extended to improve efficiency. In the second part of the research we will

concentrate on building the Integrated Design Validation (IDV) platform that combines

formal verification methods and simulation techniques to provide a reliable environment

for the validation of digital designs.

The remainder of this dissertation is organized as follows: Chapter 2 provides details

regarding the fundamental data structures and algorithms used in equivalence and model

checking, such as Boolean Satisfiability (SAT), and function representations such as

Binary Decision Diagrams (BDDs). Chapter 3 reviews existing techniques for

equivalence checking and model checking first, then two approaches are presented to

leverage the memory usage and run-time for image computation resulting in a core

algorithm for both equivalence checking and model checking. Chapter 4 describes the

IDV system that combines formal verification methods and simulation techniques to

provide a reliable environment for the validation of some types of designs. In Chapter 5,

two designs are validated using the IDV system that can not be validated by any single

tool. We conclude and discuss future work in Chapter 6.

6

CHAPTER 2

2. BACKGROUND

In this chapter, basic data structures and algorithms, such as Boolean functions,

Binary Decision Diagrams (BDDs), and the Boolean Satisfiability Problem (SAT), are

introduced.

2.1 Fundamental Data Structures and Algorithms

2.1.1 Boolean Functions and Finite State Machines

A Boolean function with n-inputs and one output is a mapping, : nf B B→ where B

= {0,1}. The support of a Boolean function f, denoted as supp(f), is defined as the set of

variables on which the function f depends.

Multilevel circuits are typically represented as a Boolean network. A Directed Acyclic

Graph (DAG) whose nodes represent Boolean functions is defined in the following

paragraph.

A Boolean network N with n primary inputs X = 1{ ,..., }nx x and m primary outputs

Z = 1{ ,..., }mz z can be viewed as a set of m single output Boolean functions defined as

f:Bn Bm. Let λ be 1{ (),..., ()}mX Xλ λ where iλ is an output function. A characteristic

function of a Boolean network N is defined as a Boolean function C(X , Z , λ) such that

7

C(X , Z , λ) = 1 ⇔ ()i iz Xλ≡ . In other words, a characteristic function maps every

valid input/output combination to ‘1’, and every invalid combination to ‘0’.

Computationally, the characteristic function can be derived by the following formula

[HC98]:

C(X , Z , λ)=
1

(, ,)
n

i i i
i

C z X λ
=
∏ =

1
(())

n
i i

i
z Xλ

=
∏ ≡

where (a b≡) corresponds to ()ab ab+ , Ci(X , iz , iλ) is also called a “bit function”.

A synchronous sequential circuit or machine can be represented as an Finite State

Machine (FSM). An FSM is a quintuple, { , , , , }M S X Y λ δ= , where X denotes input

wires, Y denotes output wires, S is a set of states, δ is the next state function, and λ is

the output function. The next state function is a completely-specified function with

domain (X S×) and range S . A Huffman model [HC98] is shown in Figure 2.1.

Figure 2.1 Huffman Model

State space traversal is the basic procedure for equivalence and model checking. State

space traversal can be performed explicitly by traversing the State Transition Graph

Combinational
Logic

Single-bit Registers

x1x2

xm

y1y2

yn

s'1
s'2

s'K

s1
s2

sK
:

8

(STG) in either a depth-first or a breadth-first manner. Figure 2.2 illustrates the breadth-

first strategy for FSM traversal.

Figure 2.2 FSM Traversal Using Breadth-First Search

iR represents the set of all reachable states at the ith iteration. The iteration procedure

begins at a reset state 0R and stops at a fixed-point [Tar55] where the reachable states in

two consecutive iterations are identical, i.e. 1i iR R+ = . At each iteration the next set of

reachable states of iR is computed and denoted as 1iN + . The set of reachable states in

iteration i+1 will be 1 1i i iR R N+ += + . An example of such a traversal is shown in Figure

2.3. The first graph shows the STG while the second one shows the breadth-first search

process.

FSM_traveral()
{
 // continue loop until fixed point
 Ri = R0;
 while(Ri+1!=Ri){
 // Breadth-first search
 Ni+1=Breadth_First_Search(Ri);
 Ri+1 =Ni+1∪ Ri ;
}

9

Iteration Reachable states

0 {S0}

1 {S0, S1, S5,}

2 {S0 , S1 , S2 , S4 , S5}

3 {S0, S1, S2 , S3 , S4 ,S5}

4 {S0, S1, S2, S3, S4, S5}

Figure 2.3 Example for FSM Traversal

The explicit method of traversal is simple but impractical for large digital designs

since the STG will quickly exceed memory capacity. Thus, a symbolic, implicit state

enumeration process is desired.

2.1.2 Image Computation Using the Transition Relation

Given an FSM and its characteristic function represented as a Boolean function

(, ,)TR S X S ′ , the following formulation is possible. Variable sets S = 1,..., ns s , S′ =

1,..., ns s′ ′ , and X = 1,..., nx x are the current state, next state, and input variables

respectively. In sequential circuit designs, characteristic functions can be represented as a

transition relation, this transition relations will be used in the remainder of this document.

For a deterministic circuit, each binary memory element of the circuit under

consideration gives rise to yet another term of the transition relation. When the circuit is

10

synchronous, the partitioning is conjunctive and it can be written as the product of bit

relations. In this work, it is assumed that the transition relation is given as a product of

the bit relations iTR s.

(, ,)TR S X S ′ =
1

(, ,)
n

i i i
i

TR S X S
=

′∏ =
1

((,))
n

i i
i

S X Sδ
=

′ ≡∏

The transition relation uniquely represents the sequence of states the machine will

sequence through in response to a set of present states and input assignments. In the

process of state space traversal, it is only interested in knowing if there exists a transition

that brings the machine from state p to state q, while the specific input vector required to

exercise a particular transition is not of interest. The smoothed transition relation is

computed by smoothing (existentially quantifying out) every primary input variable from

a transition relation. This operation is defined as follows:

Let 0 1(, ,...,)nf x x x be a Boolean function. Then the functions
ixf and

ixf are

referred to as the positive and negative cofactors, respectively, of function f with

respect to ix .

0 1(, ,..., 1,...,)
ix i nf f x x x x= =

0 1(, ,..., 0,...,)
ix i nf f x x x x= =

The existential quantification of f with respect to the variable ix is defined as

()
i ii x xx f f f∃ = +

The existential quantification of f with respect to a set of variables, e.g.,

1 2{ , ,... }mX x x x= is defined as a sequence of single variable smoothing operations.

11

1 2() (...())mX f x x x f∃ = ∃ ∃ ∃

The transition relation defines a many-to-many projection from the present state

space to the next state space as shown Figure 2.4.

Figure 2.4 TR Projection

Based on the projection, the next reachable states of iR can be computed and denoted

as 1iN + , which is also referred to as the image of iR . The procedure of the computation is

referred to as an image computation and represented as

()1 . . (, ,)i i i i iN S X R TR S X S+ ′= ∃ ∃ ∧

Similarly, given a set of next states, iN , the pre-image of iN is the set of its

predecessor states (denoted as 1iR −) and is computed by

()1 . . (, ,)i i i i iR S X N TR S X S− ′ ′= ∃ ∃ ∧

Image (pre-image) computation is a core technique for many equivalence and model

checking algorithms.

12

2.1.3 Symbolic FSM State Space Traversal

A fixed point of a function τ is any p such that ()p pτ = . A function τ is monotonic

when p q⊆ implies () ()p qτ τ⊆ . Tarski [Tar55] showed that a monotonic function has a

least fixed point, which is the intersection of all the fixed points. It also has a greatest

fixed point, which is the union of all the fixed points. Figure 2.5 shows the procedure to

compute the least (greatest) fixed point of τ :

Figure 2.5 Least (greatest) Fixed Point Computation

Based on the transition relation and least fixed point computation, an implicit state

enumeration (often referred to as symbolic FSM traversal) can be described as given in

Figure 2.6.

Least (or Greatest) fixed point()
{
 //initialization
 let Y = False; (or Y=True;)
 // continue loop until fixed point
 do
 let Y’ = Y; Y = ∪ (Y);
 until Y’ = Y;
 return Y;
}

13

Figure 2.6 Symbolic FSM Traversal

The procedure in Figure 2.6 provides the detailed procedure for an image

computation of a FSM. Representing transition relations and reachable states will be

addressed in the next section.

2.1.4 Binary Decision Diagrams

Binary Decision Diagram (BDD) is data structures used to represent Boolean

functions. The concept of BDDs was first proposed by Lee [Lee59] in 1959. The idea

was then developed into a useful data structure for Boolean function representation by

Akers [Ake78] and subsequently refined by Bryant [Bry86], who introduced the concept

of Reduced, Ordered BDDs (ROBDDs) along with a set of efficient operators for their

manipulation and proved the canonicity property of ROBDDs.

A BDD is a rooted, directed, acyclic graph. There are two types of nodes in the graph:

terminal and non-terminal nodes. The terminal node is labeled with either a constant 0 or

constant 1 and has no outgoing edges. Each non-terminal node is labeled with one binary

FSM_traversal()
{
 // continue loop until fixed point
 Ri = R0;
 Ri+1 = ∪ ;
 //least fixed point computation
 while(Ri+1!=Ri){
 // image computation
 ∪ ;
 Ri+1 =Ni+1 ∪ Ri ;
}

14

variable (for example ix) and has two outgoing edges, T (Then) and E (Else). Here T and

E edges are connected to the positive (then) and negative (else) cofactors, respectively, of

function f with respect to the binary variable (ix). Thus, BDD nodes represent the

Boolean function f according to the Shannon expansion theorem:

0 1(, ,...,) () ()
i in i x i xf x x x x f x f= ∧ ∨ ∧

In a ROBDD, no sub-graph is isomorphic to another. Also, all variables appear in the

same order in every path. This allows for a canonical representation of Boolean

functions. The order of the variables can have a big impact on the size of the BDDs.

Some functions exist, e.g. adder, whose sizes vary from linear to exponential for different

variable orders. There are also some functions, e.g. multiplier, whose sizes are

exponential for any variable orders. The complexity of finding an optimal order is NP-

hard [BW96].

The size of a BDD can be further reduced by introducing complement edges,

[Ake78], [BRB90]. Basically, a complement edge (c-edge), points to the complementary

form of the function (BDD node). To maintain canonicity, it is assumed that a

complement edge can only be assigned to the 0-edge. In the rest of the paper, BDD refers

to a ROBDD.

A graphical example of a BDD with different orders for the Boolean function

f wx wyz wxz= + + is shown in Figure 2.7, while a with the order 0 (, , ,)w y x zπ and b

with the order 1(, , ,)w x y zπ . From Figure 2.7, you can see the importance of variable

ordering for a BDD.

15

a b

Figure 2.7 BDD Representation

It is impractical to build a monolithic characteristic function BDD for an entire

Boolean network for designs that the number of state bits exceeds a few hundred or

designs contains some functions, i.e. multiplier, whose sizes are exponential with any

given order. Functional decomposition is an important strategy to reduce the size of

BDDs.

2.1.5 The Boolean Satisfiability Problem

The Satisfiability (SAT) problem, deciding whether a given Boolean formula is

satisfiable, is one of the well-known NP-complete problems. Recently, modern SAT

solvers, like zChaff [Mal+web], Grasp [Mar+web] and Berkmin [GN02], have

demonstrated tremendous success. The key elements in modern SAT solvers are non-

16

chronological backtracking, efficient conflict driven learning of conflict clauses, and

improved decision heuristics.

A Boolean formula for a SAT solver is typically specified in Conjunctive Normal

Form (CNF) which consists of a set of clauses. Each clause is a set of literals, and each

literal is an instance of a variable or its complement. A clause represents the disjunction

of a set of literals.

The basic framework for modern SAT solvers is based on the Davis-Putnam-

Longeman-Loveland (DPLL) backtracking search [DLL62], shown in Figure 2.8. The

function decide_next_branch() chooses the branching variable at the current decision

level. The function deduce() accomplishes Boolean Constraint Propagation (BCP) to

deduce further assignments. BCP checks if a partial assignment leaves any clause with

only one unassigned literal and all other literals with value 0, then for that clause to be

true, the last literal must be assigned the value 1. This is also referred to as implication. In

the process, it might infer that partial assignments to variables do not lead to any

satisfying solutions. This is referred to as a conflict. In the case of a conflict, new clauses

are created by analyze_conflict() that is used to prevent entering the same unsuccessful

search space in the future. After a conflict is detected, the SAT solver backtracks to the

variable that causes the conflict. This variable may not be the most recent variable

decided, referred to as a non-chronological backtrack. If all variables have been decided,

then a satisfying assignment is found and the procedure returns. The strength of various

SAT solvers lies in their implementation of BCP, non-chronological backtracking,

decision heuristics, and learning.

17

Figure 2.8 Basic SAT Procedure

2.2 Existing Techniques for Verification

This section describes existing techniques for equivalence and model checking of

digital circuits.

2.2.1 Equivalence Checking

Two designs are functionally equivalent if they produce identical output sequences

for all valid input sequences. Combinational circuit equivalence checking is more mature

than sequential circuits equivalence checking.

There are three basic approaches to combinational equivalence checking. Structural

methods search for a counter-example that produces a “1” at the output of MITER and

are usually implemented using SAT solvers. MITER is a circuit that is comprised of two

circuits being compared as shown in Figure 2.9. All common inputs are tied together and

all common outputs combined through XOR gates. The output of MITER is one when

while(true) {
 if (decide_next_branch()) { // Branching
 while(deduce()==conflict){//Propagate implications
 blevel = analyse_conflict(); // Learning
 if (blevel == 0)
 return UNSAT;
 else
 backtrack(blevel);//Non-chronological backtrack
 }
 }
 else // no branch means all vars have been assigned
 return SAT;
}

18

two circuits are not equivalent. Similarly, random simulation is used to find a counter-

example by random search. Functional methods [AK95] are based on a canonical

function representation for which structural equivalence implies functional equivalence.

BDDs are widely used for functional methods. The advantage of functional methods is

their independence with respect to the circuit structure.

Figure 2.9 MITER

Structural SAT solvers can be used directly for equivalence checking [Rot77].

However, their direct application for a MITER would require an exponential number of

backtracks and is therefore impractical. A more practical approach is to exploit structural

similarities that are based on internal equivalence points, or cutpoints, which are used to

decompose the equivalence checking problem into small pieces [DO76][Ber81][BT89].

These methods are based on the observation that in many equivalence checking cases,

one of the machines under comparison contains a large number of internal nets that have

a functionally equivalent counterpart in the other machine.

General methods for sequential equivalence require the reachable states of both

designs, modeled as FSMs, are computed simultaneously to demonstrate the absence of

state pairs with different outputs. A product machine for comparing two FSMs can be

19

built for such a purpose as shown in Figure 2.10, which is also referred to as a MITER in

[HC98]. 1M and 2M are functionally equivalent, if, and only if, the output of the product

machine produces a “0” for all of the reachable states and input vectors. Thus, it is

required to systematically explore the state space of the product machine, also referred to

as state space traversal. However, performing such a traversal is computationally

expensive and becomes intractable if the number of state bits exceeds a few hundred.

This is known as the state space explosion problem. There are two basic techniques for

symbolic state space traversals. The transition function method [CBM89] is based on a

successive traversal of all next-state functions to determine the resulting states for each

input. The transition relation method [BCL+90] uses a characteristic function to represent

all valid state transitions of the product machine.

Figure 2.10 Product Machine for Comparing Two FSMs

20

2.2.2 Model Checking

Model checking verifies whether the implementation of a design satisfies properties

that are specified in temporal logic. The properties are classified in general as safety and

liveness properties. A safety property asserts that nothing bad will happen in the design.

Examples of safety properties are mutual exclusion (no two processes are in the critical

section simultaneously) and deadlock free (no deadlock state is reached). A liveness

property asserts that eventually something ‘good’ happens in the design. An example of a

liveness property is that a design is starvation free (eventually service will be granted to a

waiting process).

 The requirements of model checking are a model of the system, a temporal logic

framework, and a model checking procedure. FSMs are appropriate models for

representing sequential designs and are widely used to model a system. Temporal logic

systems are mainly classified as linear-time logics or branching-time logics. In Linear-

time Temporal Logic (referred to as LTL), events are described along a single

computation path. In branching-time temporal logic, the temporal operators are quantified

over the paths that are possible from a given set of states. Each type of logic has its

advantages and disadvantages and different expressive powers. Computational Tree

Logic (CTL) is the most commonly used temporal logic in model checking. The process

of model checking consists of computing the set of states that satisfies a given property in

the design and comparing the satisfying states to the initial states of the design.

CTL was first proposed by Clark and Emerson as a branching-time temporal logic

[CE81]. CTL formulae are composed of path quantifiers and temporal operators. The

21

path quantifiers are used to describe the branching structure in the computation tree.

There are two path quantifiers:

• A – for all paths,

• E – there exists a path or for some paths.

There are four basic temporal operators in CTL:

• X – next time,

• F – eventually or in the future,

• G – Always or Globally,

• U – until.

In CTL, every quantifier is followed by a temporal operator. Therefore, there are

eight basic CTL operators:

• AX and EX

• AF and EF

• AG and EG

• AU and EU

The path quantifier and the temporal operators have the following relations:

• F φ ≡ True U φ

• G φ ≡ ¬ F φ¬

• A φ ≡ ¬ E φ¬

Then, using these relations, each of the eight CTL operators can be expressed in terms

of only three operators that are EX, EG, EU. The satisfying set of states for the three

operators can be computed by the following fixpoint computation.

22

• EX φ = Pre_Image(T,φ)

• EG φ = ν Z.φ ∧ EX(Z)

• E[φ U ψ] = µ Z. ψ ∨ (φ ∧ EX(Z))

Where Pre_Image (T,φ) is a pre-image computation finding all predecessors of the

states φ in one step; µ and ν are least and greatest fixpoint operators respectively.

Notice that the pre-image computation is the basic and key operation in model checking,

and model checking is performed by a series of pre-image computations. Thus, the main

challenge of model checking is the state space explosion problem, the same as

equivalence checking.

There have been many approaches to alleviate the state space explosion problem in

model checking, such as abstraction and refinement [LPJ+96][JMH00], Bounded Model

Checking [BCCZ99], Symmetry reduction [CEJS98][MHB98], and partial-order

reduction[GW94][ABH+97].

In next chapter, the major approaches to leverage state space explosion in image

computation are reviewed. Then, two new approaches are presented: one is based on

genetic algorithms while the other one combines SAT and BDD methods.

23

CHAPTER 3

3. NEW APPROACHES FOR IMAGE COMPUTATION

3.1 Related work

Though equivalence and model checking are quite successful, we still have the state

space explosion problem to contend with. Most of the approaches mentioned before try to

improve algorithms for model checking and equivalence checking. However, image or

pre-image computation is the core operation for both equivalence and model checking.

Therefore, efficient algorithms for image and pre-image computation are going to benefit

most approaches. Image or pre-image computation work can be classified into three

categories based on the data structure they use: BDD-based, SAT-based, and hybrid-

based approaches. These three approaches are discussed in the following sections.

3.1.1 BDD-based Approach

As indicated before, a transition relation defines a many-to-many projection from the

present-state space to the next-state space. Based on this projection, the image of the

current reachable states R can be computed. If the transition relation is given in a

normal conjunctive decomposed form, the following equation can be used for image

computation.

24

N =Img(R)=
1

. . (, ,)
l

i
i

S X R TR S X S
=

⎛ ⎞′ ′∃ ∃ ∧⎜ ⎟⎜ ⎟
⎝ ⎠

∏

Another benefit of image computation on a decomposed transition relation is

progressive existential quantification. Let Q denote the variables to be quantified, which

is Q X S= ∪ and iQ denotes the set of variables that do not appear in 1 1,..., iTR TR −′ ′ . The

image computation can be performed as follows:

Img(R)= 1 1 2 2.(.(.()))l lQ TR Q TR Q TR R′ ′ ′∃ ∧ ∃ ⋅⋅⋅∃ ∧

The size of intermediate BDDs and the effectiveness of early quantification depend

heavily on the order in which BDDs are conjoined in the above equation. For example,

consider a 3-bit counter with present state variables 1 2 3, ,s s s and next state variables

1 2 3, ,s s s′ ′ ′ , where 3s and 3s′ are the most significant bits. Figure 3.1 shows the state

diagram of a 3-bit counter.

Figure 3.1 State Diagram of 3-bit Counter

25

The transition relation of the counter can be expressed as:

1 2 3(,)TR S S TR TR TR′ = ∧ ∧

where: 1 1 1()TR s s′= ≡ , 2 2 1 2()TR s s s′= ≡ ⊕ and 3 3 1 2 3(())TR s s s s′= ≡ ∧ ⊕ .

For the order as given in 1 1 2 3(, ,)TR TR TRπ , the image computation can be carried out

as

1 1 2 2 3 3() .{ .[.()]}Img R s TR s TR s TR R= ∃ ∧ ∃ ∧ ∃ ∧

Alternatively, for the order 2 3 2 1(, ,)TR TR TRπ , the image computation is

1 2 3 3 2 1() .{ [()]}Img R s s s TR TR TR R= ∃ ∧ ∧ ∧

It is seen that for order 1π , present state variables can be quantified out in the order of

3 2 1, ,s s s . While for order 2π , no variables can be smoothed out in the intermediate

computation. Therefore, order 1π is better than order 2π for image computation. So the

image computation relies on a good decomposition of the characteristic function BDDs

and a good order for the clustered terms. Finding such an order is referred to as the

“quantification schedule problem”.

The importance of the quantification schedule was first recognized by Burch et al.

[BCL91] and Touati et al. [TSL+90]. Geist et al. [GB94] proposed a simple circuit

independent heuristic algorithm, in which they ordered conjuncts by minimizing the

maximal number of state variables of the intermediate BDDs in the process of performing

the image computation. Ranjan et al. [RAP+95] proposed a successful heuristic procedure

(known as IWLS95). The algorithm begins by first ordering the bit relations and then

clustering them, and finally ordering the clusters again using the same heuristics. The

26

order of relations is chosen using four normalized factors; the number of variables that

will be quantified, the number of present state and primary input variables, the number of

next state variables that would be introduced, and the maximum BDD index of a variable

that can be quantified. After the ordering phase, the clusters are derived by repeatedly

conjoining the bit relations until the size of the clustered BDD exceeds a given threshold,

at which point a new cluster is started.

Bwolen Yang improved the IWLS95 heuristic in his thesis [Yan99] by introducing a

pre-merging phase where bit relations are initially merged pair-wise based on the sharing

of support variables and the maximum BDD size constraint. Moon et al. [MS00]

presented an ordering algorithm (known as FMCAD00) based on computing the

Bordered Block Triangular form of the dependence matrix. Their ordering algorithm

minimizes the active lifetime of variables, α . Instead of clustering ordered bit relations

in a sequential order, the bit relations are clustered according to the affinity between

them. Affinity measures the sharing of the support variables.

Chauhan et al. [CCJ+01a] extended FMCAD2000 and used combinatorial algorithms

to improve the performance (i.e. simulated annealing). They also argue in favor of using

α . All these techniques are static techniques. Subsequently, the same clusters and

ordering are used for all the image computations during symbolic analysis.

Chauhan et al. [CCJ+01b] also proposed a non-linear dynamic quantification

scheduling method by viewing the image computation as a problem of constructing an

optimal parse tree for the image set. Their “Basic” algorithm is as follows: a heuristic

score is computed for each variable in a set of variables Q to be quantified. The variable

27

with the lowest score, say q , is chosen and the two smallest BDDs in whose support set

q appears are conjoined. The overall approach is a two-phase approach combining static

and dynamic schemes. Before image computation, only as many primary input variables

as possible are quantified out using the Basic algorithm. Then, for each image

computation step, the remaining input and all present state variables are quantified out

using the Basic algorithm.

H. Jin, et al. [JKS02] proposed a fine-grain conjunction scheduling algorithm in terms

of a minimum max-cut linear arrangement. The cut whose width is minimized is related

to the number of variables active during image computation.

3.1.2 SAT based Methods

SAT is less vulnerable to memory explosion than BDDs. Recent improvements in

SAT solvers have attracted a lot of attention in the use of SAT for image or pre-image

computation.

McMillan proposed a pure SAT-based unbounded symbolic model checking

algorithm in [Mcm02]. The reachable states are represented as CNF. The transition

relation is represented as a CNF formula. He used a slightly modified SAT procedure to

perform SAT-all. Whenever a satisfied assignment is found, a blocking clause is

generated by redrawing the implication graph. The efficiency comes from the fact that a

smaller blocking clause will be generated from redrawing the implication graph. The

blocking clause is added to the CNF formula and a new search is started by backtracking

until all solutions are found.

28

In [KP03], Kang et al. also proposed a SAT based image computation algorithm for

unbounded model checking. They use the Disjunctive Normal Form (DNF) to represent

reachable states and a CNF formula for the transition relation. The blocking clause is

added to get SAT-all. Unlike the method for generating the blocking clause from

redrawing the implication graph in [Mcm02], the blocking clause is just the complement

of the current satisfying assignment. At the end of each iteration, all frontier reachable

states are minimized using ESPRESSO [Bra+web]. They report their results based on

safety properties for some benchmarks. It seems that no other improvement is

incorporated other than using ESPRESSO which may also consume more time (the time

of running ESPRESSO).

A problem with using SAT is that only one reachable state (minterm) is returned with

each successful search. Chauhan [CCK03] tried to solve the problem by enlarging the

satisfying assignment. After a satisfying assignment is found, it may contain input

variables, intermediate variables, present-state variables and next-state variables. Since

we only care about the present-state variables, all input, intermediate variables and some

present-state variables can be seen as free-variables. The bit transition functions are

analyzed to see which next-state variable can be set to a free-variable, based on the

current set of free-variables. However, since the constraints for free next-state variables

are quite strict, this method is not that efficient as seen by the experimental results

[CCK03]. In this method, a transition relation is represented in CNF format and reachable

states are represented in a DNF format.

29

3.1.3 Hybrid Approaches

Some approaches combine BDD, SAT and Automatic Test Pattern Generation

(ATPG) techniques for image computations.

In [GYA01], Gupta et al., proposed a hybrid method for image computation. BDDs

are used to represent current states and reachable states. The transition relation is

represented in CNF. A SAT solver is deployed to perform a high-level decomposition of

the search space and BDDs are used to compute all solutions below the intermediate

points in the SAT decision tree. This approach is similar to partitioned BDDs where the

SAT-solver is used to compute a disjunctive decomposition of the problem and the

decomposed sub-problems are handled by BDDs. Thus, this method still suffers the same

kind of memory problems associated with other BDD-based methods. Also, it is hard to

predict the depth of a SAT decision to make sure that the resulting BDD sub-problem

will not blow up in memory usage.

Sheng et al., [SH03], described another hybrid method that combines ATPG and SAT

for one-step pre-image computation based on equivalence cut-sets. They found that many

searches will lead to the same sub-space. By identifying the cutting set and a jump

between identical cutting sets, they will never revisit the same sub-space that has been

searched before. They named this learning technique as “success-driven learning”. Li

extended the work by combining success-driven learning with traditional conflict

learning in SAT in the same framework in [LHS04]. However, their procedure is not

complete since it only provides a one-step pre-image computation and “an efficient

30

procedure for multiple cycles is needed”, as the authors pointed out in the conclusion of

their work [SH03].

Parthasarathy, et. al. proposed an algorithm for image computation using sequential

SAT [PIWC04]. The sequential SAT problem is to find a sequence of input vectors to the

circuit, such that the value assignments are satisfied or, to prove that no such sequence

exists. This approach actually tried to combine the key advantages of ATPG and SAT

and it uses circuit structure information to derive a minimum cube of reachable states.

They also implement a two-level minimization tool to reduce the number of cubes

representing frontier-reached states. Another technique they use is similar to the blocking

clauses used in [Mcm02], called “state-space bounding”; however, their improvement is

limited.

3.1.4 Summary of Past Approaches for Image Computation

As described in the previous section, BDDs have been used extensively for image and

pre-image computations. The key issues of BDD-based implementations of image (pre-

image) computations include modeling a FSM as a characteristic function and

representing it as a BDD. However, the size of the BDD is very sensitive to the order of

the variable which often leads to memory explosion for some functions. Construction of a

monolithic characteristic function BDD is typically impractical for circuits that the

number of state bits exceeds a few hundred or circuits contains some functions, e.g.

multiplier, whose sizes are exponential with any given order. Different variable ordering

and reordering algorithms have been proposed to address this problem. Also, instead of

31

building one single BDD, partitioned BDDs and conjunction scheduling may be deployed

to alleviate the memory problem. Even with these approaches, the BDD-based approach

still has memory explosion problems.

Another known method, which is less vulnerable to memory explosion, is the use of

SAT solver. In recent years, several efficient SAT solvers have been developed, such as

Chaff [Mal+web], Grasp [Mar+web] and Berkmin [GN02]. These SAT solvers employ

conflict learning [MS96b] and non-chronological backtracking [MS96a] to speed up the

search procedure. However, these SAT solvers are targeted to find a single solution

(minterm). A minterm is a cube that contains every variable in its support set. Image

computation requires capturing all satisfiable solutions. A naïve way of finding all

satisfiable solutions is repeatedly calling the SAT solver after finding a solution. The

solutions found previously are added as blocking clauses to prevent the SAT solver from

finding the same solution again; however, the above method is very inefficient. There are

two aspects to improve efficiency. One aspect is to narrow down the search space and the

other is to find a solution that covers more than one minterm.

3.2 A Genetic Algorithm Approach for the BDD-based Method

Genetic Algorithms (GA) have been successfully used in the BDD reordering

[DBG95] and approximate reachability analysis [TD01]. Genetic algorithms generally

generate better results as compared to other methods but require longer runtimes. For the

conjunctive scheduling problem, the order will be computed only once and better

32

ordering can reduce the image computation time dramatically. Based on the above

factors, a conjunctive scheduling approach based on genetic algorithms is developed.

A genetic algorithm emulates the metaphor of natural biological evolution to solve

optimization problems. Genetic algorithms generally utilize the following steps. a)

Initialize population: find a collection of potential solutions to the problem, also called

current population. b) Create offspring: produce a new population through the application

of genetic operations on selected members of the current generation. c) Evaluate fitness:

evaluate the quality of the solution in the new generation. d) Apply selection: select

solutions that will survive to become parents of the next generation based on their quality

of solution to the problem. In this way, it is more likely that desirable characteristics are

inherited by the offspring solutions. e) This cycle repeats until some threshold or stopping

criterion is met.

The detailed description for the GA is given in the following sections.

3.2.1 GA Based Ordering Algorithm

3.2.1.1 Problem Representation and Initial Population

The GA starts with mapping a problem into a set of chromosome representations used

within GA. Since we are interested in the order of functions and their support set, a

preprocessing step converts the information into a chromosome. Considering the above 3-

bit counter example, it is encoded as shown in Figure 3.2:

33

Figure 3.2 A Chromosome for 3-bit Counter

Any ordered set of functions could be a solution, so an initial population is generated

by randomly mutating the order of the genes in the chromosome.

3.2.1.2 Fitness function

The fitness function discussed here is based on the dependency matrix of the

chromosome. The dependence matrix defined in [MS00] is used for an ordered set of

functions. The dependence matrix of a set of m single-output functions (mff ,...,1)

depending on n variables 1,..., nx x is a matrix D with m rows (corresponding to m

functions) and n columns (corresponding to n variables) such that 1, =jid if function if

depends on variable jx , and 0, =jid otherwise. The dependency matrix of a chromosome

is defined in the same way. The dependency matrix of above chromosome is shown in

Figure 3.3.

34

Figure 3.3 Dependency Matrix for a Chromosome

The size of a BDD depends on the number of variables and the functions it represents.

Smaller BDDs usually can be produced by conjoining two product terms that have a

similar support set because few new variables are introduced. Based on the above

observation, the normalized active lifetime [MS00] of the variables in matrix D is given

by

mn

lh
n

i
jj

⋅

+−
=
∑

=1

)1(
α

where)(jj hl is the smallest (largest) index i in column j such that 1, =jid

respectively.

j jh l− gives a quantity measure on sharing the variable in column j stays. The

normalized active lifetime measures how closely the product terms stay based on their

support variables. The objective of ordering becomes to lower the normalized average

active lifetime for a given matrix by manipulating the order of columns.

Because the objective of ordering is to minimize α , α is used as the fitness function.

 1s 2s 3s

1TR 1
2TR 1 1
3TR 1 1 1

35

3.2.1.3 Selection

The selection is performed by linear ranking selection (i.e., the probability that one

element chosen is proportional to its fitness). The size of the population is constant after

each generation. Additionally, some of the best elements of the old population are

inherited in the new generation. This strategy guarantees that the best element never gets

lost and a fast convergence is obtained. Genetic algorithm practice has shown that this

method is usually advantageous [Dr98].

3.2.1.4 Genetic Operators

Two genetic operators are used in the algorithm: Partially Matched Crossover (PMX)

as first described in [GL85] and a random Mutation (MUT).

PMX generates two children from two parents. The parents are selected by the

method described above. The operator chooses two cut positions at random. Note that a

simple exchange of the parts between the cut positions would often produce invalid

solutions. A validation procedure has to be executed after exchange. The detailed

procedure for PMX follows.

The children are constructed by choosing the part between the cut positions from one

parent and preserving the position and order of as many variables as possible from the

second parent. For example, 1 (1,2,3,4,5)p π= and 2 (3,2,4,1,5)p π= are the parents

while 1 2i = and 2 4i = are the two cut positions. The resulting children before the

application of the validation procedure are 1 (1,2,4,1,5)c π′ = and 2 (3, 2,3,4,5)c π′ = . The

validation procedure goes through the elements between the cut positions and restores the

36

ordering. This results in the two valid children 1 (1,2, 4,3,5)c π= and 2 (3, 2,1, 4,5)c π= .

This procedure is shown in Figure 3.4.

Figure 3.4 PMX

MUT selects a parent by the method described above and randomly chooses two

positions. Two genes at these two positions are exchanged, like Figure 3.5 shows.

Figure 3.5 MUT

3.2.1.5 Algorithm

Our genetic algorithm is outlined as follows:

1. The initial population is generated using the original order as the first individual

and by applying MUT to create more elements.

2. Genetic operators are selected randomly according to a given probability. The

selected operator is applied to the selected parent (MUT) or parents (PMX). The

better half of the population is inherited in each iteration without modification.

3. The new generation is updated according to their fitness.

37

4. The algorithm stops if no improvement is obtained for 50 iterations.

The genetic algorithm routine is shown in Figure 3.6.

Figure 3.6 Genetic Algorithm Routine

3.2.2 Affinity Based Clustering Algorithm

The ordering algorithm described above rearranges product terms so that product

terms sharing more variables stay as closely together as possible. The next step is

clustering some of the small product terms into a single big one while the BBD size of

the clustered product terms is within a reasonable threshold. The motivation for

clustering is to reduce iterations and improve efficiency in computation.

One naive way of clustering is sequential clustering. Starting from an ordered list of

product terms obtained from the ordering step, one continuously merges product terms

sequentially until a given threshold is reached. The merged product terms are set aside as

the first element of a cluster. The process is then repeated on the remainder of the list

[BCL91].

Genetic algorithm(){
Generate_initial_population;
Update_population;
do{

for(each child i){
j =linear_ranking_selection();

randomly_select_method;
case MUT: child(i) = MUT(parent j);
case PMX: k = linear_ranking_selection();
child(i , 1i +) = MUT(parent j , k);

 }
}

}

38

The sequential approach may lead to suboptimal results because the sharing of

variables is not considered in the conjunction. The dependency matrix defines the

similarity of support variables of an ordered set of functions. Affinity defines the

similarity of support sets of two functions. Affinity is defined as the following [MS00]:

 Let id be the i-th row of the dependency matrix. Let id be the length (number of

non-zero entries) of row vector id . Finally, let ji dd × designate the inner product of

id and jd . The affinity, ijβ of vector id and jd is defined as:

ji

ji
ij

dd

dd

+

×
=β

The affinity based clustering algorithm is now discussed. The affinities for pairs of

adjacent product terms are computed as above, and then the pair with the highest affinity

is merged. As in the sequential approach, merging is accepted only if the resulting BDD

size does not exceed the cluster threshold size. If the threshold is exceeded, a barrier is

introduced between the two terms. The process is then recursively applied to the two

subsets of the rows above and below the barrier. If the size of the conjunction BDD is

below the threshold, the algorithm computes the affinity for the new function and its

neighbors and then selects a new pair with the highest affinity. The terminal case of the

recursion occurs when only one function is left.

3.2.3 Ordering for Image Computation

As indicated before, a good conjunctive decomposition offers a good starting point

for image computation. Early quantification could be employed to reduce the size of the

39

BDD by quantifying away variables in its support set but not the support set of future

image computation steps.

To get a good order for early quantification, we can use the same technique

introduced before with a slight change on the fitness function.

3.2.3.1 Fitness function for image computation

A fitness function for image computation to find a good order for early quantification

is needed. In [MS00] and [CCJ+01a], both argue in favor of using active lifetime, α .

However, it is enough to just consider active lifetime. As an example, consider the 3-bit

counter given before and two dependency matrices with orders of 1 1 2 3(, ,)TR TR TRπ and

2 3 2 1(, ,)TR TR TRπ as shown in Figure 3.7.

Figure 3.7 Dependency Matrices for Two Chromosomes

From the example, we can see that both orders have the same active lifetime,
1πα =

2/3,
2πα = 2/3. In the image computation, as we showed before, order 1π is better than

order 2π .

Based on above observations, another measure, named as normalized total lifetime

[MS00], is defined as

 1s 2s 3s

1TR 1

2TR 1 1

3TR 1 1 1

 1s 2s 3s

1TR 1 1 1

2TR 1 1

3TR 1

40

1
(1)

n

j
i

m l

n m
λ =

− +
=

⋅

∑

The normalized total lifetime for the above two chromosomes are
1πλ = 2/3,

2πλ =1

respectively. Order 1π is better than order 2π because it has a smaller total lifetime. The

total lifetime λ and active lifetime α are not independent. A better λ could also result

in a better α .

An advantage of the GA algorithm is that we can minimize total lifetime α and

active lifetime λ at the same time. The fitness function we use includes these two

parameters, shown as follows:

()iC π = 0 1a aλ α+

where iπ is a permutation of transition relations and 0 1,a a are weights attached to

two time parameters, 0 10 , 1 a a≤ ≤ and 0 1 1a a+ = . As indicated before, the total lifetime

λ and active lifetime α are not independent, but they do have different impacts in the

results. The total lifetime tries to pull all terms close to the bottom of the matrix while the

active lifetime tries to pull all terms closely based on the support set. Thus, a tradeoff

between the two parameters is needed based on 0 1,a a . Experiment result shows that

0 1 0.5a a= = achieves the best results.

3.2.4 Experimental results

In order to evaluate the GA approach, we ran the conjunctive decomposition

algorithm and then applied it to FSM traversal. The benchmarks are from the ISCAS’89

41

and LGSYNTH’91 suites. The algorithm is implemented using the CUDD BDD package

[Som+web]. All experiments are carried out on a 733MHz HP PC running cygwin under

Windows XP with 192MB of main memory. The following figures show the dependency

matrix before (Figure 3.8) and after (Figure 3.9) GA based ordering algorithm for the

benchmark mm9b. The variables on the right side of Figure 3.8 form two triangles while

only one triangle for the corresponding variables in Figure 3.9. With one triangle in

Figure 3.9, all the variables at the bottom of triangle can be quantified out as the image

computation carried on from bottom up. With two triangles, the variables at the lower

triangle can not be quantified out until the upper triangle is reach. Thus, the order in

Figure 3.9 will definitely produce a better result than the order given in Figure 3.8 in

image computation.

42

Support Variables

Figure 3.8 Dependency Matrix Before Ordering

Support Variables

Figure 3.9 Dependency Matrix After Ordering

B
it Functions

B
it Functions

43

The GA approach is compared with the best known FMCAD00 approach. Dynamic

BDD variable reordering is enabled in both approaches. A time limit of 7200 seconds is

used. A threshold, 5000, is set to limit the number of nodes for each partitioned BDD.

The two parameters measured are the number of clusters (in the column labeled

“clusters”) and the total number of BDD nodes (in the column labeled nodes). Shared

nodes among various clusters only count once. Experimental results given in Table 3.1

shows that our approach improved the memory performance as compared with

FMCAD00 in most test benchmarks.

Table 3.1 Genetic Result on Image Computation

Circuits FMCAD00 GA Improvement

 Time(s) peak
nodes(KB) Time(s) peak

nodes(KB) on nodes

sbc 4.3 12.9 10.5 16.9 -31%
clma 24.7 142.4 137 32.7 77%
clmb 30.6 141.6 137 32.7 76%
mm9a 2.8 29.4 5.6 10.2 65%
mm9b 55.4 702 5.57 17.1 97%
mm30a 21.8 268.3 113 106.4 60%
bigkey 88.8 34.7 1066 105.6 -204%
s420.1 19.7 0.673 11 0.642 -4%
s1512 641.6 121 371 65.9 45%
s1269 1267 1743 2669 2079 -19%
s4863 242.5 419.5 6996 1014 -141%
s3271 Time out 11256* 2758 686.9 93%

Average 199 1239 1189 347 9%

44

3.3 A Hybrid Method

Compared to BDD-based methods, SAT techniques do not have memory blow-up

problems. However, using current SAT solvers to find all satisfiable solutions is time

consuming. Thus, narrowing the search space to make the process faster is critical to pre-

image computation. The method presented here to narrow down the search space is to use

a BDD-based method to find upper and lower bounds.

Because BDDs can not handle image computation for large digital designs since

memory explosion occurs, researchers are motivated to investigate an approximation

technique that can be used to estimate reachable states. Past research shows that

approximate image computation can be much faster then exact image computation using

BDDs [Cho95][TD01].

3.3.1 Narrowing Down the Search Space

Figure 3.10 shows the basic idea of narrowing down the search space. It consists of

three parts. One is the lower-bound which is obtained from BDD-based under-

approximation pre-image computations. Another part is the upper-bound which is

obtained from BDD-based over-approximation pre-image computations. BDDs is used to

represent lower and upper bound sets of states. The remaining portion is found by

invoking a SAT solver. The upper and lower bound BDDs will be read into the SAT

solver and used as boundaries. Here a BDD bounding technique described in [GYA01] is

used. It works as follows: whenever a state variable value is set or implied in SAT, the

intersection of the partial assignment with the given over (under) BDDs is checked. If the

45

intersection is indeed non-null, the SAT procedure can proceed forward. Otherwise it

must backtrack, since no solution consistent with the conjunctions can be found under

this sub-tree.

Figure 3.10 Narrowing Search Space

The overall algorithm is shown in Figure 3.11. While the circuit netlist is parsed,

three types of transition relations are constructed. One is the exact transition relation in

CNF form. One is the over-approximation transition relation (OverBdd) in BDD form

and another one is the under-approximation transition relation (underBdd) in BDD form.

These three types of TRs are supplied to the preImage() routine. Two BDD boundaries,

Over and under, are calculated. These two boundaries, together with the transition

relation in CNF are sent to a SAT solver to get the remaining portion of the reachable

states (remaining). The overall frontier states are the sum of under and remaining.

Besides the over- and under- BDD bounding, there is also a third type of bounding in

the SAT solver. Whenever a satisfiable assignment is found, instead of adding a blocking

clause as proposed in [Mcm02][KP03], the assignment is added to a BDD that records

all satisfiable solutions found so far (called remaining) and continue to search until all

satisfiable solutions are found. By implementing BDD bounding with the remaining

46

structure, the same solutions found previously can not be searched again. BDD bounding

helps early backtrack in the SAT solver and thus speeds up the search process.

Figure 3.11 Pre-image Computation Procedure

Two different methods for upper and lower approximation are tried. One method is

given by CUDD, which extracts the dense subset of given BDDs. Another way is the

algorithm described in [TD01]. Both methods resulted in similar results. To show the

effect of approximation on narrowing down the search space, the result of the search

space for the pre-image computation of benchmark s1269 is shown in Table 3.2. The

property checked is the liveness property (EG(p) where p is a conjunction of 8-bit state

variables in this example). This type of property specifies that there exists a path that the

property holds in every state along the path.

In Table 3.2, column 1 provides the depth of the pre-image computation. It reaches to

a fixed point in step 8. In column 2 and 3, the number of over-approximation states and

preImage(S’, CNF_TR, overBdd, underBdd) {
 //get the initial states of formula
 frontier=get_intial_states();
 while(frontier!=NULL){
 //calculate upper bound

(). . (, ,)over S X S overBdd S X S′ ′ ′= ∃ ∃ ∧ ;
 //calculate lower bound

(). . (, ,)under S X S underBdd S X S′ ′ ′= ∃ ∃ ∧
 //calling SAT for the rest
 remaining = zChaff_ALL(S’, CNF_TR,
over, under);
 //frontier is the combination of under
and exact
 frontier = exact + remaining;
 }
}

47

the number of bounding occurrences for the upper-boundary is provided. Columns 4 and

5 are the number of under-approximation states and the number of bounding occurrences

for the lower-boundary. Column 6 is the number of exact reachable states. Column 7

provides the number of bounding running to the same state reached before. Detailed

results of this work are provided in [LTS06].

Table 3.2 Upper/Under Bound for S1269

Depth Over (states) B1 Under (states) B2 Exact (states) B3

1 6.872e+10 2 1.762e+09 10 5.369e+10 14
2 5.369e+10 7 8.808e+08 6 4.724e+10 110
3 4.724e+10 14 5.033e+08 7 4.456e+10 154
4 4.456e+10 11 3.460e+08 11 4.349e+10 313
5 4.349e+10 17 2.831e+08 4 4.308e+10 354
6 4.308e+10 21 2.595e+08 13 4.295e+10 460
7 4.295e+10 23 2.517e+08 9 4.292e+10 488
8 4.292e+10 21 2.509e+08 9 4.292e+10 497

3.3.2 Modified SAT Procedure

Modern SAT solvers, like zChaff, Grasp, and Berkmin, are targeted to find a single

solution (minterm). They quit after a successful search. zChaff is one of the most popular

SAT-solvers. The SAT solver used in this dissertation is a modified form of zChaff.

zChaff uses a two-literal watch strategy to speed up the implication and backtrack

functions in the search process. Thus, it will assign every free variable until no such

variable is available. So a satisfiable assignment found by zChaff is always a minterm. It

is very inefficient to find all satisfiable solutions using zChaff. To differentiate zChaff

from our modified version, the modified zChaff is referred to as zChaff_ALL. The

48

modifications are targeted to find a satisfiable solution that contains as many don’t cares

as possible (covers more than one minterm). In addition to the BDD bounding techniques

mentioned above, two other modifications are referred to as early detection and

expansion. The overall algorithm for zChaff_ALL is shown in Figure 3.12.

Figure 3.12 zChaff_ALL Procedure

zChaff-ALL(){
 while(1) {
 //Check if current partial assignment all ready satisfy
 // every clause
 if(early_detection())
 return SAT;
 //Bounding with over
 if(over_bounding(over))
 backtrack();
 //Bounding with under
 if(under_bounding (under))
 backtrack();
 //expansion
 expansion ();
 if (decide_next_branch()) { // Branching
 //Propagate implications
 while(deduce()==conflict) {
 blevel = analyse_conflict(); // Learning
 if (blevel == 0)
 return UNSAT;
 else
 //Non-chronological backtrack
 backtrack(blevel);
 }
 }
 else
 // no branch means all vars have been assigned
 return SAT;
 }
}

49

3.3.2.1 Early Detection

The idea for early detection is quite simple. There are many cases where a partial

assignment has already made every clause in the Boolean function satisfied. If every

clause is satisfiable, the partial assignment is a satisfiable solution for the Boolean

function. All free variables can be seen as don’t cares. Early detection will not only

terminate the SAT procedure earlier but also avoid much of the unnecessary backtrack

steps. The early detection feature works as follows: when a new variable is assigned and

all the implication clauses are handled, a check is made to determine if every clause is

satisfied by the current assignment. If the result is affirmative, a partial assignment with

all other free variables as don’t cares is made; if not, the technique continues as before.

Here, the order of the decision is very important since it may be possible to find

assignments with more don’t cares than with good orders. The principle of giving higher

priority to input variables, next-state variables, and intermediate variables are tested

respectively. Experiments show that giving higher priority to intermediate variables

usually produces more don’t cares in a partial assignment on average.

3.3.2.2 Expansion

A further improvement can be accomplished by expanding a current satisfiable

assignment to make it contain more don’t cares. The condition that the satisfiable

assignment can be safely expanded is provided below.

Given a set of states (named N) in the next-state variable domain, pre-image

computation aims at finding a set of states (named P) in the present-state variable domain

such that N is reachable from P. The support set of N contains next-state variables, in

50

most cases, not all of them. In other words, the next-state variables that are not in the

support set of N can be viewed as free variables.

As was mentioned before, the transition relation is usually produced by a conjunction

of bit transition relations. Each bit transition relation (iTR) consists of one next-state

variable (is′), some present-state variables, and the input variables. The support of iTR is

represented as supp(iTR).

Suppose supp(N)={ ,...,i js s′ ′ } is used to represent the support set of state set N. Each

next state variable is′ corresponds to one bit transition relation (iTR) and the value of is′

is specified only by iTR which is then determined by the support set of iTR , supp(iTR).

In other words, the variables that are not in the support set of the bit transition relation

iTR will not change the value of next state variable is′ and can be set as don’t cares. If we

expand this conclusion to all the next state variables in the support set of N. The

following observation can be concluded.

Observation: Variables that are not in the support sets of all bit transition relations

which correspond to the next-state variables in the support set of state sets N can be

safely set to don’t cares.

Based on the above observation, our expansion works as follows. The don’t care set

of the frontier for each iteration will be calculated before calling the SAT solver. The

don’t care set here only includes present state variables. The don’t care set is supplied to

a SAT solver. When a satisfiable assignment is found, it may contain some variables in

51

the don’t care set but is assigned a specific value by the SAT solver. It is safe to set those

variables to don’t cares.

3.3.3 Results of Extended Image Computation Approach

In order to evaluate our approach, we ran model checking experiments on

benchmarks from the ISCAS’89 benchmark set. The BDD package used is the CUDD

BDD package [Som+web]. All experiments are carried out on a 2.6GHz PC running

Linux with 1GB of main memory.

Our approach is compared with VIS [Bra+web*] using the EG type property

checking. The property has the form of EG(p), where p is a conjunction or disjunction of

a group of state wires. The group size ranges from 1 to 8. A size of 1 normally refers to a

single control wire such as reset while a size of 8 corresponds to an 8-bit bus. All

parameters in VIS, such as the image computation method, are set as defaults. Dynamic

BDD variable reordering is enabled in both approaches. A time limit of 3600 seconds and

a memory limit of 850MB are used. The two parameters measured are running time and

memory utilization. Table 3.3 shows the results.

The first column denotes the benchmark circuit name. The second, third, and fourth

columns provide the number of inputs, outputs, and D flip-flops in each circuit. The fifth

and sixth columns represent the execution times and memory required by the BDD-based

model checking tool, VIS, and the seventh column represents those by the proposed

algorithm. The hyphen ‘-’ means that the algorithm is halted because it exceeds time or

memory limits. The table shows that the proposed algorithm can check more circuits than

52

the BDD-based one. In the cases that the BDD-based tools fail to respond, a memory

overflow is indicated.

Table 3.3 Comparison of Property Checking

VIS zChaff-ALL

Bench In Out DFF Time (s) Mem (MB) Time(s) Mem(MB)
S298 3 6 14 0 4.7 0.01 4.7
S526 3 6 21 0.02 4.9 0.69 4.8
S1512 27 21 57 32.7 54.7 0.04 54.0
S1269 18 10 37 3600 - 17.9 25.0
S1423 17 5 74 - 850 10.2 5.7
S5378 35 49 179 - 850 16.5 6.5
S6669 83 55 239 - 850 70.5 27.5
S3384 43 26 104 - 850 45.3 6.2

S9234.1 36 39 211 - 850 18.7 12.2
S9234 19 22 228 - 850 200 12.4

In this section, we present an approach that combines BDD and SAT solvers for pre-

image computation. BDD-based over- and under-approximation pre-image computation

is used before the SAT solver is invoked to narrow down the search space by computing

the upper and lower boundaries for the reachable states. The SAT solver is used to

compute the remaining portion of the reachable states. A BDD-based technique is used

for upper and lower bounding and to speed-up the search process. Two more techniques

are used to compute a satisfiable solution that contains as many don’t cares as possible.

The experimental results show that our approach performs well.

3.4 Summary of Image Computation

To date, we have extended BDD-based image computation techniques with genetic

algorithms [LTS04 LT05]. A “two-step” algorithm for representing a large function as a

53

conjunctive decomposition of BDDs is described where a Genetic Algorithm (GA)

approach for ordering individual bit functions is given followed by an affinity-based

clustering technique. Applications in image computations were discussed in [LT05].

While developing the image computation algorithm, we noticed the limitations of BDDs

and advantages of SAT solvers; we then present a new way to combine BDD- and SAT-

based methods for image computation [LTS06]. A BDD-based approximation method is

used to calculate the over- and under- estimated boundaries of the reachable states. A

SAT solver is used to find the remaining states. The SAT solver is enhanced by

techniques we call “early detection” and “expansion” to find a satisfiable assignment

containing more don’t cares.

The research presented in this chapter focused on formal techniques for hardware

verification. While some formal verification methods are beginning to appear in

commercial tools, most formal methods are limited to some types of ICs. Formal

verification itself cannot solely accomplish the validation task. Also, simulation is still

the dominant tool in industry and the question of combining these two different

approaches together to serve the validation purpose has attracted a lot of research

attention recently. In the following chapters, we will focus on Integrated Design

Validation (IDV) system. All the methods discussed so far are integrated into the IDV

flow.

54

CHAPTER 4

4. INTEGRATED DESIGN VALIDATION SYSTEM

We are currently involved in a research project that is developing an integrated

approach to design validation that takes advantage of current technology in the areas of

simulation, and formal verification, resulting in a practical verification engine with

reasonable runtime, called the Integrated Design Validation system (IDV).

This research utilizes existing simulation, verification techniques, new methods such

as those described in Chapter 3, and concentrates on their efficient integration to provide

a comprehensive tool for design specification compliance. Recent results in all areas of

verification [GDP99, MTS04, LTS04], and simulation [Szy90, KS03] are being used to

provide a design compliance tool that will be extremely effective and has the potential to

“out-perform” the current “state-of-the-art” methods focused upon a single methodology.

The focus in the IDV system is in the development of a circuit complexity analyzer and

partitioning tool based upon design hierarchy. Also, the development of coverage

analysis methods that compute a degree of design validation and invoke methods for

intelligently updating the partitioning tool for further validation iterations is crucial.

There have been recent attempts to tightly combine two different verification tools

[BS98, HKWF02], most notably SAT solvers and BDD approaches for equivalence

55

checking; however, no overall verification/simulation engine with significant analysis

before design validation occurs has been produced.

4.1 System Description

The overall structure of the prototype IDV system is shown in the block diagram of

Figure 4.1. A primary focus for this project is the complexity analyzer, partitioning, and

coverage analyzer blocks, to determine the most effective use of formal verification.

Figure 4.1 Architecture of the Integrated Design Validation System

4.1.1 Complexity Analyzer

The complexity analyzer estimates the complexity of an RTL or netlist design based

on existing methods for controller/datapath extraction. Integration with the partitioner is

56

crucial for this function. The extracted control and datapath portions of the circuitry are

being analyzed for the applicability of various techniques based upon known existing

strengths of verification and simulation tools. As an example, a portion of a datapath

may be supplied as input to simulator or an equivalence checking tool.

Given different constraints, different tools can be applied to verify the constraints.

The complex analyzer is also utilized for such purpose. For example, constraints

expressed in simple trajectory formula can be verified via Symbolic Trajectory

Evaluation (STE) or property checking tools such as Verification Interacting with

Synthesis (VIS). STE has high capability in term of number of flip-flops that a circuit

contains.

4.1.2 Design Partitioning

One of the biggest hurdles in applying formal techniques is to correctly identify target

circuits. Although a lot of work has been accomplished with respect to partitioning for

logic and physical level synthesis, there is not as much for design validation and

simulation. Currently designer-defined hierarchy is utilized for partitioning. Designers

typically design the system with multiple RTL blocks (these blocks usually mirror the

floor-planned design) in order to apply modern design tools. Methods that exploit such an

inherent design hierarchy have been used in the past such as the jMocha tool [AA+01].

Based on the design hierarchy, a process-module (PM) graph which describes the

hierarchy of the design is built. Each node in the graph represents a

57

component/module/process and edge corresponding to the interconnections of these

components. The PM graph is utilized to partition the design.

4.1.3 Coverage Analysis

Some work has been done in terms of coverage analysis particularly with respect to

evaluating the effectiveness of simulation-based validation. An overview of design

validation coverage methods is given in [TK01] that classify existing metrics in terms of

code coverage, metrics based on circuit structure, metrics defined on finite state

machines, functional coverage, error models, observability, and metrics applied to

specifications. These existing metrics will be used as a starting point for the development

of the coverage analyzer. Not much work has been accomplished in terms of combining

formal verification with simulation and computing the overall coverage.

4.1.4 Verification and Simulation Tools Comprising IDV

Our goal is to integrate the tools and make them complement each other. Various

tools have been developed for formal verification and simulation. Choosing the right

tools will set up the baseline for the success of the IDV system. In the following we

describe the tools that are selected, developed, or still under development.

4.1.4.1 Symbolic Trajectory Evaluation

Symbolic Trajectory Evaluation (STE) [HS97] is a model checking approach

designed to verify circuits with very large state spaces. STE is more sensitive to the

58

property being checked instead of the size of the circuit. The STE package selected is

from the Intel Strategic Research Lab, Forte. It also supports a simple yet effective

compositional theory. Two important properties of STE are:

a. It is suitable for verifying designs of circuits at the gate or switch level

b. STE provides accurate models of timing, which is reflected in the types of

properties checked for.

STE originated from the idea of using multi-level simulation and ternary-valued

symbolic simulation. It is a formal verification method that is close to traditional

simulation. One of the distinguishing features of STE is that the state space is represented

as a lattice. The partial order of the lattice represents an information ordering or

abstraction relation between states. The higher up we go in the information ordering, the

more information we have. The computational advantage of this is that, given the

appropriate logical framework, if a property is proved to hold in a state in the lattice, it

holds for all states above it in the lattice. Another important fact is that circuits have

natural representations as lattices, and the use of the information ordering allows us to

easily abstract out the necessary information for property checking.

The properties to be checked are represented as Temporal Logic (TL). TL is usually

propositional or first-order logic augmented with temporal modal operators that allow

reasoning about how the truth values of assertions change over time. TL can express

safety and liveness properties, such as “property p holds at all times” or “if p holds at

some instant in time, q must eventually hold at some later time.” Properties of this sort

can be employed to specify desired properties of systems, i.e. in a traffic signal control

59

system, “the signals at both directions should never be green at the same time” and “the

signal at one direction will eventually be green”.

The properties that STE focuses on are a restricted TL that offers only the next-time

operator [SB95], which is called a trajectory formula. A trajectory assertion has the form

A C, where A and C are trajectory formulas, referred to as antecedents and

consequences respectively. Informally, a trajectory assertion holds for a circuit M iff each

sequence of states of M that satisfy the antecedent A also satisfies the consequent C.

Typically, A specifies constraints on how the inputs of a circuit are driven, while C

asserts the expected results on the output nodes [KG99]. For example, the formula

((read_enable=1 ∧ addr) (out = Next(M[addr])) asserts that if signal read_enable is

asserted and address is specified, the output of memory is the value stored at address in

the next cycle.

4.1.4.2 Verification Interacting with Synthesis (VIS)

VIS is a verification package developed jointly at the University of California at

Berkeley, the University of Colorado at Boulder, and more recently, at the University of

Texas, Austin [Bra+web*]. VIS is able to synthesize finite state systems and/or verify

properties of such systems, which have been specified hierarchically as a collection of

interacting finite state machines. VIS is built upon the BDD package developed by the

University of Colorado at Boulder, referred to as CUDD [Som+web]. VIS and CUDD

have been used extensively in academia for model checking.

60

STE and VIS are both capable of model checking. They differ in the following

aspects.

Properties: VIS can verify more properties since it uses CTL while the trajectory

formula supported by STE is less expressive.

Capacity: STE can handle bigger circuits in terms of latches and bit cells (over 1000

latches). VIS usually exceeds memory capacity when there are more than 200 latches.

STE trades expression power for capacity.

BDD Memory: The underlying engine for VIS is compact symbolic representation of

the circuit model in terms of BDDs. The underlying engine for STE is symbolic

simulation where the size of BDDs is related more to the properties instead of circuit

model.

Application: Based on above differences, we can conclude that VIS is better in

control dominated designs while STE is more suitable for memory dominated

circuits. Actually, STE has been used extensively in property checking for memory.

4.1.4.3 Speed5

Speed5 is a Tegas-like, 5-value multi-modal, assignable-delay, five-valued simulator

[Szy90] [KS03]. It performs gate-level and functional-level simulation. Nominal and

critical timing (min/max) delays are used in simulation. Speed5 has fault simulation

ability by fault generation and insertion into the simulated circuit. Fault models that are

provided are: stuck-at, shorts, transient fault models, and multiple faults. Performance is

improved by parallel simulation of faults where a specified number of faults are

61

simulated in one pass. The number of faults per simulation is determined from

indistinguishable fault classes, fault blocking characteristics and the desired diagnostic

resolution.

4.1.4.4 SMU Equivalence Checker

The equivalence checker developed in our group (SMU-EQ) [LTS04] performs quite

well on large designs. The core part of the equivalence checking tools is image

computation where conjunctive scheduling is very important to reduce the BDD size of

intermediate computations. In our approach, a genetic-based approach is developed to

minimize total lifetime and active lifetime at the same time. Experimental results show

that SMU-EQ is very effective. We also incorporated a SAT engine into our equivalence

checker to make it more robust and to handle more designs that uses the ideas of “early

detection” and “expansion” described in the previous chapter.

4.1.4.5 SMU Functional Simulator

A functional simulator is also under the developing stage in our group which is a

critical part of the system-level simulation portion of IDV. At the system level, we are

interested in the interconnection of modules versus the internal function of separate

modules. The functionalities of these modules are fully verified by VIS or STE or

simulated by Speed5 before they are integrated into the functional simulator.

A more detailed introduction of IDV can be found in [LTS05].

62

4.2 Validation Flow with IDV

The IDV system is a constraint-based system. Constraints specify the system’s

operation such as what validation method will be used for each design module, the

properties to be verified, and so on.

Figure 4.2 shows the validation flow chart for the IDV system. The circuit is parsed

as a netlist either in blif or structural RTL format. The next block is the partitioning

portion. The design hierarchy information are utilized for partitioning. This is reasonable

since most current designs are created in a hierarchical format. After partitioning, bases

on the result of complexity analysis, all modules and corresponding constraints are

supplied as input to appropriate validation engines for verification and/or simulation. The

general rules are listed as follows:

a. VIS deals with complex properties presented in CTL and control logic.

b. STE deals with simple TL and control logic, and also all properties related to

memory

c. SMU-EQ deals with datapaths that do not cause memory explosion.

d. Speed5 simulator deals with multipliers or other complex components specified by

the designers

e. Functional simulation/system-level simulation is used as the last step for the

interconnections of the components

After the sub-modules are validated separately, a functional simulator will be applied

to simulate the system but the main focus will be on system interconnections. The

coverage analysis will provide a degree of confidence of the design validation. When the

63

coverage value is low, the component that is simulated in previously stage is further

partitioned to smaller modules. The coverage for further partitioned component can be

improved with formal verification method or more simulation. The increased coverage on

component also improves the coverage for the design. The tool continuously decreases

the granularity of the partitions until the desired coverage goal for validation is reached.

Verilog/BLIF

Partitioning

Constraints for
Sub-blocks

Validation of
sub-block

Constraints for
Interconnections

Functional
Simulator

Coverage
analysis

Good Enough?
no

yes

Terminate

Complexity
Analysis

Figure 4.2 Validation Flow of IDV System

4.3 IDV Implementation Architecture

The software architecture of IDV is shown in Figure 4.3. It consists of three blocks: a

shell-like command line input module, a coordinator, and several core engines. The shell-

64

like command line input module accepts commands and sends them to the coordinator.

An example of the shell-like command line input is shown in Figure 4.4. The coordinator

accepts commands from the command input module, translates them to a format that the

core engines can recognize, sends them to the core engines, and finally collects the results

and displays them.

Figure 4.3 Architecture of IDV System

%Unix _prompt% IDV
IDV>read_blif moduleA.blif moduleB.blif moduleC.blif
Info: three modules (A,B,C) has been defined, top level is A;
IDV>set_method –module A VIS(parameter for VIS)
IDV>set_method –module B Forte(parameter for Forte)
IDV>set_method –module C Sim(parameter for Sim)
IDV>validate_submodule –module A
IDV>validate_submodule –module B
IDV>validate_submodule –module C
IDV>read_constraint –Interconnection
IDV>validate_interconnection
IDV>quit

%Unix _prompt%

Figure 4.4 Command Line Input Example

65

CHAPTER 5

5. VERIFICATION RESULTS

5.1 Types of Digital Circuits Suitable for IDV

As described in previous chapters formal verification methods work well for some

“types” of circuits. Also, different tools are suitable for different types of circuits. There

is no single tool that can handle designs containing different subcircuits. The purpose of

IDV is to develop an integrated environment that applies appropriate tools for suitable

subcircuits. Thus, the whole design can be validated in one framework.

The circuit types that are especially suitable for IDV are those that contain datapaths,

controllers, memory units, and interfaces. One of our target designs is Systems-on-a-chip

(SoC), which integrates all components on a single chip. SoCs usually contain IP cores

such as embedded CPUs, a memory subsystem, controller, standard interfaces (e.g., USB,

PCI, Ethernet), and software components. IP cores are typically available through

purchase from third parties or developed in-house previously.

To demonstrate the ability of IDV, two circuits are developed that contain most of the

required components of a SoC: a datapath, memory units, and a controller. The two

designs used as example here are partially sponsored by the Semiconductor Research

Corporation (SRC). Since the designs are used to benchmark the algorithms being

66

developed for integer operations, it is important to verify these designs. This type of

design cannot be totally verified formally due to the memory explosion problem in

formal methods and the coverage problem with simulation. No single tool environment

has been presented to validate such types of designs previously.

5.2 Integer Powering Circuits

In this section, we describe the design and theory of the integer powering circuits

developed under the SRC sponsored project that will be the subject of the verification

effort.

Algorithms for computing the powering operation yz x= where x , y , and z are

positive integers have been the subject of considerable research. A “fast” method, which

can be traced back to al-Kashi in the 15th century has been described in many popular

texts [CLR01][Par00][Knu81]. Figure 5.1 shows the basic algorithm for the “fast”

method. This binary squaring method first determines 2 4 8, , , ,...x x x x and processes the

bits of y right-to-left to multiply by the appropriate binary powers of x to determine yx .

Since this method involves multiplication and squaring operations, it is also referred to as

the Multiplier Method (MM).

67

Figure 5.1 Squaring and Multiply Based Powering Operation Algorithm

Given that ,x y , and the result z are all non-negative k-bit integers, such as k = 8, 16,

32, 64, 128,…, this integer-valued powering operation based on MM requires O(k)

squaring and O(k) multiplication operations in the worst case which is expensive for

hardware implementation. A simpler algorithm that avoids the use of a large multiplier

will greatly benefit efficient hardware implementation. There is a further need for a right-

to-left digit serial algorithm that requires less time for lower precision operations when a

family of precision levels is implemented in hardware.

The inheritance principle for integer operations was introduced in [MFT05]. It can be

summarized as “the k-low order bits of the result depend only on the k-low order bits of

the operands for all 1k ≥ ”. This principle provides the basis for right-to-left digit-serial

integer operations. Specifically, assume the low order (k-1)-bits of the result obtained

from the (k-1) low order operand input bits have been determined. Simply by

incorporating the k-th bits of the operands, the k-th result bit can then be determined with

Input: 1 2 2 1, .. 1k kk x x x x x− −= , 1 2 2 1 0..k ky y y y y y− −=

Output:
2

| | k
yz x= .

L1: : 1z = ; :q x= ;
L2: for : 0 to 1i k= − do
L3: if bit (,) 1i y = then
L4

2
: | | kz z q= ×

L5 end
L6:

2
: | | kq q q= ×

L7:end

68

the (k-1) lower order result bits “inherited” from the preceding serial computation. The

formal statement for this inheritance principle can be found in [MFT05].

Modular notation 2k• defined in [ST67] is employed in this chapter. For a binary

integer 1 2 2 1 0..n nx b b b b b− −= , the modular notation 1 2 2 1 02 ..k k kx b b b b b− −= denotes the value

of the standard low order k- bit string for all 1 k n≤ ≤ .

Note that every k -bit integer x is uniquely represented by the triple (, ,)s p e such

that
2

(1) 2 3 k
s p ex = − . x has a unique factorization into odd and even terms 2 px n=

with n odd. All the odd values can be represented as
2

(1) 3 k
s e− [FM04] [Ben99]. The

triple (, ,)s p e and its manipulation are referred to as the Discrete Logarithmic System

(DLS). Based on DLS representation, the powering operation can be rewritten as the

following:

2 2 2
((1) 2 3) (1) 2 3k k k

y s p e y sy py eyz x= = − = −

Integer x is first converted to DLS such that
2

(1) 2 3 k
s p ex = − . Then the power y is

distributed to the three exponents. Three multiplications are required to obtain s y× ,

p y× , and e y× . (1)sy− determines the sign of the result. 2 py determines the number of

least significant zeros in the result. Finally
2

(1) 2 3 k
sy py ey− is deconverted to obtain z .

Without loss of generality, we focus on odd numbers in the following discussion. For odd

numbers, item p y× is ignored due to 0p = .

69

The block diagram for this approach is shown in Figure 5.2. Binary-to-DLS

conversion refers to determining the triple (, ,)s p e given the k − bit integer n , and

deconversion refers to determining n given the triple (, ,)s p e , where n , s , p , and e

satisfy
2

(1) 2 3 k
s p en = − .

Figure 5.2 Serial Odd Integer Powering Algorithm Based on DLS

Two types of conversion/deconversion algorithms are introduced: one is iterative

computation based and the other is a table look-up based technique.

Efficient iterative computation algorithms for integer-to-DLS conversion and

deconversion were presented at the algorithmic level in [FMT05a] [FMT05b] [Fi05].

Since both the conversion and deconversion algorithms employ k sequential steps of a

table lookup operation interleaved with a shift-and-add modulo 2k operation. This

approach is also referred to as the DLS iterative computation based method (DLSiter) in

this document.

We also present a table look-up conversion/deconversion approach based on an

encoding scheme that provides a one-to-one mapping between k -bit integers and k -bit

DLS values. This encoding scheme is scalable for all practical word sizes. This k -bit

DLS encoding also satisfies fundamental properties allowing table lookup based

conversion and deconversion to be completed with tables whose size are less than 8K

70

Bytes in each direction for 16k ≤ . This approach is referred to as DLS table lookup

based method (DLStable).

Hardware implementations for the integer powering operation with the DLS

conversion/deconversion methods are described in next section.

5.2.1 DLSiter Conversion/Deconversion Circuit

DLSiter conversion can be accomplished separately with deconversion as Figure 5.2

shows. The detailed algorithm for DLSiter conversion/deconversion can be found in

[FMT05a] [FMT05b] [Fi05]. The conversion algorithm is also referred to as Discrete Log

(DLG) while the deconversion algorithm is referred to as Exponentiate (EXP). Here a

faster algorithm is presented where the conversion/deconversions are processed in

parallel. For every available bit of e , a bit of the intermediate product is generated and

followed by a bit of z being produced. This method is referred to as the parallel

algorithm and is described in Figure 5.3.

71

Figure 5.3 Parallel Integer Powering Algorithm

The initialization stage is performed in lines L1 − L4 where all the required

initialization steps are accomplished. The second stage (L5 − L10) performs the

Stimulus: 1 2 2 1, .. 1k kk x x x x x− −= , 1 2 2 1 0..k ky y y y y y− −=

Response:
2

| | k
yz x= .

Method
L1: if 8 {1,3}x ∈ then : 0s = ;

L2: else : 1s = ; : 2kx x= −
L3: end
L4: : 1p = ; : 0;e = : 1z = ; : 0;q = ;t e=
L5. if bit(1, x)=bit(1, p) then
L6: 2: 1 kp p p= + << ; : dlg(3)e e= +
L7: if bit(0, y)=1 then
L8: 2: 1 kz z z= + << ;
L9: end
L10: end
L11: for : 3 to 1i k= − do
L12: if bit(,i x)=bit(,i p) then //update for DLG
L13: 2: kp p p i= + << ; : dlg(2 1)ie e= + +
L14: end
L15: 1t t= << ;
L16: if(bit(2,i e−)=1)
L17: m m t= + //accumulator.
L18 end
L19: if bit(2,i m−)=1 then
L20: 2 (2)q q i= + << −
L21: if bit(,i q)=1 then //update for EXP
L22: 2: kz z z i= + << ;

L23: : dlg(2 1)iq q= − +
L24: end
L25:end

72

computation for 1i = where i is the index for iteration and 1 1i k≤ ≤ − . The third stage

contains the main iteration step and is represented by lines L11 − L25. The third stage can

be separated into 3 sub-stages. Both p and e are updated (i.e. L12 − L14) which

generates one bit of e based on the conversion algorithm defined in [FMT05a]. The

second sub-stage (i.e. L15 − L18) corresponds to the accumulator used to compute e y× .

The third stage (i.e. L19 − L24) updates z according to the deconversion algorithm

defined in [FMT05b]. The final result is obtained at line L22. As can be seen by

inspection of the algorithm, the time complexity is essentially k dependent shift-and-add

modulo 2k operations.

5.2.1.1 Hardware Implementation

Hardware implementation for DLSiter conversion/deconversion is described here.

The state diagram of the hardware implementation is given in Figure 5.4. There are 6

states available, Load, Init, Loop_DLG, Loop_ACC, Loop_EXP and Ready. The

Load state is also a reset state. It accepts input when the load signal is asserted and also

performs all the initialization operations in lines L1 − L4. The Init state accomplishes the

operations in the second stage (L5 − L10) in Figure 5.3. The Loop_DLG, Loop_ACC,

Loop_EXP states correspond to the 3 sub-stages in the algorithm. The loop count goes

from 3 to k, with a maximum of k-3 iterations. The Ready state is the state that outputs

the result. The circuit automatically transitions into the Load state after Ready state.

73

Figure 5.4 State Diagram for DLSiter Implementation

There are three major components in the DLSiter circuit, a controller, a ROM lookup

table, and a computation datapath.

The major components in the datapath are adders, shifters, and units called bit-

checkers that are used to check if a certain bit is asserted. The output of the bit-checker

controls the operation of the adders and shifters. No operation is performed if the output

is false; otherwise, registers holding , , ,p e z q are updated by the shifter and adder. The

controller consists of a counter and state controller block. The state controller starts and

stops the counting procedure. The output of the counter, count, is used for purposes such

as address generation for the ROM, index generation for the bit checker, and feedback to

the state controller for state transition. The ROM is used as a lookup table for the DLS

values for 2 1i + where 3 i k≤ ≤ . The modular operation given in the algorithm is

handled by limiting the size of , , ,p e z q . The sizes of , , ,p e z q are set to k. Thus, while

updating , , ,p e z q , the result values may be longer than the specified size (or overflow).

Overflow bits are ignored since this computation is performed modulo 2k.

74

In order to evaluate the effectiveness of DLSiter as compared to the MM, both

methods are implemented in Verilog RTL and synthesized into circuits using the

Synopsys tool set based on a standard cell library from Synopsys [Syn03]. Table 5.1

shows the cell delay calculated based on the output net total capacitance (cap.) for three

types of D-flip-flops in the library. From Table 5.1, it is apparent that the library is not a

fast technology library, and our circuit performance results are relative to the

characteristics of this cell library.

Table 5.1 Technology Library Parameters

Cell name denrq1 denrq2 denrq4

rise 0.379 0.266 0.297 Cell delay(ns) fall 0.458 0.319 0.357
Total output cap.(pf) 0.051 0.038 0.0386

x 11.89 12.30 13.12 Size(mµ)
y 3.69 3.69 3.69

More detailed information on this implementation can be found in [LFTM05,

LTM06]. Table 5.2 compares the results of DLSiter and MM for k=8, 16, 32, 64, 128

respectively. The speed and area trends of the two circuits in terms of word size k are

plotted in Figure 5.6 and Figure 5.7 respectively. Figure 5.6 shows that DLSiter is faster

than MM for all k values. Regarding area, DLSiter requires more space for small word

sizes but increases slowly compared with MM. Thus when 64k ≥ , DLSiter requires less

area. It should be noted that the area values reported here are only the net area required

by the total cell area since we do not route the resulting circuits, thus additional area

required by routing is not included.

75

Table 5.2 Comparison of Layout Result

speed(ns) core area(2mµ) k (bits)
DLSiter MM DLSiter MM

8 2.05 2.4 23386.4 8207.48
16 2.41 3.45 40306.7 26076.3
32 2.75 4.55 109135 79409.1
64 3.52 5.55 184725 302942
128 3.8 6.8 371366 1.26E+06

speed

0
1
2
3
4
5
6
7
8

8 16 32 64 128

Word Size, k

ns

DLSiter

MM

Figure 5.5 Speed Trend of the Two Circuits

area

1000

10000

100000

1000000

10000000

8 16 32 64 128

Word Size, k

um
2

DLSiter
MM

Figure 5.6 Area Trend of the Two Circuits

76

5.2.2 DLStable Conversion/Deconversion Circuit

A compact encoding scheme for the DLS triple (, ,)s p e is introduced here. This

encoding employs variable length fields for p and e , and provides a one-to-one

mapping between k-bit DLS values and k-bit unsigned binary integers. Example tables

and figures are used to illustrate the encoding and some of its significant properties.

The one-to-one mapping between 5-bit DLS values and 5-bit integers is given in

Table 5.3. The DLS bit string is partitioned as follows to determine the three exponents s,

p, and e. Consider the line in the table for DLS string 101102 which yields binary

011102=1410.

77

Table 5.3 Conversion Table from the 5-bit DLS Number to the 5-bit Integers [0,31]

Paritioned DLS Bit

Strings
Integer
Value

Discrete Log
Number

System (DLS)
Encoding e 0e s⊕ 2 p 32

(1) 2 3s p e−

Standard
Binary

Integer
Parity

00001 000 0 1 1 00001
00011 000 1 1 31 11111
00101 001 0 1 29 11101
00111 001 1 1 3 00011
01001 010 0 1 9 01001
01011 010 1 1 23 10111
01101 011 0 1 5 00101
01111 011 1 1 27 11011
10001 100 0 1 17 10001
10011 100 1 1 15 01111
10101 101 0 1 13 01101
10111 101 1 1 19 10011
11001 110 0 1 25 11001
11011 110 1 1 7 00111
11101 111 0 1 21 10101
11111 111 1 1 11 01011

Odd

00010 00 0 10 2 00010
00110 00 1 10 30 11110
01010 01 0 10 26 11010
01110 01 1 10 6 00110
10010 10 0 10 18 10010
10110 10 1 10 14 01110
11010 11 0 10 10 01010
11110 11 1 10 22 10110

Singly
Even

00100 0 0 100 4 00100
01100 0 1 100 28 11100
10100 1 0 100 20 10100
11100 1 1 100 12 01100

Doubly
Even

01000 0 1000 8 01000
11000 1 1000 24 11000

Triply
Even

10000 10000 16 10000 Quadruply
Even

00000 00000 0 00000 Zero

78

The variable length fields are interpreted by first determining the value p from its

unary encoding, then finding e in binary form, and finally the sign bit. Specifically, the

parsing of DLS string 101102 begins from the right-hand side determining the variable

length field identifying 22 10p = by reading until the first unit bit is encountered. The 2-

bit field “unary” encoding of p determines 1p = . The next bit is a separation bit

providing the logical value 0 s e⊕ used to determine s after e is determined. The

remaining leading bits are the 5 (2)p− + bits of the exponent 5 (2)0 2 1pe − +≤ ≤ − . In this

example, e=102=210, and then s=1 is determined from 0 0e = and 0 1s e⊕ = . Finally

1 1 2
3232

(1) 2 3 18 14− = − = is obtained. Note that the low-order bit field determining the

even factor 2 p is an identical field in both DLS and binary integer encodings.

This above encoding scheme also satisfies the inheritance property [MFT05]

providing that the (1)k − -bit DLS encoding for an integer in the range 10 2 1kx −≤ ≤ −

can be determined by simply truncating the leading bit of the k-bit DLS encoding. This

allows the encoding of the even integers to be simply determined from a table for the odd

k-bit integers by shifting out the leading bits of the odd factor. For example, the DLS

string for 14 can be obtained by shifting left one place the DLS string for 7. The

specification of the separation bit as equal to 0 s e⊕ is an important condition that

provides inheritance property.

Based on the inheritance property, the conversion/deconversion in Table 5.3 can be

visualized by the lookup trees illustrated in Figures 5.7, 5.8 and 5.9. Figure 5.7 and

Figure 5.8 show the lookup trees of integer-to-DLS conversion for odd and even integer

79

respectively. Navigation in Figures 5.7 and 5.8 occurs by reading down with edge

direction determined by the 5-bit integer string 4 3 2 1 0a a a a a right-to-left. The DLS output

(right-to-left) is obtained from the bits extracted from the vertices along the path. The

deconversion from DLS-to-binary is similarly illustrated for the odd values in Figure 5.9.

The even number deconversions can be accomplished by employing shifting using the

inheritance property or from extending the table to include an even part portion.

Besides the inheritance property, sign symmetry, one-to-one mapping, and

normalization are 3 other properties that can reduce the tree size dramatically. Sign

symmetry dictates that the result of the operation on the 2’s complement of the input is

the 2’s complement of the output. One-to-one mapping holds when distinct n-bit inputs

have appropriately determined distinct n-bit outputs. Normalization means that the result

for an even input can be derived based on the result of corresponding odd input. More

descriptions of these properties can be found in [Fi05]. These properties in the lookup

trees allow the conversion/deconversion for 16-bit integers to be accomplished with 2-

8KBytes table for DLS-to-binary and 2-8KBytes table for binary-to-DLS. The

presentation here is given to illustrate the representation which pertains to general k.

However, when 16k > , the table size is quite large and impractical for hardware

implementation, the conversions can be better handled with DLSiter.

80

Figure 5.7 Lookup Tree for Odd Integer Binary to DLS Conversion

Figure 5.8 Lookup Tree for Even Integer Binary to DLS Conversion

81

Figure 5.9 Lookup Tree for DLS Odd number to Integer Binary Conversion

DLStable allows for direct conversions between binary and DLS resulting in fast

performance. Figure 5.10 shows the table lookup architecture. It consists of three major

components: a pre-processing block, a post-processing block and a ROM. The pre-

processing block produces the ROM address based on the input operand. After the data in

the ROM is read, the post-processing block selects the correct bit fields, and performs

some additional processing, such as complementation. Two schemes for DLStable are

compared here. One scheme uses a larger table with less pre- and post-processing logic

while the other uses a smaller table with more pre- and post-processing logic.

82

Figure 5.10 Table Lookup Architecture

5.2.2.1 DLStable with Larger Table

For DLStable with larger-sized table implementation, the inheritance and one-to-one

mapping properties are exploited. Due to the one-to-one property, only the left children

of the lookup tree are stored. No normalization and sign symmetry are utilized; therefore,

no pre-processing is required before table lookup occurs. For post-processing, conditional

complementation is required on the table output value with the input value since only the

left children values are stored in the table. In the following, the circuit structure and the

hardware implementation are discussed.

The ROM structure and select logic are shown in Figure 5.11. The ROM represents a

3-level tree. The first level forms 256 rows where the low 8-bits ([a7:a0]) are used as the

address bits. Each row has 264 bits. 8 leftmost bits are selected directly as output in the

n×2n
Decoder

D

D

Storage Cell Pre-
process

&
Row

Select

Value
Select Logic and Post-process

Operand

Function

83

row. The other 256 bits represent the second and third level tree. In the second level, four

sub-trees between levels 8 and 9 are formed as four bytes. [a9:a8] are used to select one

of the four bytes. After the byte is selected, [a10] and [a11:a10] are used to select one bit

from the selected byte respectively, while the other two bits are extracted directly without

selection. Therefore, a total of 4 bits are extracted from the selected byte. In the third

level, there are 32 sub-trees between level 8 and level 12 formed as 32 7-bit fields.

[a12:a8] are used to select one of the 32 7-bit fields. [a13] and [a14:a13] are used to

select one bit from the selected field respectively, while the single rightmost bit is

extracted directly without selection. Therefore, a total of 3 bits are extracted from the

selected 7-bit field. Finally, a 15-bit output is produced from the select logic.

Figure 5.11 15-bit Table Lookup Architecture

84

The post-processing logic for a larger table lookup scheme is very simple. Since only

the left children are stored and 15 bits are extracted from ROM, a one is padded to the

Least Significant bit (LSb) to produce a 16-bit output. Also it is necessary to

conditionally complement the result produced from the padding with the input value to

produce the correct final result. Sixteen 2-bit-input XOR gates serve as conditional

complement logic for this purpose where the corresponding bit from the result of the

padding and the input are connected to the inputs of the XOR gates.

5.2.2.2 DLStable with smaller table

The ROM table size may be reduced by utilizing more properties of the DLS

encoding. The inheritance property, one-to-one mapping property, sign symmetry, and

normalization are all utilized for the smaller table design. For this approach, some pre-

processing is required before table lookup and more complicated post-processing is also

necessary. Pre-processing logic, the ROM structure, the post-processing logic and the

hardware implementation are described in detail in the following.

Pre-processing consists of normalization and sign-bit extraction. Normalization is

used to produce the p field of the DLS triple. It is accomplished by shifting right and

counting the number of trailing zeros. In the worst case, 16 shifts are required. A divide

and conquer approach is adopted in the implementation. At the beginning, shift the

operand right 8 bits and the result determines whether to check the lower 8 bits or the

higher 8 bits. Next, the selected 8-bit field from the previous step is shifted right 4 bits

and result determines whether to check the lower 4 bits or the higher 4 bits. This

85

procedure continues until the binary exponent p of the operand is obtained. The second

operation is sign-bit extraction. The sign-bit is the third bit ([2a]) of the normalized

operand. If the sign bit is asserted, it is required to conditionally complement the

normalized operand. Since normalization (determined by [0a]) and sign-symmetry

(determined by [2a]) are utilized in this step, the index for the address and select logic in

next step are formed as [14 : 3 1]a a a′ ′ ′ after conditional complementation.

The ROM structure and select logic are shown in Figure 5.12. The ROM represents a

3-level tree. The first level forms 128 rows where the lower 7-bits ([8 : 3 1]a a a′ ′ ′) are used

as address bits. Each row has 141 bits. 7 leftmost bits are selected directly as output in the

row. The other 134 bits represent the second and third level tree. In the second level, sub-

trees between level 7 and 8 are represented as a 6-bit field. [9]a′ and [10 : 9]a a′ ′ are

applied to select one bit from the selected field respectively. Therefore, a total of 2 bits

are extracted from the 6-bit field. In the third level, 16 sub-trees between level 7 and level

10 are formed as 16 bytes. [12 : 9]a a′ ′ are used to select one of 16 bytes. [13]a′ and

[14 : 13]a a′ ′ are used to select two bits from the selected byte respectively, while the other

two bits are extracted directly without selection. Therefore, a total of 4 bits are extracted

from the selected byte. Finally, a 13-bit output is formed from the select logic.

86

Figure 5.12 13-bit Table Lookup Architecture

Post-processing for the smaller table lookup scheme is more complex as compared to

the larger table approach. Since normalization is performed in the pre-processing

circuitry, de-normalization is necessary. All bits whose index is less than p are padded

with zeros, while all bits whose index is larger than p are filled with lookup values.

Since only the left sub-tree are stored, conditional complementation of the result from the

output of de-normalization logic with the input word is necessary to obtain the final

result. Sixteen 2-bit-input XOR gates are used for conditional complementation as

described previously.

We implemented the integer powering operation circuits with the DLStable

conversion/deconversion shown in Figure 5.11 and Figure 5.12 by describing them in a

Verilog module and using the Synopsys tool set (Design Compiler and Physical

87

Compiler) based on a standard cell library obtained from the Synopsys tutorial files

[Syn03]. More detailed information can be found in [LFTM06].

Table 5.4 shows the comparison between the two schemes for directed lookup table

conversion for k=16. The ROM size is given in KB. The core area is the area of standard

cell implementation for all other logic except the ROM. Both circuits have the same

minimal clock period of 1.7ns but the larger table implementation requires one less cycle

for post-processing. We do not compare the result of DLStable with MM and DLSiter

since both MM and DLSiter are iterative computation based approaches where the

latencies depend on the word size k .

Table 5.4 Comparison of Results for Two DLStable conversions

k=16 ROM size
(KB)

Core
area(2mµ)

Clock period
(ns)

Latency
(clock
cycles)

DLStable with Larger Table 8.25 21011.2 1.70 2
DLStable with Smaller Table 2.25 19003.5 1.70 3

5.3 Verification Procedure and Results

In this section, the DLSiter and DLStable circuits described in the previous section are

validated using the IDV system. The above designs include a memory unit (ROM), a

datapath, control logic (counter and state controller), and some small components, such

as mux and xor.

88

5.3.1 DLSiter Circuit Verification

In the DLSiter circuit, a small memory unit, a datapath, and a control logic block are

present. For the DLSiter circuit, the properties that need to be verified are listed as

follows:

a. Liveness property: load=1 AX:2(AF(busy=0)): Along all the state trajectory

paths in the future, there will be a state that busy=0 and it will last for at least the next

two states. The signal load is asserted means two integers are loaded for calculating

the powering operation. The signal busy is one while in the process of calculating the

powering and zero when it is idle or when the calculation is complete. This property

indicates that if integers are loaded for powering, the circuit must finish the

calculation sometime in the future and will not get into an endless loop (busy will

never be zero). This is a liveness property since it indicates that the circuits will

eventually finish a powering operation.

b. Safety property: load=1 Next(busy=1 && current_state=Init): If the signal

load is asserted, the signal busy has to be one in the next cycle and the current_state

has to be in the Init state. As indicated before, busy is asserted when the circuit is

initiating the calculation process. This property ensures that if integers are loaded, the

calculation is started in next cycle.

State Transition properties:

c. (current_state = Init) Next(current_state = Loop_DLG): if the current_state

is in state Init, then current_state has to in state Loop_DLG in next cycle. The same

as the following several state transition properties.

89

d. (current_state = Loop_DLG) Next(current_state = Loop_ACC)

e. (current_state=Loop_ACC) Next(current_state=Loop_EXP)

f. (current_state=Loop_EXP) AF(current_state=Ready)

g. current_state=Loop_EXP && Count<Bound) Next (current_state =

Loop_ACC)

h. Properties related to Memory: RE=1 ∧ addr ROM_out = Next(M[addr]): The

signal RE indicates read enable for ROM. The property can be interpreted as: if read

enable for ROM is on and a valid address is given, the output of ROM in next cycle

should be the value stored in that address.

5.3.1.1 Partitioning

Design hierarchy is explored in this stage. A process-module graph which describes

the hierarchy of the design is built. Each node in the graph represents a

component/module/process and edge corresponding to the interconnections of these

components. The process-module graph for DLSiter powering circuit is shown in Figure

5.13. This information is used for partitioning and system level functional simulation.

Figure 5.13 Graph Representation of Design Hierarchy

90

Initially a coarse-grain partition is explored and the tool continuously decreases the

granularity of the partitions until the desired coverage goal for validation is reached.

Given the above example, the top-level consists of three parts, a controller, a ROM, and a

datapath. These three parts are extracted and supplied to complexity analyzer.

5.3.1.2 Complexity Analyzer

The complexity analyzer is responsible for:

a. Analyzing the properties that need to be checked and assigning them to

appropriate verification tools. Complex properties specified in CTL are supplied as

input to VIS while properties given in the trajectory formula format are supplied as

input to STE. Given the above example, the liveness property (a) is quite complicated

and unsuitable for STE and thus is supplied to VIS while properties b-g can be

verified via either VIS or STE. In such a case, STE is preferred since STE has a larger

capacity in terms of number of states variables in a design. Also, the property related

to memory, h, is supplied to STE for formal verification since STE performs better

for such components and the related properties usually can be expressed as trajectory

formulas.

b. Selecting equivalence checking or simulation for datapaths. Simulation is more

time consuming but can handle any design while an equivalence checking is faster for

the “types” of designs that do not cause the memory explosion problem to occur.

Currently, a rule based approach is used to select the appropriate method: 1) if the

number of variables exceeds a threshold, or 2) if the circuit contains certain elements

91

(i.e. multiplier), simulation is selected. Otherwise equivalence checking is utilized for

datapaths. Even if an equivalence checking tool were selected, a timing threshold is

set and simulation will be started if the equivalence checking tool cannot generate the

result in given timing threshold.

Complexity analysis concludes that the controller is verified by property checking,

the datapath is validated by simulation since the multiplier presented in the datapath

causes memory problem due to the size of BDD. The read operation for the ROM can be

verified with STE while the content of the ROM can be validated with equivalence

checker.

5.3.1.3 Verification or Simulation Processing

After complexity analysis and partitioning are completed, the subcircuits and

corresponding constraints are supplied to appropriate tools for verification and/or

simulation. The results are shown in Table 5.5 for the DLSiter circuit. The results

demonstrate runtime for the different tools. These results were obtained using a Pentium

4 PC with 512MB of Memory.

Table 5.5 Verification/Simulation Result

Component Properties Tools Result Time
a VIS T 1.2s Controller b-g STE T 15s
h STE T 1.5s Memory content SMU-EQ 100% 18s

Data Path Speed 10% 170s
Functional Func. Sim 1% 230s

92

5.3.1.4 Coverage Analysis

Different coverage metrics have been proposed in different tool sets. We are currently

focusing on vector coverage and plan to expand to other coverage metrics. The vector

coverage of an output is based on:

a. the coverage rate of the components related to the output when they are simulated

or verified at the block level

b. the contributions or importance of each component related to the output

c. the vector coverage of the system-level simulation and the interconnection error

Detailed descriptions for the above three points are demonstrated as follows. The first

point is easy to understand. For each output of the design, not all components contribute

such as the output signal busy which is only related to the component controller. If an

output is related to the n components C1 … Cn, each component has a corresponding

normalized coverage value R1 … Rn when they are verified or simulated at the block

level. Ri is one if the component has been fully verified or a value (0,1)iR ∈ that

corresponds to the percentage of vectors simulated. The coverage for an output will

increase as the coverage for each related component increases. However, even if all

related components are fully verified (1iR =), the coverage for the output may not reach

a perfect level of 100% since the interconnection may cause an error such as the case

where two interconnections are reversely connected.

Also, not all components related to an output have the same contribution. For

example, the output z is related to all three components and it is the direct output of the

component datapath which in turn relates to the other two components. The contribution

93

of the component Ci to the output is denoted as wi. Currently, there are two ways to

determine the value wi: (1) designers assign the value, (2) automatic method based on the

input distribution of the directly related component. An example is used to demonstrate

the automated method. For the DLSiter circuit, the directly related component datapath

has five inputs. Two of five inputs are from system inputs, two of them are from the

component controller, and one of them from the component ROM. The contribution of

each component is proportional to the input distribution. The contribution of the

component datapath is 2 / 5 , the contribution of the component controller is 2 / 5 , and the

contribution of the component controller is 1/ 5 .

The third point is related to the system level simulation and interconnection errors.

Even if all related components are fully verified, the coverage for an output may not

reach a perfect level of 100% since the interconnections may cause errors. System level

simulation can be used to detect the presence of possible interconnection errors. The

number of possible interconnection errors is related to the number of interconnections.

The more interconnections, the more errors are possible. Also, the more system level

simulation that is accomplished, the less possible interconnection errors present in a

design. Based on above description, a graph of relationship between possible

interconnection errors and the coverage of the system level simulation is shown in Figure

5.14.

94

Figure 5.14 Possible Interconnection Errors vs. Coverage of System Level Simulation

Figure 5.14 shows the changes on coverage of the system level simulation and

presence of possible interconnection errors. When no system level simulation is

performed, all possible interconnection errors are normalized to one. The possible

interconnection errors presented in the system decrease as the coverage of system level

simulation increases. Various slopes in Figure 5.14 show the different decreasing rate of

the possible interconnection errors which is referred to as dropping rate p . No

interconnection error presents in a design once 100% coverage is reached at the system

level simulation. Dropping rate p is related to the number of interconnections and the

interconnection architecture. The smaller is p , the faster possible interconnection errors

are detected via the system level simulation. The function in Figure 5.14 is referred to as

the dropping function and denoted as (,)d s p where the parameter s is the vector

coverage at the system level simulation. Currently (,)d s p is calculated as

1/(1)p pd s= − Eq. 1

95

where p is determined by

number of interconnections
total inputs

. Here only the number of

interconnections is considered and the interconnection architecture is ignored.

In other words, (,)d s p defines the distance between the perfect situation (no

interconnection error) and the imperfect situation due to interconnection errors.

1 (,)d s p− represents the confidence an output gains for interconnections with s system

level simulation. If (,)d s p is given, the coverage of an output can be calculated as

(1 (,)) R d s p× − considering interconnection errors. In an optimistic analysis,

interconnection error is ignored. Thus, the coverage for components is adjusted with and

without considering interconnection errors. The adjusted coverage rate is referred to as

R′ and is calculated as an interval value

[,]low highR P P′ = Eq. 2

 where (1 (,)) , low highP R d s p P R= × − = .

Based on the previous analysis, the total coverage rate for the output can be written

as:

1 1 2 2 ...o n nP w R w R w R′= + + + Eq. 3

Although this is a simple approach, it is our first attempt at automating coverage

analysis. Detailed and in-depth research into automating coverage calculations is the

research project being investigated by another Ph.D student in our group.

We now show how to use Eq. 3 to calculate the coverage of the given example, there

are two outputs, busy and z. Among the three components, controller and ROM are fully

verified and their coverage values are 1cR = and 1mR = respectively. While the

96

component, datapath, is simulated with 10% coverage at the block level yielding

0.1dR = .

The output Busy, is only related to the component controller and also the input load.

The component controller totally controls the functionally of Busy, thus yielding 1cw = .

Applying Eq. 3, the coverage for the output Busy is

1 1 1busy c c c cP w R w R′= = = × = =100%

which indicates that the output Busy has been fully verified.

The output z is related to all three components. z is the direct output of the

component datapath which accepts inputs from the system level input x and y , the

output of the component ROM and the outputs of the component controller. With

automatic methods based on input distribution, the contribution of the component

controller is 2 / 5 0.4cw = = , the contribution of the component datapath is

2 / 5 0.4dw = = , and the contribution of the component ROM is 1/ 5 0.2mw = = . Next,

the coverage for the component datapath is adjusted.

In the system-level simulation, 1% of the vectors for x and y have been simulated

(0.01xyI =). Among five inputs for the component datapath, three of them are from

interconnected component yielding 3 / 5p = . According to Eq. 1, the dropping function

(,)d s p is written as
3 5

5 3(1)d s= − . Substituting xyI with s in the formula yields

0.89d = . This shows that with 1% of system simulation, 11% of confidence is obtained

with the system interconnections.

97

The simulated vectors of the component datapath at the block level are 10%. Thus

the adjusted coverage for the datapath is [0.011,0.1]dR′ = according to Eq. 2.

Then the coverage for the output z is calculated as

0.4 1 0.2 1 0.4 [0.011,0.1]
[0.604,0.640]

z c c m m n dP w R w R w R′= + +
= × + × × + ×
=

The coverage of the output z with the initial partition is [0.604 0.640]. This coverage

can be further improved by refinement.

5.3.1.5 Loop Back

When coverage is too low, IDV loops back to perform more partitioning over

previously simulated components. In the above example, the datapath is the only

component simulated, all others are completely verified. When IDV loops back and

examines the component datapath, it contains three small modules, conversion, multipler,

and deconversion. The component datapath can be further partitioned into three smaller

modules and IDV can verify some of the smaller modules. The tools progress into a finer-

grained partition of the design. Since all of the three modules cannot be formally verified,

one way to improve the coverage is to increase the coverage rate of each module in the

component datapath by simulation. After component-level simulation, the coverage of

the datapath is recalculated. Using the automatic contribution methods described

previously, equal contribution is assigned to the three components,

98

mult dlg exp 1/ 3w w w= = = . All three components have been simulated at the same rate,

dlg mul exp 0.3R R R= = = . Thus applying these results, the new coverage value becomes:

2
mult mult dlg dlg exp exp

1/ 3 (0.3 0.3 0.3) 0.3
dR w R w R w R= + +

= × + + =

The coverage of the component, datapath, has been improved from 10% to 30% by

refined partitioning. With the increased coverage for the component datapath, the

adjusted coverage rate of the component datapath is calculated as [0.033, 0.30] according

to Eq. 3. Given that all other parameters stay the same, the entire system coverage of the

output z is calculated in the following

0.4 1 0.2 1 0.4 [0.033,0.30] [0.613,0.720]
z c c m m n dP w R w R w R′= + +

= × + × × + × =

5.3.2 DLStable Circuit Verification

The table-based design consists of a memory unit, a datapath for pre- and post-

processing and multiplier, and a very simple control logic subcircuit. The following three

properties need to be verified for the DLStable circuit:

a. Liveness property: load=1 AX:2(AF(busy=0)): Along all state trajectory paths

in the future, there will be a state such that busy=0 and it will be asserted for at least

the next two states. The signal load is one means two integers are loaded for

calculating the powering operation. The signal busy is asserted while in the process of

calculating the result and zero when it is idle or the calculation is complete. This

property indicates that if integers are loaded for powering, the circuit must finish the

99

calculation sometime in the future and will not enter an endless loop (busy will never

be zero). This is a liveness property since it checks that the circuit will not be

deadlocked.

b. Safety properties: load=1 Next(busy=1): If the signal load =1, the signal busy

has to be asserted in the next cycle. As indicated before, busy is one when the circuit

is initializing the calculation process. This property checks that if integers are loaded,

the calculation should be started in next cycle.

c. Properties related to Memory: RE=1 ∧ addr ROM_out = Next(M[addr]): The

signal RE indicates read enable for ROM. The property can be interpreted as: if read

enable for ROM is on and a valid address is given, the output of ROM in next cycle

should be the value stored in that address.

5.3.2.1 Partitioning

A PM graph is built which describes the hierarchy of the design. The PM graph for

the DLStable powering circuit is shown in Figure 5.15.

Figure 5.15 Graph Representation of Design Hierarchy for DLStable

100

Given the above example, the top-level consists of three parts, a controller, a ROM,

and a datapath. These three parts are extracted and feed into complexity analyzer.

5.3.2.2 Complexity Analyzer

The liveness property (a) is quite complicated and unsuitable for STE, thus VIS is

applied. Property b can be verified via STE.

The read operation for the ROM can be verified with STE while the content of the

ROM can be validated with equivalence checker. The component datapath in DLStable

circuit also cannot be formally verified since it contains multiplier. The controller is

verified by property checking.

5.3.2.3 Verification or Simulation process

After the complexity analysis and partitioning are completed, the subcircuits and

corresponding constraints are supplied to appropriate tools for verification and/or

simulation. The results obtained using a Pentium 4 PC with 512MB of Memory are

shown in Table 5.6 for DLStable circuit.

Table 5.6 Verification/Simulation result

Component Properties Tools Result Time
Controller a-b VIS T 1.2s

c STE T 18s Memory
content SMU-EQ 100% 200s

Data Path Speed5 10% 78s
Functional Func. Sim 1% 95s

101

5.3.2.4 Coverage Analysis

Based on the equations in the previous section, the coverage for outputs busy and z

are calculated.

The components controller and ROM are fully verified and their coverage rates are

1cR = and 1mR = respectively. The component datapath is simulated with rate 0.1dR = .

In the system-level simulation, the input load is simulated in both phases (1loadI =) and

1% of vectors for x and y have been simulated (0.01xyI =).

The output Busy, is only related to the component controller and also the input load.

The component controller totally controls the functionally of Busy yielding 1cw = .

Applying Eq. 3, the coverage rate for the component Busy is

1 1 1busy c c c cP w R w R′= = = × = =100%

which indicates that the output Busy has been fully verified.

z is related to all three components and is directly the output of the component

datapath which accepts four inputs; two of the inputs come directly from the system

input, one input is the output of controller, and the other one is produced by the

component ROM. Based on the automatic method, the contribution of the component

datapath is 2 / 4 0.5dw = = . The other two components have equal contribution with

0.25mw = and 0.25cw = each. Next, the adjusted coverage rate for the component

datapath is determined. Among the four inputs for the component datapath, two of them

are from interconnected components yielding 1/ 2p = . Based on Eq. 1, the dropping

function (,)d s p is written as
1 22(1)d s= − . Substituting xyI with s in the formula yields

102

0.81d = . This shows that with a 1% of system coverage, 19% of confidence is obtained

with the interconnections. The component datapath is simulated with 10% coverage. The

adjusted coverage for the component datapath is interval [0.019, 0.10].

We now calculate the coverage for the output z .

[]0.25 1 0.25 1 0.5 0.019,0.10
[0.51,0.55]

z c c m m n dP w R w R w R′= + +

= × + × × + ×
=

5.3.2.5 Loop Back

IDV loops back to perform more partitioning over the previously simulated

component datapath. In the component datapath, three small modules, conversion table

lookup, multipler, and deconversion table lookup exist. The component datapath is

further partitioned into three smaller modules and we verify some of the smaller modules.

Two table lookup modules can be formally verified with equivalence checker SMU-EQ

yielding dlg exp 1R R= = . After the component-level simulation, the coverage of the

datapath is calculated using Eq. 3. Using the automatic contribution methods described

previously, equal contribution is assigned to the three components,

mult dlg exp 1/ 3w w w= = = . The component multiplier is simulated with 10% coverage

yielding mul 0.1R = . Thus applying these results, the coverage value for the component

datapath at the system level is:

2
mult mult dlg dlg exp exp

1/ 3 (1 0.1 1) 0.70
dR w R w R w R= + +

= × + + =

103

The coverage of the component datapath has been improved from 10% to 70% by

refined partitioning. With the increased coverage for the component datapath, the

adjusted coverage for the component datapath is calculated as [0.133, 0.7] according to

Eq. 2. All other parameters stay the same. Thus, the coverage of the output z is

calculated in the following

0.25 1 0.25 1 0.5 [0.0133,0.70] [0.567,0.85]
z c c m m n dP w R w R w R′= + +

= × + × × + × =

5.4 Summary

The purpose of the IDV is to provide one tool so that a designer can validate designs

that can not be validated by any single tool. Through the above example, the IDV system

is shown to have compatibility with different tools. Currently, the IDV system has not

been fully automated and requires some amount of human interaction. The coverage

calculation can be further improved by introducing more accurate models. Other

members in the CAD methods research group are focusing their research on improvement

of the coverage calculations and further automation of IDV.

104

CHAPTER 6

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Formal verification plays an increasingly important role in design validation since

evolving markets demand short design cycles while the increasing complexity of a

modern design makes simulation coverage less and less complete.

Image/Pre-Image computation is a core algorithm in formal verification. BDD-based

methods are usually faster but can exceed memory capacity for larger designs, limiting

scalability. SAT solvers are less vulnerable to memory explosion but can be slow. We

extended BDD-based image computation with a genetic algorithm and also presented a

way of combining BDD and SAT approaches under one framework. A BDD-based

approximation method was used to calculate the over- and under- approximation

boundaries of reachable states. A SAT solver was used to find the remaining states. The

SAT solver was enhanced by techniques referred to as “early detection” and “expansion”

to find a satisfiable assignment containing more don’t cares. The experimental results

showed that our approach can check more circuits than purely BDD-based symbolic

model checking tools.

105

Formal verification itself cannot solely accomplish the validation task. Thus, we are

motivated to combine different approaches to serve the purpose of validation of diverse

digital designs. The IDV project resulted in the development of an integrated approach

for design validation and takes advantage of current technology in the areas of

simulation, and formal verification resulting in a practical validation engine with

reasonable runtime. The focus in this approach is the circuit complexity analyzer and

partitioning tool based upon design hierarchy. The IDV system also incorporates

coverage analysis methods that compute the degree of design validation, a method for

intelligently updating the complexity analyzer for further validation iterations, and

integration of these techniques with existing simulation and formal verification

techniques.

To demonstrate the capability of the IDV, two practical application circuits designed

in our lab that are “hard cases” for validation were considered. The circuits were

designed to implement a powering operation with two approaches: DLSiter and

DLStable. The algorithms as well as hardware implementations were also outlined. IDV

was then applied to validate the circuits. Since the designs are used to benchmark the

algorithms being developed for integer operations, it is important to verify these designs.

6.2 Future Work

Currently, the IDV system has not been fully automated and requires some amount of

human interaction. Ongoing work is in progress to make the IDV system automatic.

Coverage analysis is also a major issue in IDV and in the verification research

106

community in general. How one handles functional coverage and other coverage metrics

should be explored further. Automatic feedback to improve the coverage is a very hot

topic now. Several commercial EDA companies are working on this topic. Opening the

IDV system to incorporate more tools is also one of our objectives.

At this stage, only formal verification and functional simulation are integrated in the

IDV system. We also plan to extend IDV to include other types of simulations such as

critical timing and fault simulation. ATPG is another important functionality to consider.

Besides the partitioning based on the design hierarchy, automatic partitioning a

design is also desired. A methodology for automatically extracting controllers from an

RTL-HDL specification is described in [LJ00]. This work introduces an algorithm for

automatically separating the datapath and controller described at the RTL level by

locating general patterns of FSMs in a PM graph representation of the design. In such a

representation, the hierarchy is preserved and each module contains its own PM graph.

Because a FSM’s next-states always functionally depend on their current state, signals

stemming from state-registers will loop back after some combinational paths have been

traversed. Finding the FSMs in the HDL is based on finding such loops in the PM graph.

Some loops that are found, however, may have a valid pattern topologically but not be

part of the FSM. To deal with such instances, the checking of functional dependency

follows the loop search to determine if the loop is a valid part of the FSM. The extraction

process is divided into four phases, most of which are traversal procedures resembling a

depth-first search of the PM graph. All steps are of linear complexity. This research

107

demonstrates feasibility by focusing on the separation of a design into separate controller

and datapath circuits. This can be used as a starting point.

One direction to expand IDV is to consider software verification, especially device

driver verification. Some specific details that can be investigated include (1) automatic

generation of Boolean programs along with a set of predicates from high-level languages

such as C/C++ programs, (2) method of modeling a Boolean program in the form of a

microprogramming controller, (3) applying suitable formal verification tools for memory

to validate the microprogrammed-based model of a device driver.

We would also like to apply IDV for quantum logic and reversible logic. Quantum

computing has many powerful applications that a classical computer cannot accomplish

efficiently. Quantum hardware design remains an emerging field, but the work done thus

far suggests that it will only be a matter of time before quantum devices are available to

test Shor's and other’s quantum algorithms. If this prediction comes to pass, quantum

computers will emerge as computational devices that have profound implications in

computing. Developing CAD tools for quantum hardware design will greatly benefit the

quantum computing community.

System specification of a design is usually given in a natural language which is hard

to translate into properties or assertions that can be supplied to formal verification tools

directly. It is necessary to describe the system specification in a more rigorous and well-

formed language in order to bridge the gap between a system specification and properties

or assertions that formally verified. Unified Modeling Language (UML) has commonly

applied to model software project and we adopt UML as tool for system specification.

108

Some preliminary work has been accomplished and the results are very promising

[LOT06].

The SystemVerilog language evolved from the Verilog hardware description

language as an industrial standard language to describe hardware design as well as to

write assertions supporting the enormous task of verifying the correctness of a design.

Incorporating SystemVerilog into the IDV system will greatly benefit the validation

procedure.

109

REFERENCES

[AA+01] R. Alur, L. de Alfaro, T. A. Henzinger, M. Kang, C. M. Kirsch, R. Majumdar,
F. Mang, and B. Y. Wang, “jMocha: A Model Checking Tool that Exploits Design
Structure,” in Proceedings of the IEEE International Conference on Software
Engineering, 2001.

[ABH+97] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, and S. Rajamani, “Partial order
reduction in symbolic state space exploration,“, in Proceedings of 9th Conference on
Computer Aided Verification, pp. 340-351, 1997.

[Ake78] S. B. Akers, “Functional testing with binary decision diagrams,” in Eighth
Annual Conf. Fault-Tolerant Computing, 1978, pp. 75–82.

[AK95] D. Appenzeller, and A. Kuehlmann, “Formal Verification of a PowerPc
microprocessor,” in Proceedings of the IEEE International Conference on Computer
Design, 99. 79-84, Oct. 1995.

[ARM99] ARM Limited, AMBA™ Specification (Rev 2.0), 1999, available at
www.arm.com

[Ber81] C. Berman, “On logic comparison,” in Proceedings of the 18th ACM/IEEE
Design Automation Conference, pp. 854-861, Jun. 1981

[BCCZ99]A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking using
SAT procedures instead of BDDs, “ in Proceeding of the Design Automation Conference,
Jun. 1999.

[BCL+90] J. Burth, E. Clarke, D. Long, K. MaMillian, D. Dill, and L. Hwang, “Symbolic
model checking: 1020 states and beyond,” in IEEE Symposium on Logic in Computer
Science, pp. 428-439, Jun. 1990.

[BCL91]J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic Model Checking with
partitioned transition relations”, in Proceedings of the International Conference on Very
Large Scale Integration, Edinburgh, Scotland, August 1991.

[Ben99] N. F. Benschop, “Multiplier for the multiplication of at least two figures in an
original format” US Patent Nr. 5,923,888, July 13, 1999.

110

[Ber02] Reinaldo A. Bergamaschi, “The A to Z of SoCs,” in Proceedings of the
IEEE/ACM international conference on Computer-aided design, pp790-798, 2002

[BR00] T. Ball, and S. K. Rajamani, “Boolean Programs:A Model and Process for
Software Analysis,” Microsoft Research Publications, 2000

[BRB90] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a BDD
package,” in Proc. Design Automation Conf., 1990, pp. 40–45.

[Bry86]R. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Trans. Computers, vol. 35, pp. 677–691, Aug. 1986.

[Bra+web] R. Brayton et al.http://www-cad.eecs.berkeley.edu/Software/software.html

[Bra+web*] R. Brayton et al. VIS: A system for verification and synthesis.
http://vlsi.colorado.edu/vis/.

[BS98] J. R. Burch and V. Singhal, “Tight Integration of Combinational Verification
Methods,” in Proceedings of the International Conference on Computer Aided Design,
pp. 570-576, 1998.

[BT89] C. Berman, and L. Trevillyan, “Functional comparison of logic designs for VLSI
circuits,” in Digest of Technical Papers of the IEEE International Conference on
Computed-Aided Design, pp. 456-459, Nov. 1989.

[BW96] B. Bollig, and I. Wegener, “Improving the variable ordering of OBDDs is NP-
complete,” IEEE Transactions on Computers, vol. 45, no. 9, 1996, pp. 993-1002.

[CBM89] O. Coudert, C. Berthet, and J. Madre, “Verification of sequential machines
using Boolean functional vectors,” in IMEC-IFIP International Workshop in Applied
Formal Methods for Correct VLSI design, pp. 111-128, Nov. 1989.

[CCJ+01a] P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang, “Using
combinatorial optimization methods for quantification scheduling”, In Proceedings of the
11th Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME), September 2001.

[CCJ+01b]P. Chauhan, E. Clarke, S. Jha, J. Kukula, T. Shiple, H. Veith, and D. Wang,”
Nonlinear Quantification Scheduling in Image Computation”, In Proceedings of
International Conference on Computer Aided Design (ICCAD), 2001.

[CCK03] P. Chauhan, E. M. Clarke, D. Kroening, “Using SAT Based Image Computation
for Reachability Analysis,” Technical Report CMU-CS-03-151, Carnegie Mellon
University, School of Computer Science, July, 2003

111

[CE81] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” In the Proceedings Workshop on Logics
of programs, pp:52-71, Berlin, 1981, Springer-Verlag, LNCS 131.

[CEJS98] E. Clarke, E. Emerson, S. Jha, and A. Sistla, “Symmetry reduction in model
checking, ” in Proceeding of 10th Conference on Computer Aided Verification, pp. 147-
158, 1999.

[Cho95] H.Cho, et. al. “Approximate Finite State Machine Traversal: Extensions and
New Results,” International Workshop on Logic Synthesis (IWLS'95).

[CI+95] A. Chandra et. al., “AVPGEN – A Test Generator for Architecture Validation,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol 3, No 2, June
1995

[CLR01] T. Cormen, C. Leiserson, R. Rivest, C. Stein, “Introduction to Algorithm”, 2nd
edition, The MIT Press, 2001, pp. 879-880.

[DLL62] M. Davis, G. Logemann and D. Loveland, “A Machine Program for Theorem-
Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397, 1962.

[DO76] W. Donath, and H. Ofek, “Automatic identification of equivalence points for
Boolean logic verification,” IBM Technical Disclosure Bulletin, Vol. 18, No. 8, pp.
2700-2703, 1976

[DBG95] R. Drechsler, B. Becker, and N. Göckel, “A genetic algorithm for variable
ordering of OBDDs”, ”, In Proceedings of the International Workshop on Logic
Synthesis, Granlibakken, CA, May 1995.

[Dr98] R. Drechsler, Evolutionary Algorithm for VLSI CAD, Kluwer Academic
Publication, 1998.

[Fi05] A. Fit-Florea, “Extending Hardware Support for Arithmetic Modulo 2k,”
Dissertation, Dept. of Computer Science and Engineering, Southern Methodist
University, 2005

[FM04] A. Fit-Florea, D. W. Matula, “A Digit-Serial Algorithm for the Discrete
Logarithm Modulo 2k ”, Proc. ASAP, IEEE, 2004, pp. 236-246.

[FMT05a] A. Fit-Florea, D. W. Matula, M. A. Thornton, “Additive Bit-serial Algorithm
for the Discrete Logarithm Modulo 2k ”, IEE Electronics Letters Jan. 2005, Vol. 41, No.
2, pp: 57-59.

112

[FMT05b] A. Fit-Florea, D. W. Matula, M. A. Thornton, “Addition-Based
Exponentiation Modulo 2k ”, IEE Electronics Letters, Jan. 2005, Vol. 41, No. 2, pp: 56-
57.

[GB94]D. Geist and I. Beer, “Efficient Model Checking by automated ordering of
transition relation partitions”, in Proceedings of Sixth Conference on Computer Aided
Verification (CAV), vol. 818 of LNCS, Stanford, USA, 1994, pp. 299–310.

[GDP99] S. G. Govindaraju, D. L. Dill, and J. P. Bergmann, “Improved Approximate
Reachability using Auxiliary State Variables,” in Proceedings of the Design Automation
Conference, June 1999, pp. 312-316.

[GL85] D.E. Goldberg, and R. Lingle. “Alleles, loci, and the traveling salesman
problem,” In Int'l Conference on Genetic Algorithms, 1985, pp. 154-159.

[GN02] E.Goldberg, Y.Novikov, “BerkMin: a Fast and Robust SAT-Solver,” In
Proceeding of DATE, 2002, pp. 142-149.

[GW94] P. Godefroid, and P. Wolper “A partial approach to model checking,”
Information and Control, pp. 305-326, 1994.

[GYA01] A. Gupta, Z. Yang, P. Ashar, L. Zhang, S. Malik. “Partition-based decision
heuristics for image computation using SAT and BDDs”. in Proceedings of the Intl. Conf.
on Computer-Aided Design (ICCAD), 2001.

[HC98] Shi-Yu Huang, Kwang-Ting Chang, Formal equivalence checking and design
debugging, Kluwer Academic Publishers, Boston, 1998

[HKWF02] S. Hazelhurst, G. Kamhi, O. Weissenberg and L. Fix. “A Hybrid
Verification Approach : Getting Deep into the Design,” in Proceedings of the Design
Automation Conference. 2002.

[Hoa69] C. Hoare, “An Axiomatic Basis for Computer Programming,” Communications
of the ACM, 12:576-580, 1969

[HS01] S. Hassoun, and T. Sasao, Logic Synthesis and Verification, Kluwer Academic
Publishers, 2001

[HS97] S. Hazelhurst and C-J Seger, “Symbolic Trajectory Evaluation.” in T. Kropf,
editor, Formal Hardware Verification, ch. 1, pp 3-78, Springer Verlag; New York, 1997.

[JKS02] H. Jin, A. Kuehlmann and F. Somenzi, “Fine-Grain Conjunction Scheduling for
Symbolic Reachability Analysis,” Tools and Algorithms for the Construction and
Analysis of Systems (TACAS'02), 2002, pp 312-326.

113

[Jas04] Jason Andrews “Co-Verification of Hardware and Software for ARM SoC
Design,” Newnes, 2004

[Jas:web] Jason Andrews “Improving HW/SW Co-Verification with SoC Verification
Matrix,” http://www.techonline.com/community/tech_group/soc/tech_paper/36644

[JMH00] J. Jang, In-Ho Moon, G. Hachtel, “Iterative Abstraction-based CTL Model
Checking, ”, in Proceedings of the Conference on Design, Automation & Test In Europe,
pp. 520-507, Mar., 2000.

[KG99] Christoph Kern, and Mark Greenstreet “Formal verification in hardware
design: a survey,” ACM Transactions on Design Automation of Electronic Systems, Vol.
4, Iss. 2, pp: 123-193, 1999.

[Knu81]D. Knuth, “The Art of Computer Programming: Seminumerical Algorithms”
Addison Wesley, Vol. 2, 2nd Edition, 1981, pp: 441-466.

[KP03] Hyeong-Ju Kang, and In-Cheol Park. “SAT-based unbounded symbolic model
checking,” in Proceedings of Design Automation Conference (DAC'03), pp. 840-843,
2003.

[KS03] K. Kang and S.A. Szygenda, “Accurate Logic Simulation by Overcoming the
Unknown Value Propagation Problem”, Simulation Journal, Vol. 79, Issue2, February
2003.

[Lee59] C. Y. Lee, “Representation of switching circuits by binary decision programs,”
Bell System Techn. J., vol. 38, no. 4, pp. 985–999, June 1959.

[LFTM06] L Li, Alex Fit-Florea, M. A. Thornton, D. W. Matula “Performance
Evaluation of a Novel Table Lookup Method and Architecture for Integer Functions,”
submitted to ASAP 2006.

[LFTM05] L Li, Alex Fit-Florea, M. A. Thornton, D. W. Matula “Hardware
Implementation of an Additive Bit-Serial Algorithm for the Discrete Logarithm Modulo
2k,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), May. 2005, pp.
130-135.

[LHS:04] Bin Li, Michael S. Hsiao, and Shuo Sheng "A novel SAT all-solutions solver
for efficient preimage computation," in Proceedings of Design Automation and Test in
Europe (DATE) Conference, Feb., 2004, pp. 272-277.

[LJ00] C.-N. J. Liu and J.-Y. Jou, “An Automatic Controller Extractor for HDL
Descriptions at the RTL,” IEEE Design & Test of Computers, pp. 72-77, July-September
2000.

114

[LPJ+96] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi “Tearing based
abstraction for CTL model checking,” in Proceedings of the IEEE International
Conference on Computed-Aided Design, pp. 76-81, Nov. 1996

[LOT06] L. Li, P. Ongsakorn, M. Thornton, F. Coyle, S. Syzgenda “Automatic High
Level Assertion Generation and Synthesis for Embedded System Design,” under
preparation.

[LT05] L Li, M. A. Thornton, “BDD-Based Conjunctive Decomposition Using a Genetic
Algorithm and Dependent Variable Affinity,” in Proceedings of the IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing (PACRIM), 2005, pp.
277-280

[LTM06] L Li, M. A. Thornton, D. W. Matula “A Fast algorithm for the integer
powering operation,” to be appear in GLSVLSI 2006

[LTS04] L Li, M. A. Thornton, S. Syzgenda “A Genetic Approach for Conjunction
Scheduling in Symbolic Equivalence Checking,” IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), Feb. 2004, pp. 32-36

[LTS05] L Li, M. A. Thornton, S. Syzgenda “Combining Simulation and Formal
Verification for Integrated Circuit Design Validation,” Proc. 9th World Multi-
Conference on Systemics, Cybernetics and Informatics (WMSCI), 2005, pp. 92-97. (best
paper in the session: Simulation and Applications of Modeling)

[LTS06] L Li, M. A. Thornton, S. Syzgenda “Combining BDD and SAT for Pre-image
Computation,” In preparation.

[Mal+web] S. Malik, et. al http://www.princeton.edu/~chaff/

[Mar+web] João Marques, http://sat.inesc-id.pt/~jpms/grasp/

[MFT05] D. W. Matula, A. Fit-Florea, M. A. Thornton, “Table Loopup Structures for
Multiplicative Inverses Modulo 2k ”, 17th Symp. Comp.Arith., June 27-29, 2005, pp. 130-
135.

[MS96a] João P. Marques-Silva and Karem A. Sakallah, "GRASP -- A New Search
Algorithm for Satisfiability," in Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, November 1996.

115

[MS96b] João P. Marques-Silva and Karem A. Sakallah, "Conflict Analysis in Search
Algorithms for Propositional Satisfiability," in Proceedings of the IEEE International
Conference on Tools with Artificial Intelligence, November 1996.

[Mcm02]Ken McMillan. “Applying SAT methods in unbounded symbolic model
checking,” in Proceedings of the International Conference on Computer-Aided
Veri_cation (CAV'02), vol. 2404, pages 250-264, 2002.

[MHB98] G. Manku, R. Hojati, and R. Brayton, “Structural Symmetry and in model
checking,” in Proceeding of 10th Conference on Computer Aided Verification, pp. 159-
171, 1999.

[MS00] I. Moon and F. Somenzi, “Border-block triangular form and conjunction
schedule in image computation”, in Proceedings of the Formal Methods in Computer
Aided Design (FMCAD), vol. 1954 of LNCS, November 2000, pp. 73–90.

[MTS04] R. Marcyzynski, M.A. Thornton, and S.A. Szygenda, “Test Vector Generation
and Classification Using Symbolic FSM Traversals,” International Symposium on
Circuits and Systems, pp. V-309 – V-312, May 2004.

[Par00]B. Parhami, “Computer Arithmetic Algorithms and Hardware Designs”, Oxford
University Press, 2000, pp. 383-384.

[Phi01]Lars Philipson, “Survey compares formal verification tools”, EE Design, Nov.
2001, URL: http://www.eedesign.com/article/showArticle.jhtml?articleId=17407560

[PIWC04] G. Parthasarathy, M. Iyer, Li Wang, and K.Cheng, "Efficient Reachability
Analysis Using Sequential SAT", in Proceeding of Asia and South Pacific Design
Automation Conference(ASP-DAC), Jan, 2004.

[PMV98]V. Paruthi, N. Mansouri and R. Vemuri, “Automatic Data Path Abstraction for
Verification of Large Scale Designs,” in Proceedings of the IEEE International
Conference on Computer Design, pp. 192-194, 1998.

[PM04] Carl Pixley, Sharad Malik, “Exploring synergies for design verification,” IEEE
design and test of computers, pp: 461-463, Nov.-Dec., 2004

[Rot77] J.Roth, “Hardware verification,” IEEE Transactions on Computers, Vol. C-26,
pp. 1292-1294, Dec. 1977

[RAP+95] R. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. Brayton, “Efficient BDD
algorithms for FSM synthesis and verification,” in Proceedings of International
Workshop on Logic Synthesis, Lake Tahoe, 1995.

116

[RL:web] K. Rustan and M. Leino, “A SAT Characterization of Boolean-program
Correctness,” Microsoft Research, SLAM Project web page.

[Som+web] F. Somenzi et al. CUDD: University of Colorado Decision Diagram Package.
http://vlsi.colorado.edu/~fabio/CUDD/.

[SB95] Carl Seger, and Randy Bryant, “Formal verification by symbolic evaluation of
partially ordered trajectories,” Formal Methods System Design, Vol. 6, Iss. 2, pp: 147-
189, 1995.

[SD02] K. Shimizu and D. L. Dill, “Using Formal Specifications for Functional
Validation of Hardware Designs,” IEEE Design & Test of Computers, pp. 96-106, July-
August 2002.

[SGC+05] J.E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash, N. Illiev, N.
Jachimiec, “A Framework for High-Level Synthesis of System-on-Chip Designs,” In
Proceedings of IEEE International Conference on Microelectronic Systems Education,
2005, pages 67-68.

[SH03] Shuo Sheng and Michael Hsiao. “Efficient preimage computation using a novel
success-driven ATPG,” in Proceedings of Design Automation and Test in Europe
(DATE'03), 2003.

[ST67] N. S. Szabo, R. I. Tanaka, “Residue arithmetic and its applications to computer
technology”, McGraw-Hill Book Company, 1967.

[Syn03] Synopsys Design/physical Compiler Student Guide. 2003.

[Szy90] S. A. Szygenda, “The Simulation Automation System, Using Automatic Program
generation, for Hierarchical Digital Simulation Systems,” in Proceedings of the European
Simulation Conference, 1990

[Tar55] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific J.
Math., 5:285-309, 1955

[TD01] M. A. Thornton, and R. Drechsler, “Evolutionary Algorithm Approach for
Symbolic FSM Traversals,” IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), August 26-28, 2001, pp. 506-509.

[TK01] S. Tasiran and K. Keutzer, “Coverage Metrics for Functional Validation of
Hardware Designs,” IEEE Design & Test of Computers, pp. 36-45, July-August 2001.

[TSL+90] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Implicit enumeration of finite state machines using BDDs”, in Proceedings of the

117

International Conference on Computer Aided Design (ICCAD), November 1990, pp.
130–133.

[Yan99]B. Yang, Optimizing Model Checking Based on BDD Characterization, PhD
thesis, Carnegie Mellon University, May 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

