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Chip capacity follows Moore's law, and chips are commonly produced at the time of 

this writing with over 70 million gates per device. However, ensuring correct functional 

behavior of such large designs becomes more and more challenging. 

Simulation is a predominantly used tool to validate a design in industry. Simulation 

can validate all possible behaviors of a design in a brute-force manner. However, rapidly 

evolving markets demand short design cycles while the increasing complexity of a design 

necessarily dictates that simulation coverage is less and less complete. Formal 

verification validates the correctness of the implementation of a design with respect to its 

specification by applying mathematical proofs. 

Image/Pre-Image computation is a core algorithm in formal verification. Binary 

Decision Diagram (BDD) -based methods are usually faster but can exceed memory 

capacity for some types of designs which therefore limits scalability. Satisfiability (SAT) 

solvers are less vulnerable to memory explosion but slow when all the satisfied solutions 
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are required in image computation. In this work, a genetic algorithm based conjunctive 

scheduling solution is presented to enhance BDD-based image computation. A way of 

combining BDD and SAT approaches for image computation is also presented to solve 

the state space explosion in image computation. A BDD-based approximation method is 

used to calculate the over- and under- boundaries of reachable states. A SAT solver is 

used to find the remaining states. The SAT solver is enhanced by techniques referred as 

“early detection” and “expansion” to find a satisfiable assignment containing more don’t 

cares.  

Formal verification itself cannot solely accomplish the validation task. Thus, 

combining different approaches together to serve the purpose of validation of digital 

circuits attracts our attention. The third part of this work focuses on the Integrated Design 

Validation (IDV) system that develops an integrated framework to the design validation 

and takes advantage of current technology in the areas of simulation and formal 

verification resulting in a practical validation engine with reasonable runtime. To 

demonstrate the ability of the IDV system, IDV is applied to two practical application 

circuits designed in our lab for the SRC sponsored arithmetic circuit project.  
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CHAPTER 1 

1. INTRODUCTION 

 

VLSI design sizes grow as VLSI fabrication technology can handle smaller and 

smaller feature sizes. With the success of CAD tools in logic synthesis and the use of 

hardware description languages, such as Verilog and VHDL, chip capacity (in terms of 

the number of transistors per chip) follows Moore's law and chips are commonly 

produced at the time of this writing with over 70 million gates per device. Large gate 

counts and high operating frequencies allied with new chip architectures lead to 

considerable increases in processing power. 

However, ensuring correct functional behavior of such large designs becomes more 

and more challenging. Simulation, emulation, and formal verification are three 

techniques available for validating a design.  

Simulation is a predominantly used tool to validate a design in industry. Simulation can 

validate all possible behaviors of a design in a brute-force manner where input patterns 

are applied to the design and the resulting behavior is compared with expected behavior. 

Simulation allows some measure of functional and timing validation, and offers ease of 

use, relatively low cost, and sophisticated debugging. It can also handle very large 

circuits. However, rapidly evolving markets demand short design cycles while the 
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increasing complexity of a design necessarily dictates that simulation coverage is less and 

less complete. A design with n inputs has 2n  possible input vectors, which is clearly too 

complex for using simulation for the purposes of verification. This exponential growth of 

simulation requirements results in significant simulation times making simulation an 

impractical approach even for the validation of the absence of specific design errors. 

Emulation made its appearance to accelerate simulation by hardware in the 1980’s. 

Instead of simulating a software model of the design, a designer could run the stimuli on 

a hardware prototype of the design. Programmable logic, such as Field Programmable 

Gate Arrays (FPGAs), enabled emulation by programming/implementing any arbitrary 

logic design into these devices. Although emulation provides two to four orders of 

magnitude speedup over software simulation on average, it comes at a cost. Fitting the 

design under validation into FPGAs is a complex task. Even with the speed benefits, 

emulation retains the important limiting characteristic of simulation resulting in the 

validation of only a small fraction of the possible input stimuli. Therefore, it is very hard 

for simulation/emulation to find the so-called corner-case bugs.  

Formal verification validates the correctness of the implementation of a design with 

respect to its specification by applying mathematical proofs. Hence, formal verification 

conducts an exhaustive exploration of all possible behavior implicitly instead of explicit 

enumeration of an exponential number of possible behaviors that simulation and 

emulation require. Formal verification has attracted a lot of attention in the past few 

years. The most successful methods to date are equivalence checking [HC98], model 

checking [CE81], theorem proving [Hoa69], and symbolic trajectory evaluation [HS97].  
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Equivalence checking methods have led to significant success in industry. 

Correctness is defined as the functional equivalence of two designs (i.e. a gate-level 

design matches its desired behavior as specified at the Register Transfer Language (RTL) 

level). Because of the computational complexity of formal equivalence checking, a 

design methodology typically adopts specific rules to make the problem tractable for 

large designs. In practice, the specification and implementation of a design often have a 

large degree of structural similarity in terms of internal nets that implement the same 

function. For example, equivalence checking can check if the designs have corresponding 

latches. Once the correspondence between latches of a reference design and an 

implementation has been discovered, equivalence checking is just a matter of showing 

that corresponding latches have the same next-state function. This has proven to be very 

valuable in validating that an implemented gate-level design matches its desired behavior 

as specified at the RTL. 

Another promising direction is model checking. The focus of model checking is to 

check whether the design, either in its specification or its implementation form, satisfies 

certain properties. Unlike equivalence checking, which limits itself to one step in time, 

model checking considers all time steps in the future. For example, checking that a design 

never deadlocks, or that each request is eventually responded to, requires the 

consideration of sequences having an unbounded length. Recently, model checking is 

beginning to be accepted by industry for integration into the verification flow. It is 

typically used in establishing the correctness of interfaces between components, as well 

as in uncovering difficult-to-find corner case bugs in designs [PM04].  
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Three leading Electrical Design Automation (EDA) vendors, Cadence, Synopsys and, 

Mentor Graphics, offer equivalence checking tools as a mature technology. They started 

to market their model checking tools recently. There are a number of smaller companies 

specializing in formal tools, all established within the last several years. Typically these 

companies specialize in property verification. Lar [Phi01] conducted a survey on 

commercial tools in equivalence checking and model checking in 2001. Tables 1.1 and 

1.2 describe commercial equivalence checking tools and property checking tools. Some 

information is extracted from [Phi01] and is updated in the following tables. 

Table 1.1 Comparison of Equivalence Checking Tools 
 

Product Formality Encounter Conformal Formal Pro 
Manufacturer Synopsys Cadnece Mentor GraphicsBasic 

Website www.synopsys.com www.cadence.com www.mentor.com
BDD * * * 
SAT * * * 

Symbolic methods  *  
Data Structure 

ATPG * * * 
 

Table 1.2 Comparison of Model Checking Tools 
 

Product Verifier 
Design 

Verity-Check
imPROVE-

HDL Solidify Verix 
Manufacturer HDL Veritable TransEDA Averant RealIntent Basic 

Website www.athdl.
com 

www.veritabl
e.com 

www.transeda
.com 

www.avera
nt.com 

www.realinten
t.com 

Design 
decomposition * * * * * 

Property 
decomposition  *  * * 

Data 
Structure 

Abstraction * *  * * 
Language 

name Verilog  PEC HPL  

Language style Verilog Forms Keywords Verilog Keywords 
Inline *   * * 

Separate from 
design * * * *  

Property 
Specification 

Simulatable *    * 
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In the above introduction, three techniques for the validation of digital designs are 

mentioned. The first part of this research is focused on formal methods where the existing 

methods are extended to improve efficiency. In the second part of the research we will 

concentrate on building the Integrated Design Validation (IDV) platform that combines 

formal verification methods and simulation techniques to provide a reliable environment 

for the validation of digital designs.  

The remainder of this dissertation is organized as follows: Chapter 2 provides details 

regarding the fundamental data structures and algorithms used in equivalence and model 

checking, such as Boolean Satisfiability (SAT), and function representations such as 

Binary Decision Diagrams (BDDs). Chapter 3 reviews existing techniques for 

equivalence checking and model checking first, then two approaches are presented to 

leverage the memory usage and run-time for image computation resulting in a core 

algorithm for both equivalence checking and model checking. Chapter 4 describes the 

IDV system that combines formal verification methods and simulation techniques to 

provide a reliable environment for the validation of some types of designs. In Chapter 5, 

two designs are validated using the IDV system that can not be validated by any single 

tool. We conclude and discuss future work in Chapter 6.  
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CHAPTER 2 

2. BACKGROUND 

 

In this chapter, basic data structures and algorithms, such as Boolean functions, 

Binary Decision Diagrams (BDDs), and the Boolean Satisfiability Problem (SAT), are 

introduced.   

 

2.1 Fundamental Data Structures and Algorithms  

2.1.1 Boolean Functions and Finite State Machines 

A Boolean function with n-inputs and one output is a mapping, : nf B B→ where B 

= {0,1}. The support of a Boolean function f, denoted as supp(f), is defined as the set of 

variables on which the function f depends. 

Multilevel circuits are typically represented as a Boolean network. A Directed Acyclic 

Graph (DAG) whose nodes represent Boolean functions is defined in the following 

paragraph. 

A Boolean network N with n primary inputs X = 1{ ,..., }nx x and m primary outputs 

Z = 1{ ,..., }mz z  can be viewed as a set of m single output Boolean functions defined as 

f:Bn  Bm. Let λ  be 1{ ( ),..., ( )}mX Xλ λ where iλ  is an output function. A characteristic 

function of a Boolean network N is defined as a Boolean function C( X , Z , λ ) such that 
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C( X , Z , λ ) = 1 ⇔ ( )i iz Xλ≡ . In other words, a characteristic function maps every 

valid input/output combination to ‘1’, and every invalid combination to ‘0’. 

Computationally, the characteristic function can be derived by the following formula 

[HC98]:  

C( X , Z , λ )=
1

( , , )
n

i i i
i

C z X λ
=
∏ =

1
( ( ))

n
i i

i
z Xλ

=
∏ ≡     

where ( a b≡ ) corresponds to ( )ab ab+ , Ci( X , iz , iλ ) is also called a “bit function”.  

A synchronous sequential circuit or machine can be represented as an Finite State 

Machine (FSM). An FSM is a quintuple, { , , , , }M S X Y λ δ= , where X  denotes input 

wires, Y denotes output wires, S  is a set of states, δ  is the next state function, and λ  is 

the output function. The next state function is a completely-specified function with 

domain ( X S× ) and range S . A Huffman model [HC98] is shown in Figure 2.1.  

 

 
Figure 2.1 Huffman Model 

 

State space traversal is the basic procedure for equivalence and model checking. State 

space traversal can be performed explicitly by traversing the State Transition Graph 

Combinational
Logic

Single-bit Registers

x1x2

xm

y1y2

yn

s'1
s'2

s'K

s1
s2

sK
:
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(STG) in either a depth-first or a breadth-first manner.  Figure 2.2 illustrates the breadth-

first strategy for FSM traversal.  

 

 

 

 
 

Figure 2.2 FSM Traversal Using Breadth-First Search 
 

iR  represents the set of all reachable states at the ith iteration. The iteration procedure 

begins at a reset state 0R  and stops at a fixed-point [Tar55] where the reachable states in 

two consecutive iterations are identical, i.e. 1i iR R+ = . At each iteration the next set of 

reachable states of iR  is computed and denoted as 1iN + . The set of reachable states in 

iteration i+1 will be 1 1i i iR R N+ += + .  An example of such a traversal is shown in Figure 

2.3. The first graph shows the STG while the second one shows the breadth-first search 

process. 

 

 

 

 

 

FSM_traveral() 
{ 
  // continue loop until fixed point 
  Ri = R0; 
  while(Ri+1!=Ri){ 
      // Breadth-first search 
      Ni+1=Breadth_First_Search(Ri); 
      Ri+1 =Ni+1∪  Ri ; 
} 
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Iteration Reachable states 

0 {S0} 

1 {S0, S1, S5,} 

2 {S0 , S1 , S2 , S4 , S5} 

3 {S0, S1, S2 , S3 , S4 ,S5} 

4 {S0, S1, S2, S3, S4, S5} 

 
Figure 2.3 Example for FSM Traversal 

 

The explicit method of traversal is simple but impractical for large digital designs 

since the STG will quickly exceed memory capacity. Thus, a symbolic, implicit state 

enumeration process is desired.  

 

2.1.2 Image Computation Using the Transition Relation 

Given an FSM and its characteristic function represented as a Boolean function 

( , , )TR S X S ′ , the following formulation is possible. Variable sets S = 1,..., ns s , S′ = 

1,..., ns s′ ′ , and X = 1,..., nx x  are the current state, next state, and input variables 

respectively. In sequential circuit designs, characteristic functions can be represented as a 

transition relation, this transition relations will be used in the remainder of this document. 

For a deterministic circuit, each binary memory element of the circuit under 

consideration gives rise to yet another term of the transition relation. When the circuit is 
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synchronous, the partitioning is conjunctive and it can be written as the product of bit 

relations. In this work, it is assumed that the transition relation is given as a product of 

the bit relations iTR s.  

( , , )TR S X S ′  = 
1

( , , )
n

i i i
i

TR S X S
=

′∏ =
1

( ( , ))
n

i i
i

S X Sδ
=

′ ≡∏  

The transition relation uniquely represents the sequence of states the machine will 

sequence through in response to a set of present states and input assignments. In the 

process of state space traversal, it is only interested in knowing if there exists a transition 

that brings the machine from state p to state q, while the specific input vector required to 

exercise a particular transition is not of interest. The smoothed transition relation is 

computed by smoothing (existentially quantifying out) every primary input variable from 

a transition relation. This operation is defined as follows:  

Let 0 1( , ,..., )nf x x x  be a Boolean function. Then the functions 
ixf  and 

ixf  are 

referred to as the positive and negative cofactors, respectively, of function f  with 

respect to ix .  

0 1( , ,..., 1,..., )
ix i nf f x x x x= =  

0 1( , ,..., 0,..., )
ix i nf f x x x x= =  

The existential quantification of f  with respect to the variable ix  is defined as  

( )
i ii x xx f f f∃ = +  

The existential quantification of f  with respect to a set of variables, e.g., 

1 2{ , ,... }mX x x x=  is defined as a sequence of single variable smoothing operations. 
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1 2( ) ( ...( ))mX f x x x f∃ = ∃ ∃ ∃  

The transition relation defines a many-to-many projection from the present state 

space to the next state space as shown Figure 2.4.  

 

Figure 2.4 TR Projection 
 

Based on the projection, the next reachable states of iR  can be computed and denoted 

as 1iN + , which is also referred to as the image of iR . The procedure of the computation is 

referred to as an image computation and represented as  

( )1 . . ( , , )i i i i iN S X R TR S X S+ ′= ∃ ∃ ∧         

Similarly, given a set of next states, iN , the pre-image of iN  is the set of its 

predecessor states  (denoted as 1iR − ) and is computed by  

( )1 . . ( , , )i i i i iR S X N TR S X S− ′ ′= ∃ ∃ ∧          

Image (pre-image) computation is a core technique for many equivalence and model 

checking algorithms.   
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2.1.3 Symbolic FSM State Space Traversal 

A fixed point of a function τ  is any p such that ( )p pτ = . A function τ  is monotonic 

when p q⊆ implies ( ) ( )p qτ τ⊆ . Tarski [Tar55] showed that a monotonic function has a 

least fixed point, which is the intersection of all the fixed points. It also has a greatest 

fixed point, which is the union of all the fixed points. Figure 2.5 shows the procedure to 

compute the least (greatest) fixed point of τ : 

 

 

 

 

 

 

 

Figure 2.5 Least (greatest) Fixed Point Computation 
 

Based on the transition relation and least fixed point computation, an implicit state 

enumeration (often referred to as symbolic FSM traversal) can be described as given in 

Figure 2.6.  

 

 

 

 

 

Least (or Greatest) fixed point() 
{ 
  //initialization 
  let Y = False; (or Y=True;) 
  // continue loop until fixed point 
  do 
       let Y’ = Y; Y =  ∪ (Y); 
  until Y’ = Y; 
  return Y; 
} 
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Figure 2.6 Symbolic FSM Traversal 
 

The procedure in Figure 2.6 provides the detailed procedure for an image 

computation of a FSM. Representing transition relations and reachable states will be 

addressed in the next section.  

 

2.1.4 Binary Decision Diagrams  

Binary Decision Diagram (BDD) is data structures used to represent Boolean 

functions. The concept of BDDs was first proposed by Lee [Lee59] in 1959. The idea 

was then developed into a useful data structure for Boolean function representation by 

Akers [Ake78] and subsequently refined by Bryant [Bry86], who introduced the concept 

of Reduced, Ordered BDDs (ROBDDs) along with a set of efficient operators for their 

manipulation and proved the canonicity property of ROBDDs.  

A BDD is a rooted, directed, acyclic graph. There are two types of nodes in the graph: 

terminal and non-terminal nodes.  The terminal node is labeled with either a constant 0 or 

constant 1 and has no outgoing edges. Each non-terminal node is labeled with one binary 

FSM_traversal() 
{ 
  // continue loop until fixed point 
  Ri  = R0; 
  Ri+1 = ∪ ; 
  //least fixed point computation 
  while(Ri+1!=Ri){ 
      // image computation 
      ∪ ;  
       Ri+1 =Ni+1 ∪ Ri ; 
} 
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variable (for example ix ) and has two outgoing edges, T (Then) and E (Else). Here T and 

E edges are connected to the positive (then) and negative (else) cofactors, respectively, of 

function f  with respect to the binary variable ( ix ). Thus, BDD nodes represent the 

Boolean function f  according to the Shannon expansion theorem: 

0 1( , ,..., ) ( ) ( )
i in i x i xf x x x x f x f= ∧ ∨ ∧  

In a ROBDD, no sub-graph is isomorphic to another. Also, all variables appear in the 

same order in every path. This allows for a canonical representation of Boolean 

functions. The order of the variables can have a big impact on the size of the BDDs. 

Some functions exist, e.g. adder, whose sizes vary from linear to exponential for different 

variable orders. There are also some functions, e.g. multiplier, whose sizes are 

exponential for any variable orders. The complexity of finding an optimal order is NP-

hard [BW96].   

The size of a BDD can be further reduced by introducing complement edges, 

[Ake78], [BRB90]. Basically, a complement edge (c-edge), points to the complementary 

form of the function (BDD node). To maintain canonicity, it is assumed that a 

complement edge can only be assigned to the 0-edge. In the rest of the paper, BDD refers 

to a ROBDD.  

A graphical example of a BDD with different orders for the Boolean function 

f wx wyz wxz= + +  is shown in Figure 2.7, while a with the order 0 ( , , , )w y x zπ  and b 

with the order 1( , , , )w x y zπ . From Figure 2.7, you can see the importance of variable 

ordering for a BDD. 
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a                                                                   b 

Figure 2.7 BDD Representation 
 

It is impractical to build a monolithic characteristic function BDD for an entire 

Boolean network for designs that the number of state bits exceeds a few hundred or 

designs contains some functions, i.e. multiplier, whose sizes are exponential with any 

given order. Functional decomposition is an important strategy to reduce the size of 

BDDs. 

 

2.1.5 The Boolean Satisfiability Problem  

The Satisfiability (SAT) problem, deciding whether a given Boolean formula is 

satisfiable, is one of the well-known NP-complete problems.  Recently, modern SAT 

solvers, like zChaff [Mal+web], Grasp [Mar+web] and Berkmin [GN02], have 

demonstrated tremendous success. The key elements in modern SAT solvers are non-



16 

chronological backtracking, efficient conflict driven learning of conflict clauses, and 

improved decision heuristics. 

A Boolean formula for a SAT solver is typically specified in Conjunctive Normal 

Form (CNF) which consists of a set of clauses. Each clause is a set of literals, and each 

literal is an instance of a variable or its complement. A clause represents the disjunction 

of a set of literals. 

The basic framework for modern SAT solvers is based on the Davis-Putnam-

Longeman-Loveland (DPLL) backtracking search [DLL62], shown in Figure 2.8. The 

function decide_next_branch() chooses the branching variable at the current decision 

level. The function deduce() accomplishes Boolean Constraint Propagation (BCP) to 

deduce further assignments. BCP checks if a partial assignment leaves any clause with 

only one unassigned literal and all other literals with value 0, then for that clause to be 

true, the last literal must be assigned the value 1. This is also referred to as implication. In 

the process, it might infer that partial assignments to variables do not lead to any 

satisfying solutions. This is referred to as a conflict. In the case of a conflict, new clauses 

are created by analyze_conflict() that is used to prevent entering the same unsuccessful 

search space in the future. After a conflict is detected, the SAT solver backtracks to the 

variable that causes the conflict. This variable may not be the most recent variable 

decided, referred to as a non-chronological backtrack. If all variables have been decided, 

then a satisfying assignment is found and the procedure returns. The strength of various 

SAT solvers lies in their implementation of BCP, non-chronological backtracking, 

decision heuristics, and learning. 



17 

 

 

 

 

 

 

 

 
 

Figure 2.8 Basic SAT Procedure 
 
 

2.2 Existing Techniques for Verification 

This section describes existing techniques for equivalence and model checking of 

digital circuits. 

 

2.2.1 Equivalence Checking 

Two designs are functionally equivalent if they produce identical output sequences 

for all valid input sequences. Combinational circuit equivalence checking is more mature 

than sequential circuits equivalence checking. 

There are three basic approaches to combinational equivalence checking. Structural 

methods search for a counter-example that produces a “1” at the output of MITER and 

are usually implemented using SAT solvers. MITER is a circuit that is comprised of two 

circuits being compared as shown in Figure 2.9. All common inputs are tied together and 

all common outputs combined through XOR gates. The output of MITER is one when 

while(true) { 
   if (decide_next_branch()) { // Branching 
      while(deduce()==conflict){//Propagate implications 
         blevel = analyse_conflict(); // Learning 
         if (blevel == 0) 
             return UNSAT; 
         else 
            backtrack(blevel);//Non-chronological backtrack 
      } 
    } 
   else // no branch means all vars have been assigned 
        return SAT; 
} 
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two circuits are not equivalent. Similarly, random simulation is used to find a counter-

example by random search. Functional methods [AK95] are based on a canonical 

function representation for which structural equivalence implies functional equivalence. 

BDDs are widely used for functional methods. The advantage of functional methods is 

their independence with respect to the circuit structure.  

 

Figure 2.9 MITER 
 

Structural SAT solvers can be used directly for equivalence checking [Rot77]. 

However, their direct application for a MITER would require an exponential number of 

backtracks and is therefore impractical. A more practical approach is to exploit structural 

similarities that are based on internal equivalence points, or cutpoints, which are used to 

decompose the equivalence checking problem into small pieces [DO76][Ber81][BT89]. 

These methods are based on the observation that in many equivalence checking cases, 

one of the machines under comparison contains a large number of internal nets that have 

a functionally equivalent counterpart in the other machine.   

General methods for sequential equivalence require the reachable states of both 

designs, modeled as FSMs, are computed simultaneously to demonstrate the absence of 

state pairs with different outputs. A product machine for comparing two FSMs can be 
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built for such a purpose as shown in Figure 2.10, which is also referred to as a MITER in 

[HC98]. 1M  and 2M  are functionally equivalent, if, and only if, the output of the product 

machine produces a “0” for all of the reachable states and input vectors. Thus, it is 

required to systematically explore the state space of the product machine, also referred to 

as state space traversal. However, performing such a traversal is computationally 

expensive and becomes intractable if the number of state bits exceeds a few hundred. 

This is known as the state space explosion problem. There are two basic techniques for 

symbolic state space traversals. The transition function method [CBM89] is based on a 

successive traversal of all next-state functions to determine the resulting states for each 

input. The transition relation method [BCL+90] uses a characteristic function to represent 

all valid state transitions of the product machine. 

 

 

Figure 2.10 Product Machine for Comparing Two FSMs 
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2.2.2 Model Checking 

Model checking verifies whether the implementation of a design satisfies properties 

that are specified in temporal logic. The properties are classified in general as safety and 

liveness properties. A safety property asserts that nothing bad will happen in the design. 

Examples of safety properties are mutual exclusion (no two processes are in the critical 

section simultaneously) and deadlock free (no deadlock state is reached). A liveness 

property asserts that eventually something ‘good’ happens in the design. An example of a 

liveness property is that a design is starvation free (eventually service will be granted to a 

waiting process). 

 The requirements of model checking are a model of the system, a temporal logic 

framework, and a model checking procedure. FSMs are appropriate models for 

representing sequential designs and are widely used to model a system. Temporal logic 

systems are mainly classified as linear-time logics or branching-time logics. In Linear-

time Temporal Logic (referred to as LTL), events are described along a single 

computation path. In branching-time temporal logic, the temporal operators are quantified 

over the paths that are possible from a given set of states. Each type of logic has its 

advantages and disadvantages and different expressive powers. Computational Tree 

Logic (CTL) is the most commonly used temporal logic in model checking. The process 

of model checking consists of computing the set of states that satisfies a given property in 

the design and comparing the satisfying states to the initial states of the design. 

CTL was first proposed by Clark and Emerson as a branching-time temporal logic 

[CE81]. CTL formulae are composed of path quantifiers and temporal operators. The 
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path quantifiers are used to describe the branching structure in the computation tree. 

There are two path quantifiers: 

• A – for all paths, 

• E – there exists a path or for some paths. 

There are four basic temporal operators in CTL: 

• X – next time, 

• F – eventually or in the future, 

• G – Always or Globally, 

• U – until. 

In CTL, every quantifier is followed by a temporal operator. Therefore, there are 

eight basic CTL operators: 

• AX and EX 

• AF  and EF 

• AG and EG 

• AU and EU 

The path quantifier and the temporal operators have the following relations: 

• F φ  ≡  True U φ  

• G φ  ≡  ¬ F φ¬  

• A φ  ≡  ¬ E φ¬  

Then, using these relations, each of the eight CTL operators can be expressed in terms 

of only three operators that are EX, EG, EU. The satisfying set of states for the three 

operators can be computed by the following fixpoint computation. 
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• EX φ  = Pre_Image(T,φ ) 

• EG φ  = ν Z.φ ∧ EX(Z) 

• E[φ  U ψ ] = µ Z. ψ ∨ (φ ∧ EX(Z)) 

Where Pre_Image (T,φ ) is a pre-image computation finding all predecessors of the 

states φ  in one step; µ  and ν  are least and greatest fixpoint operators respectively. 

Notice that the pre-image computation is the basic and key operation in model checking, 

and model checking is performed by a series of pre-image computations. Thus, the main 

challenge of model checking is the state space explosion problem, the same as 

equivalence checking.  

There have been many approaches to alleviate the state space explosion problem in 

model checking, such as abstraction and refinement [LPJ+96][ JMH00], Bounded Model 

Checking [BCCZ99], Symmetry reduction [CEJS98][MHB98], and partial-order 

reduction[GW94][ ABH+97].   

In next chapter, the major approaches to leverage state space explosion in image 

computation are reviewed. Then, two new approaches are presented: one is based on 

genetic algorithms while the other one combines SAT and BDD methods. 
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CHAPTER 3 

3. NEW APPROACHES FOR IMAGE COMPUTATION 

 

3.1 Related work 

Though equivalence and model checking are quite successful, we still have the state 

space explosion problem to contend with. Most of the approaches mentioned before try to 

improve algorithms for model checking and equivalence checking. However, image or 

pre-image computation is the core operation for both equivalence and model checking. 

Therefore, efficient algorithms for image and pre-image computation are going to benefit 

most approaches. Image or pre-image computation work can be classified into three 

categories based on the data structure they use: BDD-based, SAT-based, and hybrid-

based approaches. These three approaches are discussed in the following sections.    

 

3.1.1 BDD-based Approach 

As indicated before, a transition relation defines a many-to-many projection from the 

present-state space to the next-state space. Based on this projection, the image of the 

current reachable states R  can be computed.  If the transition relation is given in a 

normal conjunctive decomposed form, the following equation can be used for image 

computation.    
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Another benefit of image computation on a decomposed transition relation is 

progressive existential quantification. Let Q  denote the variables to be quantified, which 

is Q X S= ∪  and iQ  denotes the set of variables that do not appear in 1 1,..., iTR TR −′ ′ . The 

image computation can be performed as follows: 

Img(R)= 1 1 2 2.( .( .( )))l lQ TR Q TR Q TR R′ ′ ′∃ ∧ ∃ ⋅⋅⋅∃ ∧    

The size of intermediate BDDs and the effectiveness of early quantification depend 

heavily on the order in which BDDs are conjoined in the above equation. For example, 

consider a 3-bit counter with present state variables 1 2 3, ,s s s  and next state variables 

1 2 3, ,s s s′ ′ ′ , where 3s  and 3s′  are the most significant bits. Figure 3.1 shows the state 

diagram of a 3-bit counter.  

 

Figure 3.1 State Diagram of 3-bit Counter 
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The transition relation of the counter can be expressed as: 

1 2 3( , )TR S S TR TR TR′ = ∧ ∧  

where: 1 1 1( )TR s s′= ≡ , 2 2 1 2( )TR s s s′= ≡ ⊕  and 3 3 1 2 3( ( ) )TR s s s s′= ≡ ∧ ⊕ . 

For the order as given in 1 1 2 3( , , )TR TR TRπ , the image computation can be carried out 

as  

1 1 2 2 3 3( ) .{ .[ .( )]}Img R s TR s TR s TR R= ∃ ∧ ∃ ∧ ∃ ∧  

Alternatively, for the order 2 3 2 1( , , )TR TR TRπ , the image computation is  

1 2 3 3 2 1( ) .{ [ ( )]}Img R s s s TR TR TR R= ∃ ∧ ∧ ∧  

It is seen that for order 1π , present state variables can be quantified out in the order of 

3 2 1, ,s s s . While for order 2π , no variables can be smoothed out in the intermediate 

computation. Therefore, order 1π  is better than order 2π  for image computation. So the 

image computation relies on a good decomposition of the characteristic function BDDs 

and a good order for the clustered terms. Finding such an order is referred to as the 

“quantification schedule problem”. 

The importance of the quantification schedule was first recognized by Burch et al. 

[BCL91] and Touati et al. [TSL+90]. Geist et al. [GB94] proposed a simple circuit 

independent heuristic algorithm, in which they ordered conjuncts by minimizing the 

maximal number of state variables of the intermediate BDDs in the process of performing 

the image computation. Ranjan et al. [RAP+95] proposed a successful heuristic procedure 

(known as IWLS95). The algorithm begins by first ordering the bit relations and then 

clustering them, and finally ordering the clusters again using the same heuristics. The 
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order of relations is chosen using four normalized factors; the number of variables that 

will be quantified, the number of present state and primary input variables, the number of 

next state variables that would be introduced, and the maximum BDD index of a variable 

that can be quantified. After the ordering phase, the clusters are derived by repeatedly 

conjoining the bit relations until the size of the clustered BDD exceeds a given threshold, 

at which point a new cluster is started.  

Bwolen Yang improved the IWLS95 heuristic in his thesis [Yan99] by introducing a 

pre-merging phase where bit relations are initially merged pair-wise based on the sharing 

of support variables and the maximum BDD size constraint. Moon et al. [MS00] 

presented an ordering algorithm (known as FMCAD00) based on computing the 

Bordered Block Triangular form of the dependence matrix. Their ordering algorithm 

minimizes the active lifetime of variables, α . Instead of clustering ordered bit relations 

in a sequential order, the bit relations are clustered according to the affinity between 

them. Affinity measures the sharing of the support variables.  

Chauhan et al. [CCJ+01a] extended FMCAD2000 and used combinatorial algorithms 

to improve the performance (i.e. simulated annealing). They also argue in favor of using 

α . All these techniques are static techniques. Subsequently, the same clusters and 

ordering are used for all the image computations during symbolic analysis.  

Chauhan et al. [CCJ+01b] also proposed a non-linear dynamic quantification 

scheduling method by viewing the image computation as a problem of constructing an 

optimal parse tree for the image set. Their “Basic” algorithm is as follows: a heuristic 

score is computed for each variable in a set of variables Q  to be quantified. The variable 
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with the lowest score, say q , is chosen and the two smallest BDDs in whose support set 

q  appears are conjoined. The overall approach is a two-phase approach combining static 

and dynamic schemes. Before image computation, only as many primary input variables 

as possible are quantified out using the Basic algorithm.  Then, for each image 

computation step, the remaining input and all present state variables are quantified out 

using the Basic algorithm. 

H. Jin, et al. [JKS02] proposed a fine-grain conjunction scheduling algorithm in terms 

of a minimum max-cut linear arrangement. The cut whose width is minimized is related 

to the number of variables active during image computation. 

 

3.1.2 SAT based Methods 

SAT is less vulnerable to memory explosion than BDDs. Recent improvements in 

SAT solvers have attracted a lot of attention in the use of SAT for image or pre-image 

computation. 

McMillan proposed a pure SAT-based unbounded symbolic model checking 

algorithm in [Mcm02]. The reachable states are represented as CNF. The transition 

relation is represented as a CNF formula. He used a slightly modified SAT procedure to 

perform SAT-all. Whenever a satisfied assignment is found, a blocking clause is 

generated by redrawing the implication graph. The efficiency comes from the fact that a 

smaller blocking clause will be generated from redrawing the implication graph. The 

blocking clause is added to the CNF formula and a new search is started by backtracking 

until all solutions are found.  
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In [KP03], Kang et al. also proposed a SAT based image computation algorithm for 

unbounded model checking. They use the Disjunctive Normal Form (DNF) to represent 

reachable states and a CNF formula for the transition relation. The blocking clause is 

added to get SAT-all. Unlike the method for generating the blocking clause from 

redrawing the implication graph in [Mcm02], the blocking clause is just the complement 

of the current satisfying assignment. At the end of each iteration, all frontier reachable 

states are minimized using ESPRESSO [Bra+web]. They report their results based on 

safety properties for some benchmarks. It seems that no other improvement is 

incorporated other than using ESPRESSO which may also consume more time (the time 

of running ESPRESSO).  

A problem with using SAT is that only one reachable state (minterm) is returned with 

each successful search. Chauhan [CCK03] tried to solve the problem by enlarging the 

satisfying assignment. After a satisfying assignment is found, it may contain input 

variables, intermediate variables, present-state variables and next-state variables. Since 

we only care about the present-state variables, all input, intermediate variables and some 

present-state variables can be seen as free-variables. The bit transition functions are 

analyzed to see which next-state variable can be set to a free-variable, based on the 

current set of free-variables. However, since the constraints for free next-state variables 

are quite strict, this method is not that efficient as seen by the experimental results 

[CCK03]. In this method, a transition relation is represented in CNF format and reachable 

states are represented in a DNF format.  
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3.1.3 Hybrid Approaches 

Some approaches combine BDD, SAT and Automatic Test Pattern Generation 

(ATPG) techniques for image computations.   

In [GYA01], Gupta et al., proposed a hybrid method for image computation. BDDs 

are used to represent current states and reachable states. The transition relation is 

represented in CNF. A SAT solver is deployed to perform a high-level decomposition of 

the search space and BDDs are used to compute all solutions below the intermediate 

points in the SAT decision tree. This approach is similar to partitioned BDDs where the 

SAT-solver is used to compute a disjunctive decomposition of the problem and the 

decomposed sub-problems are handled by BDDs. Thus, this method still suffers the same 

kind of memory problems associated with other BDD-based methods. Also, it is hard to 

predict the depth of a SAT decision to make sure that the resulting BDD sub-problem 

will not blow up in memory usage.  

Sheng et al., [SH03], described another hybrid method that combines ATPG and SAT 

for one-step pre-image computation based on equivalence cut-sets. They found that many 

searches will lead to the same sub-space. By identifying the cutting set and a jump 

between identical cutting sets, they will never revisit the same sub-space that has been 

searched before. They named this learning technique as “success-driven learning”. Li 

extended the work by combining success-driven learning with traditional conflict 

learning in SAT in the same framework in [LHS04]. However, their procedure is not 

complete since it only provides a one-step pre-image computation and “an efficient 
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procedure for multiple cycles is needed”, as the authors pointed out in the conclusion of 

their work [SH03].   

Parthasarathy, et. al. proposed an algorithm for image computation using sequential 

SAT [PIWC04]. The sequential SAT problem is to find a sequence of input vectors to the 

circuit, such that the value assignments are satisfied or, to prove that no such sequence 

exists. This approach actually tried to combine the key advantages of ATPG and SAT 

and it uses circuit structure information to derive a minimum cube of reachable states. 

They also implement a two-level minimization tool to reduce the number of cubes 

representing frontier-reached states. Another technique they use is similar to the blocking 

clauses used in [Mcm02], called “state-space bounding”; however, their improvement is 

limited. 

 

3.1.4 Summary of Past Approaches for Image Computation 

As described in the previous section, BDDs have been used extensively for image and 

pre-image computations. The key issues of BDD-based implementations of image (pre-

image) computations include modeling a FSM as a characteristic function and 

representing it as a BDD. However, the size of the BDD is very sensitive to the order of 

the variable which often leads to memory explosion for some functions. Construction of a 

monolithic characteristic function BDD is typically impractical for circuits that the 

number of state bits exceeds a few hundred or circuits contains some functions, e.g. 

multiplier, whose sizes are exponential with any given order. Different variable ordering 

and reordering algorithms have been proposed to address this problem. Also, instead of 
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building one single BDD, partitioned BDDs and conjunction scheduling may be deployed 

to alleviate the memory problem. Even with these approaches, the BDD-based approach 

still has memory explosion problems.    

Another known method, which is less vulnerable to memory explosion, is the use of 

SAT solver. In recent years, several efficient SAT solvers have been developed, such as 

Chaff [Mal+web], Grasp [Mar+web] and Berkmin [GN02]. These SAT solvers employ 

conflict learning [MS96b] and non-chronological backtracking [MS96a] to speed up the 

search procedure. However, these SAT solvers are targeted to find a single solution 

(minterm). A minterm is a cube that contains every variable in its support set. Image 

computation requires capturing all satisfiable solutions. A naïve way of finding all 

satisfiable solutions is repeatedly calling the SAT solver after finding a solution. The 

solutions found previously are added as blocking clauses to prevent the SAT solver from 

finding the same solution again; however, the above method is very inefficient. There are 

two aspects to improve efficiency. One aspect is to narrow down the search space and the 

other is to find a solution that covers more than one minterm.  

 

3.2 A Genetic Algorithm Approach for the BDD-based Method  

Genetic Algorithms (GA) have been successfully used in the BDD reordering 

[DBG95] and approximate reachability analysis [TD01]. Genetic algorithms generally 

generate better results as compared to other methods but require longer runtimes. For the 

conjunctive scheduling problem, the order will be computed only once and better 
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ordering can reduce the image computation time dramatically. Based on the above 

factors, a conjunctive scheduling approach based on genetic algorithms is developed.  

A genetic algorithm emulates the metaphor of natural biological evolution to solve 

optimization problems.  Genetic algorithms generally utilize the following steps. a) 

Initialize population: find a collection of potential solutions to the problem, also called 

current population. b) Create offspring: produce a new population through the application 

of genetic operations on selected members of the current generation.  c) Evaluate fitness: 

evaluate the quality of the solution in the new generation. d) Apply selection: select 

solutions that will survive to become parents of the next generation based on their quality 

of solution to the problem. In this way, it is more likely that desirable characteristics are 

inherited by the offspring solutions. e) This cycle repeats until some threshold or stopping 

criterion is met. 

The detailed description for the GA is given in the following sections. 

 

3.2.1 GA Based Ordering Algorithm 

3.2.1.1 Problem Representation and Initial Population 

The GA starts with mapping a problem into a set of chromosome representations used 

within GA. Since we are interested in the order of functions and their support set, a 

preprocessing step converts the information into a chromosome. Considering the above 3-

bit counter example, it is encoded as shown in Figure 3.2: 
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Figure 3.2 A Chromosome for 3-bit Counter 
 

Any ordered set of functions could be a solution, so an initial population is generated 

by randomly mutating the order of the genes in the chromosome. 

 

3.2.1.2 Fitness function 

The fitness function discussed here is based on the dependency matrix of the 

chromosome. The dependence matrix defined in [MS00] is used for an ordered set of 

functions. The dependence matrix of a set of m single-output functions ( mff ,...,1 ) 

depending on n variables 1,..., nx x  is a matrix D with m rows (corresponding to m 

functions) and n columns (corresponding to n variables) such that 1, =jid  if function if  

depends on variable jx , and 0, =jid  otherwise. The dependency matrix of a chromosome 

is defined in the same way. The dependency matrix of above chromosome is shown in 

Figure 3.3. 
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Figure 3.3 Dependency Matrix for a Chromosome 
 

The size of a BDD depends on the number of variables and the functions it represents. 

Smaller BDDs usually can be produced by conjoining two product terms that have a 

similar support set because few new variables are introduced. Based on the above 

observation, the normalized active lifetime [MS00] of the variables in matrix D is given 

by  

mn
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n

i
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⋅

+−
=
∑
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α   

where )( jj hl  is the smallest (largest) index i  in column j  such that 1, =jid  

respectively.  

j jh l− gives a quantity measure on sharing the variable in column j  stays. The 

normalized active lifetime measures how closely the product terms stay based on their 

support variables. The objective of ordering becomes to lower the normalized average 

active lifetime for a given matrix by manipulating the order of columns.  

Because the objective of ordering is to minimize α , α  is used as the fitness function. 

 

 

 

 1s 2s 3s

1TR 1   
2TR 1 1  
3TR 1 1 1 
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3.2.1.3 Selection 

The selection is performed by linear ranking selection (i.e., the probability that one 

element chosen is proportional to its fitness). The size of the population is constant after 

each generation. Additionally, some of the best elements of the old population are 

inherited in the new generation. This strategy guarantees that the best element never gets 

lost and a fast convergence is obtained. Genetic algorithm practice has shown that this 

method is usually advantageous [Dr98].  

 

3.2.1.4 Genetic Operators 

Two genetic operators are used in the algorithm: Partially Matched Crossover (PMX) 

as first described in [GL85] and a random Mutation (MUT).    

PMX generates two children from two parents. The parents are selected by the 

method described above. The operator chooses two cut positions at random. Note that a 

simple exchange of the parts between the cut positions would often produce invalid 

solutions. A validation procedure has to be executed after exchange. The detailed 

procedure for PMX follows.  

The children are constructed by choosing the part between the cut positions from one 

parent and preserving the position and order of as many variables as possible from the 

second parent. For example, 1 (1,2,3,4,5)p π=  and 2 (3,2,4,1,5)p π=  are the parents 

while 1 2i =  and 2 4i =  are the two cut positions. The resulting children before the 

application of the validation procedure are 1 (1,2,4,1,5)c π′ = and 2 (3, 2,3,4,5)c π′ = . The 

validation procedure goes through the elements between the cut positions and restores the 
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ordering. This results in the two valid children 1 (1,2, 4,3,5)c π= and 2 (3, 2,1, 4,5)c π= . 

This procedure is shown in Figure 3.4. 

 

Figure 3.4 PMX 
 

MUT selects a parent by the method described above and randomly chooses two 

positions. Two genes at these two positions are exchanged, like Figure 3.5 shows.  

 

Figure 3.5 MUT 

 

3.2.1.5 Algorithm 

Our genetic algorithm is outlined as follows: 

1. The initial population is generated using the original order as the first individual 

and by applying MUT to create more elements. 

2. Genetic operators are selected randomly according to a given probability. The 

selected operator is applied to the selected parent (MUT) or parents (PMX). The 

better half of the population is inherited in each iteration without modification.  

3. The new generation is updated according to their fitness.  
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4. The algorithm stops if no improvement is obtained for 50 iterations. 

The genetic algorithm routine is shown in Figure 3.6. 

 

 

 

 

 

 

 

 
Figure 3.6 Genetic Algorithm Routine 

 
 

3.2.2 Affinity Based Clustering Algorithm 

The ordering algorithm described above rearranges product terms so that product 

terms sharing more variables stay as closely together as possible. The next step is 

clustering some of the small product terms into a single big one while the BBD size of 

the clustered product terms is within a reasonable threshold. The motivation for 

clustering is to reduce iterations and improve efficiency in computation.  

One naive way of clustering is sequential clustering. Starting from an ordered list of 

product terms obtained from the ordering step, one continuously merges product terms 

sequentially until a given threshold is reached. The merged product terms are set aside as 

the first element of a cluster. The process is then repeated on the remainder of the list 

[BCL91].  

Genetic algorithm(){ 
Generate_initial_population; 
Update_population; 
do{ 

for( each child  i ){ 
j =linear_ranking_selection(); 

randomly_select_method; 
case MUT: child( i ) = MUT(parent j ); 
case PMX:  k = linear_ranking_selection(); 
child( i , 1i + ) = MUT(parent j , k ); 

 } 
} 

} 
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The sequential approach may lead to suboptimal results because the sharing of 

variables is not considered in the conjunction. The dependency matrix defines the 

similarity of support variables of an ordered set of functions. Affinity defines the 

similarity of support sets of two functions. Affinity is defined as the following [MS00]: 

 Let id  be the i-th row of the dependency matrix. Let id  be the length (number of 

non-zero entries) of row vector id . Finally, let ji dd ×  designate the inner product of 

id and jd . The affinity, ijβ  of vector id and jd  is defined as: 

ji

ji
ij

dd

dd

+

×
=β  

The affinity based clustering algorithm is now discussed. The affinities for pairs of 

adjacent product terms are computed as above, and then the pair with the highest affinity 

is merged. As in the sequential approach, merging is accepted only if the resulting BDD 

size does not exceed the cluster threshold size. If the threshold is exceeded, a barrier is 

introduced between the two terms. The process is then recursively applied to the two 

subsets of the rows above and below the barrier. If the size of the conjunction BDD is 

below the threshold, the algorithm computes the affinity for the new function and its 

neighbors and then selects a new pair with the highest affinity. The terminal case of the 

recursion occurs when only one function is left.    

 

3.2.3 Ordering for Image Computation 

As indicated before, a good conjunctive decomposition offers a good starting point 

for image computation. Early quantification could be employed to reduce the size of the 
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BDD by quantifying away variables in its support set but not the support set of future 

image computation steps. 

To get a good order for early quantification, we can use the same technique 

introduced before with a slight change on the fitness function.  

 

3.2.3.1 Fitness function for image computation 

A fitness function for image computation to find a good order for early quantification 

is needed. In [MS00] and [CCJ+01a], both argue in favor of using active lifetime, α . 

However, it is enough to just consider active lifetime. As an example, consider the 3-bit 

counter given before and two dependency matrices with orders of 1 1 2 3( , , )TR TR TRπ  and 

2 3 2 1( , , )TR TR TRπ  as shown in Figure 3.7.  

 

 

 

 
Figure 3.7 Dependency Matrices for Two Chromosomes 

 

From the example, we can see that both orders have the same active lifetime, 
1πα = 

2/3, 
2πα = 2/3. In the image computation, as we showed before, order 1π  is better than 

order 2π .  

Based on above observations, another measure, named as normalized total lifetime 

[MS00], is defined as  

 1s 2s 3s

1TR  1   

2TR  1 1  

3TR  1 1 1 

 1s 2s 3s

1TR  1 1 1 

2TR 1 1  

3TR 1   
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The normalized total lifetime for the above two chromosomes are
1πλ = 2/3, 

2πλ =1 

respectively. Order 1π  is better than order 2π  because it has a smaller total lifetime. The 

total lifetime λ  and active lifetime α  are not independent. A better λ  could also result 

in a better α .  

An advantage of the GA algorithm is that we can minimize total lifetime α  and 

active lifetime λ  at the same time. The fitness function we use includes these two 

parameters, shown as follows: 

( )iC π = 0 1a aλ α+  

where iπ  is a permutation of transition relations and 0 1,a a  are weights attached to 

two time parameters, 0 10 , 1 a a≤ ≤ and 0 1 1a a+ = . As indicated before, the total lifetime 

λ  and active lifetime α  are not independent, but they do have different impacts in the 

results. The total lifetime tries to pull all terms close to the bottom of the matrix while the 

active lifetime tries to pull all terms closely based on the support set. Thus, a tradeoff 

between the two parameters is needed based on 0 1,a a . Experiment result shows that  

0 1 0.5a a= =  achieves the best results.  

 

3.2.4 Experimental results 

In order to evaluate the GA approach, we ran the conjunctive decomposition 

algorithm and then applied it to FSM traversal. The benchmarks are from the ISCAS’89 
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and LGSYNTH’91 suites. The algorithm is implemented using the CUDD BDD package 

[Som+web]. All experiments are carried out on a 733MHz HP PC running cygwin under 

Windows XP with 192MB of main memory. The following figures show the dependency 

matrix before (Figure 3.8) and after (Figure 3.9) GA based ordering algorithm for the 

benchmark mm9b. The variables on the right side of Figure 3.8 form two triangles while 

only one triangle for the corresponding variables in Figure 3.9. With one triangle in 

Figure 3.9, all the variables at the bottom of triangle can be quantified out as the image 

computation carried on from bottom up. With two triangles, the variables at the lower 

triangle can not be quantified out until the upper triangle is reach. Thus, the order in 

Figure 3.9 will definitely produce a better result than the order given in Figure 3.8 in 

image computation. 
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Support Variables 

Figure 3.8 Dependency Matrix Before Ordering 
 

 

Support Variables 

Figure 3.9 Dependency Matrix After Ordering 

B
it Functions 

B
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The GA approach is compared with the best known FMCAD00 approach. Dynamic 

BDD variable reordering is enabled in both approaches. A time limit of 7200 seconds is 

used. A threshold, 5000, is set to limit the number of nodes for each partitioned BDD. 

The two parameters measured are the number of clusters (in the column labeled 

“clusters”) and the total number of BDD nodes (in the column labeled nodes). Shared 

nodes among various clusters only count once. Experimental results given in Table 3.1 

shows that our approach improved the memory performance as compared with 

FMCAD00 in most test benchmarks.   

 

Table 3.1 Genetic Result on Image Computation 
 

Circuits FMCAD00 GA Improvement

 Time(s) peak 
nodes(KB) Time(s) peak 

nodes(KB) on nodes 

sbc 4.3 12.9 10.5 16.9 -31% 
clma 24.7 142.4 137 32.7 77% 
clmb 30.6 141.6 137 32.7 76% 
mm9a 2.8 29.4 5.6 10.2 65% 
mm9b 55.4 702 5.57 17.1 97% 
mm30a 21.8 268.3 113 106.4 60% 
bigkey 88.8 34.7 1066 105.6 -204% 
s420.1 19.7 0.673 11 0.642 -4% 
s1512 641.6 121 371 65.9 45% 
s1269 1267 1743 2669 2079 -19% 
s4863 242.5 419.5 6996 1014 -141% 
s3271 Time out 11256* 2758 686.9 93% 

Average 199 1239 1189 347 9% 
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3.3 A Hybrid Method 

Compared to BDD-based methods, SAT techniques do not have memory blow-up 

problems. However, using current SAT solvers to find all satisfiable solutions is time 

consuming. Thus, narrowing the search space to make the process faster is critical to pre-

image computation. The method presented here to narrow down the search space is to use 

a BDD-based method to find upper and lower bounds.  

Because BDDs can not handle image computation for large digital designs since 

memory explosion occurs, researchers are motivated to investigate an approximation 

technique that can be used to estimate reachable states. Past research shows that 

approximate image computation can be much faster then exact image computation using 

BDDs [Cho95][TD01].    

 

3.3.1 Narrowing Down the Search Space 

Figure 3.10 shows the basic idea of narrowing down the search space. It consists of 

three parts. One is the lower-bound which is obtained from BDD-based under-

approximation pre-image computations. Another part is the upper-bound which is 

obtained from BDD-based over-approximation pre-image computations. BDDs is used to 

represent lower and upper bound sets of states. The remaining portion is found by 

invoking a SAT solver. The upper and lower bound BDDs will be read into the SAT 

solver and used as boundaries. Here a BDD bounding technique described in [GYA01] is 

used. It works as follows: whenever a state variable value is set or implied in SAT, the 

intersection of the partial assignment with the given over (under) BDDs is checked. If the 
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intersection is indeed non-null, the SAT procedure can proceed forward. Otherwise it 

must backtrack, since no solution consistent with the conjunctions can be found under 

this sub-tree. 

 

Figure 3.10 Narrowing Search Space 
 

The overall algorithm is shown in Figure 3.11. While the circuit netlist is parsed, 

three types of transition relations are constructed. One is the exact transition relation in 

CNF form. One is the over-approximation transition relation (OverBdd) in BDD form 

and another one is the under-approximation transition relation (underBdd) in BDD form. 

These three types of TRs are supplied to the preImage() routine. Two BDD boundaries, 

Over and under, are calculated. These two boundaries, together with the transition 

relation in CNF are sent to a SAT solver to get the remaining portion of the reachable 

states (remaining). The overall frontier states are the sum of under and remaining.   

Besides the over- and under- BDD bounding, there is also a third type of bounding in 

the SAT solver. Whenever a satisfiable assignment is found, instead of adding a blocking 

clause as proposed in [Mcm02][ KP03], the assignment is added to a BDD that records 

all satisfiable solutions found so far (called remaining) and continue to search until all 

satisfiable solutions are found. By implementing BDD bounding with the remaining 
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structure, the same solutions found previously can not be searched again. BDD bounding 

helps early backtrack in the SAT solver and thus speeds up the search process. 

 

 

 

  
 
 
 
 
 
 
 
 

 
 
 

Figure 3.11 Pre-image Computation Procedure 
 

Two different methods for upper and lower approximation are tried. One method is 

given by CUDD, which extracts the dense subset of given BDDs. Another way is the 

algorithm described in [TD01]. Both methods resulted in similar results. To show the 

effect of approximation on narrowing down the search space, the result of the search 

space for the pre-image computation of benchmark s1269 is shown in Table 3.2. The 

property checked is the liveness property (EG(p) where p is a conjunction of 8-bit state 

variables in this example). This type of property specifies that there exists a path that the 

property holds in every state along the path.  

In Table 3.2, column 1 provides the depth of the pre-image computation. It reaches to 

a fixed point in step 8. In column 2 and 3, the number of over-approximation states and 

preImage(S’, CNF_TR, overBdd, underBdd) { 
     //get the initial states of formula 
     frontier=get_intial_states(); 
      while(frontier!=NULL){ 
         //calculate upper bound  

( ). . ( , , )over S X S overBdd S X S′ ′ ′= ∃ ∃ ∧ ; 
          //calculate lower bound 

( ). . ( , , )under S X S underBdd S X S′ ′ ′= ∃ ∃ ∧  
          //calling SAT for the rest 
          remaining = zChaff_ALL(S’, CNF_TR, 
over, under); 
          //frontier is the combination of under 
and exact  
          frontier = exact + remaining; 
     } 
} 
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the number of bounding occurrences for the upper-boundary is provided. Columns 4 and 

5 are the number of under-approximation states and the number of bounding occurrences 

for the lower-boundary. Column 6 is the number of exact reachable states. Column 7 

provides the number of bounding running to the same state reached before. Detailed 

results of this work are provided in [LTS06]. 

 
Table 3.2 Upper/Under Bound for S1269 

 
Depth Over (states) B1 Under (states) B2 Exact (states) B3 

1 6.872e+10 2 1.762e+09 10 5.369e+10 14 
2 5.369e+10 7 8.808e+08 6 4.724e+10 110
3 4.724e+10 14 5.033e+08 7 4.456e+10 154
4 4.456e+10 11 3.460e+08 11 4.349e+10 313
5 4.349e+10 17 2.831e+08 4 4.308e+10 354
6 4.308e+10 21 2.595e+08 13 4.295e+10 460
7 4.295e+10 23 2.517e+08 9 4.292e+10 488
8 4.292e+10 21 2.509e+08 9 4.292e+10 497

  

 

3.3.2 Modified SAT Procedure  

Modern SAT solvers, like zChaff, Grasp, and Berkmin, are targeted to find a single 

solution (minterm). They quit after a successful search. zChaff is one of the most popular 

SAT-solvers. The SAT solver used in this dissertation is a modified form of zChaff. 

zChaff uses a two-literal watch strategy to speed up the implication and backtrack 

functions in the search process. Thus, it will assign every free variable until no such 

variable is available. So a satisfiable assignment found by zChaff is always a minterm. It 

is very inefficient to find all satisfiable solutions using zChaff. To differentiate zChaff 

from our modified version, the modified zChaff is referred to as zChaff_ALL. The 
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modifications are targeted to find a satisfiable solution that contains as many don’t cares 

as possible (covers more than one minterm). In addition to the BDD bounding techniques 

mentioned above, two other modifications are referred to as early detection and 

expansion. The overall algorithm for zChaff_ALL is shown in Figure 3.12.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 3.12 zChaff_ALL Procedure 

   

zChaff-ALL(){ 
   while(1) { 
     //Check if current partial assignment all ready satisfy 
     // every clause 
      if(early_detection()) 
          return SAT; 
      //Bounding with over 
      if(over_bounding(over)) 
          backtrack(); 
       //Bounding with under 
      if(under_bounding (under))   
           backtrack(); 
       //expansion 
       expansion (); 
       if (decide_next_branch()) { // Branching 
           //Propagate implications 
            while(deduce()==conflict ) { 
                blevel = analyse_conflict(); // Learning 
            if (blevel == 0) 
                return UNSAT; 
            else 
                 //Non-chronological backtrack 
                  backtrack(blevel); 
           } 
          } 
         else  
             // no branch means all vars have been assigned 
              return SAT; 
       } 
} 
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3.3.2.1 Early Detection 

The idea for early detection is quite simple. There are many cases where a partial 

assignment has already made every clause in the Boolean function satisfied. If every 

clause is satisfiable, the partial assignment is a satisfiable solution for the Boolean 

function. All free variables can be seen as don’t cares. Early detection will not only 

terminate the SAT procedure earlier but also avoid much of the unnecessary backtrack 

steps. The early detection feature works as follows: when a new variable is assigned and 

all the implication clauses are handled, a check is made to determine if every clause is 

satisfied by the current assignment. If the result is affirmative, a partial assignment with 

all other free variables as don’t cares is made; if not, the technique continues as before.  

Here, the order of the decision is very important since it may be possible to find 

assignments with more don’t cares than with good orders. The principle of giving higher 

priority to input variables, next-state variables, and intermediate variables are tested 

respectively. Experiments show that giving higher priority to intermediate variables 

usually produces more don’t cares in a partial assignment on average. 

 

3.3.2.2 Expansion  

A further improvement can be accomplished by expanding a current satisfiable 

assignment to make it contain more don’t cares. The condition that the satisfiable 

assignment can be safely expanded is provided below.  

Given a set of states (named N) in the next-state variable domain, pre-image 

computation aims at finding a set of states (named P) in the present-state variable domain 

such that N is reachable from P. The support set of N contains next-state variables, in 
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most cases, not all of them. In other words, the next-state variables that are not in the 

support set of N can be viewed as free variables.  

As was mentioned before, the transition relation is usually produced by a conjunction 

of bit transition relations. Each bit transition relation ( iTR ) consists of one next-state 

variable ( is′ ), some present-state variables, and the input variables. The support of  iTR  is 

represented as supp( iTR ).  

Suppose supp(N)={ ,...,i js s′ ′ } is used to represent the support set of state set N. Each 

next state variable is′  corresponds to one bit transition relation ( iTR ) and the value of is′  

is specified only by iTR  which is then determined by the support set of iTR , supp( iTR ). 

In other words, the variables that are not in the support set of the bit transition relation 

iTR  will not change the value of next state variable is′  and can be set as don’t cares. If we 

expand this conclusion to all the next state variables in the support set of N. The 

following observation can be concluded.  

Observation: Variables that are not in the support sets of all bit transition relations 

which correspond to the next-state variables in the support set of state sets N can be 

safely set to don’t cares. 

Based on the above observation, our expansion works as follows. The don’t care set 

of the frontier for each iteration will be calculated before calling the SAT solver. The 

don’t care set here only includes present state variables. The don’t care set is supplied to 

a SAT solver. When a satisfiable assignment is found, it may contain some variables in 
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the don’t care set but is assigned a specific value by the SAT solver. It is safe to set those 

variables to don’t cares.   

 

3.3.3 Results of Extended Image Computation Approach 

In order to evaluate our approach, we ran model checking experiments on 

benchmarks from the ISCAS’89 benchmark set. The BDD package used is the CUDD 

BDD package [Som+web]. All experiments are carried out on a 2.6GHz PC running 

Linux with 1GB of main memory.    

Our approach is compared with VIS [Bra+web*] using the EG type property 

checking. The property has the form of EG(p), where p is a conjunction or disjunction of 

a group of state wires. The group size ranges from 1 to 8. A size of 1 normally refers to a 

single control wire such as reset while a size of 8 corresponds to an 8-bit bus. All 

parameters in VIS, such as the image computation method, are set as defaults. Dynamic 

BDD variable reordering is enabled in both approaches. A time limit of 3600 seconds and 

a memory limit of 850MB are used. The two parameters measured are running time and 

memory utilization. Table 3.3 shows the results.  

The first column denotes the benchmark circuit name. The second, third, and fourth 

columns provide the number of inputs, outputs, and D flip-flops in each circuit. The fifth 

and sixth columns represent the execution times and memory required by the BDD-based 

model checking tool, VIS, and the seventh column represents those by the proposed 

algorithm. The hyphen ‘-’ means that the algorithm is halted because it exceeds time or 

memory limits. The table shows that the proposed algorithm can check more circuits than 
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the BDD-based one. In the cases that the BDD-based tools fail to respond, a memory 

overflow is indicated. 

 
Table 3.3 Comparison of Property Checking 

 
VIS zChaff-ALL 

Bench In Out DFF Time (s) Mem (MB) Time(s) Mem(MB) 
S298 3 6 14 0 4.7 0.01 4.7 
S526 3 6 21 0.02 4.9 0.69 4.8 
S1512 27 21 57 32.7 54.7 0.04 54.0 
S1269 18 10 37 3600 - 17.9 25.0 
S1423 17 5 74 - 850 10.2 5.7 
S5378 35 49 179 - 850 16.5 6.5 
S6669 83 55 239 - 850 70.5 27.5 
S3384 43 26 104 - 850 45.3 6.2 

S9234.1 36 39 211 - 850 18.7 12.2 
S9234 19 22 228 - 850 200 12.4 

 

In this section, we present an approach that combines BDD and SAT solvers for pre-

image computation. BDD-based over- and under-approximation pre-image computation 

is used before the SAT solver is invoked to narrow down the search space by computing 

the upper and lower boundaries for the reachable states. The SAT solver is used to 

compute the remaining portion of the reachable states. A BDD-based technique is used 

for upper and lower bounding and to speed-up the search process. Two more techniques 

are used to compute a satisfiable solution that contains as many don’t cares as possible. 

The experimental results show that our approach performs well.  

 

3.4 Summary of Image Computation 

To date, we have extended BDD-based image computation techniques with genetic 

algorithms [LTS04 LT05]. A “two-step” algorithm for representing a large function as a 
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conjunctive decomposition of BDDs is described where a Genetic Algorithm (GA) 

approach for ordering individual bit functions is given followed by an affinity-based 

clustering technique.  Applications in image computations were discussed in [LT05]. 

While developing the image computation algorithm, we noticed the limitations of BDDs 

and advantages of SAT solvers; we then present a new way to combine BDD- and SAT-

based methods for image computation [LTS06]. A BDD-based approximation method is 

used to calculate the over- and under- estimated boundaries of the reachable states. A 

SAT solver is used to find the remaining states. The SAT solver is enhanced by 

techniques we call “early detection” and “expansion” to find a satisfiable assignment 

containing more don’t cares.  

The research presented in this chapter focused on formal techniques for hardware 

verification. While some formal verification methods are beginning to appear in 

commercial tools, most formal methods are limited to some types of ICs. Formal 

verification itself cannot solely accomplish the validation task. Also, simulation is still 

the dominant tool in industry and the question of combining these two different 

approaches together to serve the validation purpose has attracted a lot of research 

attention recently. In the following chapters, we will focus on Integrated Design 

Validation (IDV) system. All the methods discussed so far are integrated into the IDV 

flow. 
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CHAPTER 4 

4. INTEGRATED DESIGN VALIDATION SYSTEM 

 

We are currently involved in a research project that is developing an integrated 

approach to design validation that takes advantage of current technology in the areas of 

simulation, and formal verification, resulting in a practical verification engine with 

reasonable runtime, called the Integrated Design Validation system (IDV). 

This research utilizes existing simulation, verification techniques, new methods such 

as those described in Chapter 3, and concentrates on their efficient integration to provide 

a comprehensive tool for design specification compliance.  Recent results in all areas of 

verification [GDP99, MTS04, LTS04], and simulation [Szy90, KS03] are being used to 

provide a design compliance tool that will be extremely effective and has the potential to 

“out-perform” the current “state-of-the-art” methods focused upon a single methodology. 

The focus in the IDV system is in the development of a circuit complexity analyzer and 

partitioning tool based upon design hierarchy. Also, the development of coverage 

analysis methods that compute a degree of design validation and invoke methods for 

intelligently updating the partitioning tool for further validation iterations is crucial.  

There have been recent attempts to tightly combine two different verification tools 

[BS98, HKWF02], most notably SAT solvers and BDD approaches for equivalence 
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checking; however, no overall verification/simulation engine with significant analysis 

before design validation occurs has been produced. 

 

4.1 System Description 

The overall structure of the prototype IDV system is shown in the block diagram of 

Figure 4.1.  A primary focus for this project is the complexity analyzer, partitioning, and 

coverage analyzer blocks, to determine the most effective use of formal verification.   

  

 
 

Figure 4.1 Architecture of the Integrated Design Validation System 
 
 

4.1.1 Complexity Analyzer 

The complexity analyzer estimates the complexity of an RTL or netlist design based 

on existing methods for controller/datapath extraction. Integration with the partitioner is 
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crucial for this function. The extracted control and datapath portions of the circuitry are 

being analyzed for the applicability of various techniques based upon known existing 

strengths of verification and simulation tools.  As an example, a portion of a datapath 

may be supplied as input to simulator or an equivalence checking tool.   

Given different constraints, different tools can be applied to verify the constraints. 

The complex analyzer is also utilized for such purpose. For example, constraints 

expressed in simple trajectory formula can be verified via Symbolic Trajectory 

Evaluation (STE) or property checking tools such as Verification Interacting with 

Synthesis (VIS). STE has high capability in term of number of flip-flops that a circuit 

contains.  

 

4.1.2 Design Partitioning 

One of the biggest hurdles in applying formal techniques is to correctly identify target 

circuits. Although a lot of work has been accomplished with respect to partitioning for 

logic and physical level synthesis, there is not as much for design validation and 

simulation. Currently designer-defined hierarchy is utilized for partitioning. Designers 

typically design the system with multiple RTL blocks (these blocks usually mirror the 

floor-planned design) in order to apply modern design tools. Methods that exploit such an 

inherent design hierarchy have been used in the past such as the jMocha tool [AA+01].  

Based on the design hierarchy, a process-module (PM) graph which describes the 

hierarchy of the design is built. Each node in the graph represents a 



57 

component/module/process and edge corresponding to the interconnections of these 

components. The PM graph is utilized to partition the design.  

 

4.1.3 Coverage Analysis 

Some work has been done in terms of coverage analysis particularly with respect to 

evaluating the effectiveness of simulation-based validation. An overview of design 

validation coverage methods is given in [TK01] that classify existing metrics in terms of 

code coverage, metrics based on circuit structure, metrics defined on finite state 

machines, functional coverage, error models, observability, and metrics applied to 

specifications.  These existing metrics will be used as a starting point for the development 

of the coverage analyzer.  Not much work has been accomplished in terms of combining 

formal verification with simulation and computing the overall coverage.   

 

4.1.4 Verification and Simulation Tools Comprising IDV 

Our goal is to integrate the tools and make them complement each other. Various 

tools have been developed for formal verification and simulation. Choosing the right 

tools will set up the baseline for the success of the IDV system. In the following we 

describe the tools that are selected, developed, or still under development.  

 

4.1.4.1 Symbolic Trajectory Evaluation 

Symbolic Trajectory Evaluation (STE) [HS97] is a model checking approach 

designed to verify circuits with very large state spaces. STE is more sensitive to the 
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property being checked instead of the size of the circuit. The STE package selected is 

from the Intel Strategic Research Lab, Forte. It also supports a simple yet effective 

compositional theory. Two important properties of STE are: 

a. It is suitable for verifying designs of circuits at the gate or switch level  

b. STE provides accurate models of timing, which is reflected in the types of 

properties checked for. 

STE originated from the idea of using multi-level simulation and ternary-valued 

symbolic simulation. It is a formal verification method that is close to traditional 

simulation. One of the distinguishing features of STE is that the state space is represented 

as a lattice. The partial order of the lattice represents an information ordering or 

abstraction relation between states. The higher up we go in the information ordering, the 

more information we have. The computational advantage of this is that, given the 

appropriate logical framework, if a property is proved to hold in a state in the lattice, it 

holds for all states above it in the lattice. Another important fact is that circuits have 

natural representations as lattices, and the use of the information ordering allows us to 

easily abstract out the necessary information for property checking. 

The properties to be checked are represented as Temporal Logic (TL). TL is usually 

propositional or first-order logic augmented with temporal modal operators that allow 

reasoning about how the truth values of assertions change over time. TL can express 

safety and liveness properties, such as “property p holds at all times” or “if p holds at 

some instant in time, q must eventually hold at some later time.” Properties of this sort 

can be employed to specify desired properties of systems, i.e. in a traffic signal control 
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system, “the signals at both directions should never be green at the same time” and “the 

signal at one direction will eventually be green”. 

The properties that STE focuses on are a restricted TL that offers only the next-time 

operator [SB95], which is called a trajectory formula. A trajectory assertion has the form 

A  C, where A and C are trajectory formulas, referred to as antecedents and 

consequences respectively. Informally, a trajectory assertion holds for a circuit M iff each 

sequence of states of M that satisfy the antecedent A also satisfies the consequent C. 

Typically, A specifies constraints on how the inputs of a circuit are driven, while C 

asserts the expected results on the output nodes [KG99]. For example, the formula 

((read_enable=1 ∧  addr)  (out = Next(M[addr])) asserts that if signal read_enable is 

asserted and address is specified, the output of memory is the value stored at address in 

the next cycle. 

 

4.1.4.2 Verification Interacting with Synthesis (VIS)  

VIS is a verification package developed jointly at the University of California at 

Berkeley, the University of Colorado at Boulder, and more recently, at the University of 

Texas, Austin [Bra+web*].  VIS is able to synthesize finite state systems and/or verify 

properties of such systems, which have been specified hierarchically as a collection of 

interacting finite state machines. VIS is built upon the BDD package developed by the 

University of Colorado at Boulder, referred to as CUDD [Som+web]. VIS and CUDD 

have been used extensively in academia for model checking.  
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STE and VIS are both capable of model checking. They differ in the following 

aspects.  

Properties: VIS can verify more properties since it uses CTL while the trajectory 

formula supported by STE is less expressive.   

Capacity: STE can handle bigger circuits in terms of latches and bit cells (over 1000 

latches). VIS usually exceeds memory capacity when there are more than 200 latches. 

STE trades expression power for capacity.  

BDD Memory:  The underlying engine for VIS is compact symbolic representation of 

the circuit model in terms of BDDs. The underlying engine for STE is symbolic 

simulation where the size of BDDs is related more to the properties instead of circuit 

model.   

Application: Based on above differences, we can conclude that VIS is better in 

control dominated designs while STE is more suitable for memory dominated 

circuits. Actually, STE has been used extensively in property checking for memory.  

 

4.1.4.3 Speed5 

Speed5 is a Tegas-like, 5-value multi-modal, assignable-delay, five-valued simulator 

[Szy90] [KS03]. It performs gate-level and functional-level simulation. Nominal and 

critical timing (min/max) delays are used in simulation. Speed5 has fault simulation 

ability by fault generation and insertion into the simulated circuit. Fault models that are 

provided are: stuck-at, shorts, transient fault models, and multiple faults. Performance is 

improved by parallel simulation of faults where a specified number of faults are 
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simulated in one pass. The number of faults per simulation is determined from 

indistinguishable fault classes, fault blocking characteristics and the desired diagnostic 

resolution. 

 

4.1.4.4 SMU Equivalence Checker  

The equivalence checker developed in our group (SMU-EQ) [LTS04] performs quite 

well on large designs. The core part of the equivalence checking tools is image 

computation where conjunctive scheduling is very important to reduce the BDD size of 

intermediate computations. In our approach, a genetic-based approach is developed to 

minimize total lifetime and active lifetime at the same time. Experimental results show 

that SMU-EQ is very effective. We also incorporated a SAT engine into our equivalence 

checker to make it more robust and to handle more designs that uses the ideas of “early 

detection” and “expansion” described in the previous chapter. 

 

4.1.4.5 SMU Functional Simulator 

A functional simulator is also under the developing stage in our group which is a 

critical part of the system-level simulation portion of IDV. At the system level, we are 

interested in the interconnection of modules versus the internal function of separate 

modules. The functionalities of these modules are fully verified by VIS or STE or 

simulated by Speed5 before they are integrated into the functional simulator. 

A more detailed introduction of IDV can be found in [LTS05].  
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4.2 Validation Flow with IDV 

The IDV system is a constraint-based system. Constraints specify the system’s 

operation such as what validation method will be used for each design module, the 

properties to be verified, and so on.  

Figure 4.2 shows the validation flow chart for the IDV system. The circuit is parsed 

as a netlist either in blif or structural RTL format. The next block is the partitioning 

portion. The design hierarchy information are utilized for partitioning. This is reasonable 

since most current designs are created in a hierarchical format. After partitioning, bases 

on the result of complexity analysis, all modules and corresponding constraints are 

supplied as input to appropriate validation engines for verification and/or simulation. The 

general rules are listed as follows: 

a. VIS deals with complex properties presented in CTL and control logic.  

b. STE deals with simple TL and control logic, and also all properties related to 

memory 

c. SMU-EQ deals with datapaths that do not cause memory explosion. 

d. Speed5 simulator deals with multipliers or other complex components specified by 

the designers 

e. Functional simulation/system-level simulation is used as the last step for the 

interconnections of the components 

After the sub-modules are validated separately, a functional simulator will be applied 

to simulate the system but the main focus will be on system interconnections. The 

coverage analysis will provide a degree of confidence of the design validation. When the 
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coverage value is low, the component that is simulated in previously stage is further 

partitioned to smaller modules. The coverage for further partitioned component can be 

improved with formal verification method or more simulation. The increased coverage on 

component also improves the coverage for the design. The tool continuously decreases 

the granularity of the partitions until the desired coverage goal for validation is reached.   

Verilog/BLIF

Partitioning

Constraints for
Sub-blocks

Validation of
sub-block

Constraints for
Interconnections

Functional
Simulator

Coverage
analysis

Good Enough?
no

yes

Terminate

Complexity
Analysis

 

Figure 4.2 Validation Flow of IDV System 
 

 
4.3 IDV Implementation Architecture  

The software architecture of IDV is shown in Figure 4.3. It consists of three blocks: a 

shell-like command line input module, a coordinator, and several core engines. The shell-
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like command line input module accepts commands and sends them to the coordinator. 

An example of the shell-like command line input is shown in Figure 4.4. The coordinator 

accepts commands from the command input module, translates them to a format that the 

core engines can recognize, sends them to the core engines, and finally collects the results 

and displays them.  

 

 

Figure 4.3 Architecture of IDV System 
 
 

%Unix _prompt%  IDV  
IDV>read_blif moduleA.blif moduleB.blif moduleC.blif 
Info: three modules (A,B,C) has been defined, top level is A;
IDV>set_method –module A VIS(parameter for VIS)   
IDV>set_method –module B Forte(parameter for Forte) 
IDV>set_method –module C Sim(parameter for Sim) 
IDV>validate_submodule –module A 
IDV>validate_submodule –module B 
IDV>validate_submodule –module C 
IDV>read_constraint –Interconnection 
IDV>validate_interconnection  
IDV>quit 

%Unix _prompt% 
 

Figure 4.4 Command Line Input Example 
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CHAPTER 5 

5. VERIFICATION RESULTS 

 

5.1 Types of Digital Circuits Suitable for IDV 

As described in previous chapters formal verification methods work well for some 

“types” of circuits. Also, different tools are suitable for different types of circuits. There 

is no single tool that can handle designs containing different subcircuits. The purpose of 

IDV is to develop an integrated environment that applies appropriate tools for suitable 

subcircuits. Thus, the whole design can be validated in one framework. 

The circuit types that are especially suitable for IDV are those that contain datapaths, 

controllers, memory units, and interfaces. One of our target designs is Systems-on-a-chip 

(SoC), which integrates all components on a single chip. SoCs usually contain IP cores 

such as embedded CPUs, a memory subsystem, controller, standard interfaces (e.g., USB, 

PCI, Ethernet), and software components. IP cores are typically available through 

purchase from third parties or developed in-house previously.  

To demonstrate the ability of IDV, two circuits are developed that contain most of the 

required components of a SoC: a datapath, memory units, and a controller. The two 

designs used as example here are partially sponsored by the Semiconductor Research 

Corporation (SRC). Since the designs are used to benchmark the algorithms being 
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developed for integer operations, it is important to verify these designs. This type of 

design cannot be totally verified formally due to the memory explosion problem in 

formal methods and the coverage problem with simulation. No single tool environment 

has been presented to validate such types of designs previously. 

 

5.2 Integer Powering Circuits 

In this section, we describe the design and theory of the integer powering circuits 

developed under the SRC sponsored project that will be the subject of the verification 

effort. 

Algorithms for computing the powering operation yz x=  where x , y , and z are  

positive integers have been the subject of considerable research. A “fast” method, which 

can be traced back to al-Kashi in the 15th century has been described in many popular 

texts [CLR01][Par00][Knu81]. Figure 5.1 shows the basic algorithm for the “fast” 

method. This binary squaring method first determines 2 4 8, , , ,...x x x x  and processes the 

bits of y  right-to-left to multiply by the appropriate binary powers of x  to determine yx . 

Since this method involves multiplication and squaring operations, it is also referred to as 

the Multiplier Method (MM).  
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Figure 5.1 Squaring and Multiply Based Powering Operation Algorithm 
 

Given that ,x y , and the result z  are all non-negative k-bit integers, such as k = 8, 16, 

32, 64, 128,…, this integer-valued powering operation based on MM requires O(k) 

squaring and O(k) multiplication operations in the worst case which is expensive for 

hardware implementation. A simpler algorithm that avoids the use of a large multiplier 

will greatly benefit efficient hardware implementation. There is a further need for a right-

to-left digit serial algorithm that requires less time for lower precision operations when a 

family of precision levels is implemented in hardware.  

The inheritance principle for integer operations was introduced in [MFT05]. It can be 

summarized as “the k-low order bits of the result depend only on the k-low order bits of 

the operands for all 1k ≥ ”. This principle provides the basis for right-to-left digit-serial 

integer operations. Specifically, assume the low order (k-1)-bits of the result obtained 

from the (k-1) low order operand input bits have been determined. Simply by 

incorporating the k-th bits of the operands, the k-th result bit can then be determined with 

Input: 1 2 2 1, .. 1k kk x x x x x− −= , 1 2 2 1 0..k ky y y y y y− −=  

Output:
2

| | k
yz x= . 

L1: : 1z = ; :q x= ; 
L2: for : 0 to 1i k= −  do 
L3:  if bit ( , ) 1i y =  then  
L4  

2
: | | kz z q= ×  

L5 end 
L6: 

2
: | | kq q q= ×  

L7:end 
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the (k-1) lower order result bits “inherited” from the preceding serial computation. The 

formal statement for this inheritance principle can be found in [MFT05].  

Modular notation 2k•  defined in [ST67] is employed in this chapter. For a binary 

integer 1 2 2 1 0..n nx b b b b b− −= , the modular notation 1 2 2 1 02 ..k k kx b b b b b− −=  denotes the value 

of the standard low order k- bit string for all 1 k n≤ ≤ . 

Note that every k -bit integer x  is uniquely represented by the triple ( , , )s p e  such 

that  
2

( 1) 2 3 k
s p ex = − . x  has a unique factorization into odd and even terms 2 px n=  

with n odd. All the odd values can be represented as 
2

( 1) 3 k
s e−  [FM04] [Ben99]. The 

triple ( , , )s p e  and its manipulation are referred to as the Discrete Logarithmic System 

(DLS). Based on DLS representation, the powering operation can be rewritten as the 

following: 

2 2 2
(( 1) 2 3 ) ( 1) 2 3k k k

y s p e y sy py eyz x= = − = −  

Integer x  is first converted to DLS such that 
2

( 1) 2 3 k
s p ex = − . Then the power y  is 

distributed to the three exponents. Three multiplications are required to obtain s y× , 

p y× , and e y× . ( 1)sy−  determines the sign of the result. 2 py  determines the number of 

least significant zeros in the result. Finally 
2

( 1) 2 3 k
sy py ey−  is deconverted to obtain z . 

Without loss of generality, we focus on odd numbers in the following discussion. For odd 

numbers, item p y×  is ignored due to 0p = . 
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The block diagram for this approach is shown in Figure 5.2. Binary-to-DLS 

conversion refers to determining the triple ( , , )s p e  given the k − bit integer n , and 

deconversion refers to determining n given the triple ( , , )s p e , where n , s , p , and e  

satisfy
2

( 1) 2 3 k
s p en = − . 

 

Figure 5.2 Serial Odd Integer Powering Algorithm Based on DLS 
 

Two types of conversion/deconversion algorithms are introduced: one is iterative 

computation based and the other is a table look-up based technique. 

Efficient iterative computation algorithms for integer-to-DLS conversion and 

deconversion were presented at the algorithmic level in [FMT05a] [FMT05b] [Fi05]. 

Since both the conversion and deconversion algorithms employ k  sequential steps of a 

table lookup operation interleaved with a shift-and-add modulo 2k  operation. This 

approach is also referred to as the DLS iterative computation based method (DLSiter) in 

this document. 

We also present a table look-up conversion/deconversion approach based on an 

encoding scheme that provides a one-to-one mapping between k -bit integers and k -bit 

DLS values. This encoding scheme is scalable for all practical word sizes. This k -bit 

DLS encoding also satisfies fundamental properties allowing table lookup based 

conversion and deconversion to be completed with tables whose size are less than 8K 



70 

Bytes in each direction for 16k ≤ . This approach is referred to as DLS table lookup 

based method (DLStable).  

Hardware implementations for the integer powering operation with the DLS 

conversion/deconversion methods are described in next section.   

 

5.2.1 DLSiter Conversion/Deconversion Circuit 

DLSiter conversion can be accomplished separately with deconversion as Figure 5.2 

shows. The detailed algorithm for DLSiter conversion/deconversion can be found in 

[FMT05a] [FMT05b] [Fi05]. The conversion algorithm is also referred to as Discrete Log 

(DLG) while the deconversion algorithm is referred to as Exponentiate (EXP). Here a 

faster algorithm is presented where the conversion/deconversions are processed in 

parallel. For every available bit of e , a bit of the intermediate product is generated and 

followed by a bit of z  being produced. This method is referred to as the parallel 

algorithm and is described in Figure 5.3. 
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Figure 5.3  Parallel Integer Powering Algorithm 
 

The initialization stage is performed in lines L1 − L4 where all the required 

initialization steps are accomplished. The second stage (L5 − L10) performs the 

Stimulus: 1 2 2 1, .. 1k kk x x x x x− −= , 1 2 2 1 0..k ky y y y y y− −=   

Response:
2

| | k
yz x= . 

Method 
L1: if 8 {1,3}x ∈  then : 0s = ; 

L2: else : 1s = ; : 2kx x= −  
L3: end 
L4: : 1p = ; : 0;e = : 1z = ; : 0;q = ;t e=  
L5.  if bit(1, x )=bit(1, p ) then 
L6:  2: 1 kp p p= + << ; : dlg(3)e e= +  
L7:  if bit( 0, y )=1 then 
L8:    2: 1 kz z z= + << ; 
L9:  end 
L10:   end 
L11: for : 3 to 1i k= −  do 
L12:  if bit( ,i x )=bit( ,i p ) then   //update for DLG 
L13:   2: kp p p i= + << ; : dlg(2 1)ie e= + +  
L14: end 
L15: 1t t= << ; 
L16:  if(bit( 2,i e− )=1) 
L17:   m m t= +   //accumulator. 
L18 end  
L19:  if bit( 2,i m− )=1 then  
L20:   2 ( 2)q q i= + << −  
L21:  if bit( ,i q )=1 then   //update for EXP 
L22:   2: kz z z i= + << ;   

L23:  : dlg(2 1)iq q= − +   
L24: end 
L25:end 
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computation for 1i =  where i  is the index for iteration and 1 1i k≤ ≤ − . The third stage 

contains the main iteration step and is represented by lines L11 − L25. The third stage can 

be separated into 3 sub-stages. Both  p and e  are updated (i.e. L12 − L14) which 

generates one bit of e  based on the conversion algorithm defined in [FMT05a]. The 

second sub-stage (i.e. L15 − L18) corresponds to the accumulator used to compute e y× . 

The third stage (i.e. L19 − L24) updates z  according to the deconversion algorithm 

defined in [FMT05b]. The final result is obtained at line L22. As can be seen by 

inspection of the algorithm, the time complexity is essentially k dependent shift-and-add 

modulo 2k operations. 

 

5.2.1.1 Hardware Implementation 

Hardware implementation for DLSiter conversion/deconversion is described here. 

The state diagram of the hardware implementation is given in Figure 5.4. There are 6 

states available, Load, Init, Loop_DLG, Loop_ACC, Loop_EXP and Ready. The 

Load state is also a reset state. It accepts input when the load signal is asserted and also 

performs all the initialization operations in lines L1 − L4. The Init state accomplishes the 

operations in the second stage (L5 − L10) in Figure 5.3. The Loop_DLG, Loop_ACC, 

Loop_EXP states correspond to the 3 sub-stages in the algorithm. The loop count goes 

from 3 to k, with a maximum of k-3 iterations. The Ready state is the state that outputs 

the result. The circuit automatically transitions into the Load state after Ready state.  
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Figure 5.4 State Diagram for DLSiter Implementation 
 

There are three major components in the DLSiter circuit, a controller, a ROM lookup 

table, and a computation datapath.  

The major components in the datapath are adders, shifters, and units called bit-

checkers that are used to check if a certain bit is asserted. The output of the bit-checker 

controls the operation of the adders and shifters. No operation is performed if the output 

is false; otherwise, registers holding , , ,p e z q  are updated by the shifter and adder. The 

controller consists of a counter and state controller block. The state controller starts and 

stops the counting procedure. The output of the counter, count, is used for purposes such 

as address generation for the ROM, index generation for the bit checker, and feedback to 

the state controller for state transition. The ROM is used as a lookup table for the DLS 

values for 2 1i +  where 3 i k≤ ≤ .  The modular operation given in the algorithm is 

handled by limiting the size of , , ,p e z q . The sizes of , , ,p e z q  are set to k. Thus, while 

updating , , ,p e z q , the result values may be longer than the specified size (or overflow). 

Overflow bits are ignored since this computation is performed modulo 2k. 
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In order to evaluate the effectiveness of DLSiter as compared to the MM, both 

methods are implemented in Verilog RTL and synthesized into circuits using the 

Synopsys tool set based on a standard cell library from Synopsys [Syn03]. Table 5.1 

shows the cell delay calculated based on the output net total capacitance (cap.) for three 

types of D-flip-flops in the library.  From Table 5.1, it is apparent that the library is not a 

fast technology library, and our circuit performance results are relative to the 

characteristics of this cell library.  

 
Table 5.1 Technology Library Parameters 

 
Cell name denrq1 denrq2 denrq4 

rise 0.379 0.266 0.297 Cell delay(ns) fall 0.458 0.319 0.357 
Total output cap.(pf) 0.051 0.038 0.0386 

x 11.89 12.30 13.12 Size( mµ ) 
y 3.69 3.69 3.69 

 

More detailed information on this implementation can be found in [LFTM05, 

LTM06]. Table 5.2 compares the results of DLSiter and MM for k=8, 16, 32, 64, 128 

respectively. The speed and area trends of the two circuits in terms of word size k  are 

plotted in Figure 5.6 and Figure 5.7 respectively. Figure 5.6 shows that DLSiter is faster 

than MM for all k values. Regarding area, DLSiter requires more space for small word 

sizes but increases slowly compared with MM. Thus when 64k ≥ , DLSiter requires less 

area.  It should be noted that the area values reported here are only the net area required 

by the total cell area since we do not route the resulting circuits, thus additional area 

required by routing is not included. 
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Table 5.2 Comparison of Layout Result 
 

speed(ns) core area( 2mµ ) k (bits)
DLSiter MM DLSiter MM 

8 2.05 2.4 23386.4 8207.48 
16 2.41 3.45 40306.7 26076.3 
32 2.75 4.55 109135 79409.1 
64 3.52 5.55 184725 302942 
128 3.8 6.8 371366 1.26E+06 
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Figure 5.5 Speed Trend of the Two Circuits 
 
 

area

1000

10000

100000

1000000

10000000

8 16 32 64 128

Word Size, k

um
2

DLSiter
MM

 
 

Figure 5.6 Area Trend of the Two Circuits 
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5.2.2 DLStable Conversion/Deconversion Circuit 

A compact encoding scheme for the DLS triple ( , , )s p e  is introduced here. This 

encoding employs variable length fields for p  and e , and provides a one-to-one 

mapping between k-bit DLS values and k-bit unsigned binary integers. Example tables 

and figures are used to illustrate the encoding and some of its significant properties. 

The one-to-one mapping between 5-bit DLS values and 5-bit integers is given in 

Table 5.3. The DLS bit string is partitioned as follows to determine the three exponents s, 

p, and e. Consider the line in the table for DLS string 101102 which yields binary 

011102=1410. 
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Table 5.3 Conversion Table from the 5-bit DLS Number to the 5-bit Integers [0,31] 

 
Paritioned  DLS Bit 

Strings 
Integer 
Value 

Discrete Log 
Number 

System (DLS) 
Encoding  e  0e s⊕  2 p  32

( 1) 2 3s p e−

Standard 
Binary 

Integer  
Parity 

00001 000 0 1 1 00001 
00011 000 1 1 31 11111 
00101 001 0 1 29 11101 
00111 001 1 1 3 00011 
01001 010 0 1 9 01001 
01011 010 1 1 23 10111 
01101 011 0 1 5 00101 
01111 011 1 1 27 11011 
10001 100 0 1 17 10001 
10011 100 1 1 15 01111 
10101 101 0 1 13 01101 
10111 101 1 1 19 10011 
11001 110 0 1 25 11001 
11011 110 1 1 7 00111 
11101 111 0 1 21 10101 
11111 111 1 1 11 01011 

Odd 

00010 00 0 10 2 00010 
00110 00 1 10 30 11110 
01010 01 0 10 26 11010 
01110 01 1 10 6 00110 
10010 10 0 10 18 10010 
10110 10 1 10 14 01110 
11010 11 0 10 10 01010 
11110 11 1 10 22 10110 

Singly 
Even 

00100 0 0 100 4 00100 
01100 0 1 100 28 11100 
10100 1 0 100 20 10100 
11100 1 1 100 12 01100 

Doubly 
Even 

01000  0 1000 8 01000 
11000  1 1000 24 11000 

Triply 
Even 

10000   10000 16 10000 Quadruply 
Even 

00000   00000 0 00000 Zero 
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The variable length fields are interpreted by first determining the value p from its 

unary encoding, then finding e in binary form, and finally the sign bit. Specifically, the 

parsing of DLS string 101102 begins from the right-hand side determining the variable 

length field identifying 22 10p =  by reading until the first unit bit is encountered. The 2-

bit field “unary” encoding of p  determines 1p = . The next bit is a separation bit 

providing the logical value 0 s e⊕  used to determine s  after e  is determined. The 

remaining leading bits are the 5 ( 2)p− +  bits of the exponent 5 ( 2)0 2 1pe − +≤ ≤ − . In this 

example, e=102=210, and then s=1 is determined from 0 0e = and 0  1s e⊕ = . Finally  

1 1 2
3232

( 1) 2 3 18 14− = − =  is obtained. Note that the low-order bit field determining the 

even factor 2 p  is an identical field in both DLS and binary integer encodings. 

This above encoding scheme also satisfies the inheritance property [MFT05] 

providing that the ( 1)k − -bit DLS encoding for an integer in the range 10 2 1kx −≤ ≤ −  

can be determined by simply truncating the leading bit of the k-bit DLS encoding. This 

allows the encoding of the even integers to be simply determined from a table for the odd 

k-bit integers by shifting out the leading bits of the odd factor. For example, the DLS 

string for 14 can be obtained by shifting left one place the DLS string for 7. The 

specification of the separation bit as equal to 0 s e⊕  is an important condition that 

provides inheritance property.  

Based on the inheritance property, the conversion/deconversion in Table 5.3 can be 

visualized by the lookup trees illustrated in Figures 5.7, 5.8 and 5.9. Figure 5.7 and 

Figure 5.8 show the lookup trees of integer-to-DLS conversion for odd and even integer 
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respectively. Navigation in Figures 5.7 and 5.8 occurs by reading down with edge 

direction determined by the 5-bit integer string 4 3 2 1 0a a a a a  right-to-left. The DLS output 

(right-to-left) is obtained from the bits extracted from the vertices along the path. The 

deconversion from DLS-to-binary is similarly illustrated for the odd values in Figure 5.9. 

The even number deconversions can be accomplished by employing shifting using the 

inheritance property or from extending the table to include an even part portion. 

Besides the inheritance property, sign symmetry, one-to-one mapping, and 

normalization are 3 other properties that can reduce the tree size dramatically. Sign 

symmetry dictates that the result of the operation on the 2’s complement of the input is 

the 2’s complement of the output. One-to-one mapping holds when distinct n-bit inputs 

have appropriately determined distinct n-bit outputs. Normalization means that the result 

for an even input can be derived based on the result of corresponding odd input. More 

descriptions of these properties can be found in [Fi05]. These properties in the lookup 

trees allow the conversion/deconversion for 16-bit integers to be accomplished with 2-

8KBytes table for DLS-to-binary and 2-8KBytes table for binary-to-DLS. The 

presentation here is given to illustrate the representation which pertains to general k. 

However, when 16k > , the table size is quite large and impractical for hardware 

implementation, the conversions can be better handled with DLSiter. 
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Figure 5.7 Lookup Tree for Odd Integer Binary to DLS Conversion 
 
 
 
 
 

 

Figure 5.8 Lookup Tree for Even Integer Binary to DLS Conversion 
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Figure 5.9 Lookup Tree for DLS Odd number to Integer Binary Conversion 
 

DLStable allows for direct conversions between binary and DLS resulting in fast 

performance. Figure 5.10 shows the table lookup architecture. It consists of three major 

components: a pre-processing block, a post-processing block and a ROM. The pre-

processing block produces the ROM address based on the input operand. After the data in 

the ROM is read, the post-processing block selects the correct bit fields, and performs 

some additional processing, such as complementation. Two schemes for DLStable are 

compared here. One scheme uses a larger table with less pre- and post-processing logic 

while the other uses a smaller table with more pre- and post-processing logic. 
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Figure 5.10 Table Lookup Architecture 
 
 

5.2.2.1  DLStable with Larger Table 

For DLStable with larger-sized table implementation, the inheritance and one-to-one 

mapping properties are exploited. Due to the one-to-one property, only the left children 

of the lookup tree are stored. No normalization and sign symmetry are utilized; therefore, 

no pre-processing is required before table lookup occurs. For post-processing, conditional 

complementation is required on the table output value with the input value since only the 

left children values are stored in the table. In the following, the circuit structure and the 

hardware implementation are discussed.  

The ROM structure and select logic are shown in Figure 5.11. The ROM represents a 

3-level tree. The first level forms 256 rows where the low 8-bits ([a7:a0]) are used as the 

address bits. Each row has 264 bits. 8 leftmost bits are selected directly as output in the 

n×2n 
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D
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row. The other 256 bits represent the second and third level tree. In the second level, four 

sub-trees between levels 8 and 9 are formed as four bytes.  [a9:a8] are used to select one 

of the four bytes. After the byte is selected, [a10] and [a11:a10] are used to select one bit 

from the selected byte respectively, while the other two bits are extracted directly without 

selection. Therefore, a total of 4 bits are extracted from the selected byte. In the third 

level, there are 32 sub-trees between level 8 and level 12 formed as 32 7-bit fields. 

[a12:a8] are used to select one of the 32 7-bit fields. [a13] and [a14:a13] are used to 

select one bit from the selected field respectively, while the single rightmost bit is 

extracted directly without selection. Therefore, a total of 3 bits are extracted from the 

selected 7-bit field. Finally, a 15-bit output is produced from the select logic. 

 

 
Figure 5.11 15-bit Table Lookup Architecture 
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The post-processing logic for a larger table lookup scheme is very simple. Since only 

the left children are stored and 15 bits are extracted from ROM, a one is padded to the 

Least Significant bit (LSb) to produce a 16-bit output.  Also it is necessary to 

conditionally complement the result produced from the padding with the input value to 

produce the correct final result. Sixteen 2-bit-input XOR gates serve as conditional 

complement logic for this purpose where the corresponding bit from the result of the 

padding and the input are connected to the inputs of the XOR gates. 

 

5.2.2.2 DLStable with smaller table 

The ROM table size may be reduced by utilizing more properties of the DLS 

encoding. The inheritance property, one-to-one mapping property, sign symmetry, and 

normalization are all utilized for the smaller table design. For this approach, some pre-

processing is required before table lookup and more complicated post-processing is also 

necessary. Pre-processing logic, the ROM structure, the post-processing logic and the 

hardware implementation are described in detail in the following. 

Pre-processing consists of normalization and sign-bit extraction. Normalization is 

used to produce the p  field of the DLS triple. It is accomplished by shifting right and 

counting the number of trailing zeros. In the worst case, 16 shifts are required. A divide 

and conquer approach is adopted in the implementation. At the beginning, shift the 

operand right 8 bits and the result determines whether to check the lower 8 bits or the 

higher 8 bits. Next, the selected 8-bit field from the previous step is shifted right 4 bits 

and result determines whether to check the lower 4 bits or the higher 4 bits. This 
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procedure continues until the binary exponent p  of the operand is obtained. The second 

operation is sign-bit extraction. The sign-bit is the third bit ([ 2a ]) of the normalized 

operand. If the sign bit is asserted, it is required to conditionally complement the 

normalized operand. Since normalization (determined by [ 0a ]) and sign-symmetry 

(determined by [ 2a ]) are utilized in this step, the index for the address and select logic in 

next step are formed as [ 14 : 3 1]a a a′ ′ ′  after conditional complementation.     

The ROM structure and select logic are shown in Figure 5.12. The ROM represents a 

3-level tree. The first level forms 128 rows where the lower 7-bits ([ 8 : 3 1]a a a′ ′ ′ ) are used 

as address bits. Each row has 141 bits. 7 leftmost bits are selected directly as output in the 

row. The other 134 bits represent the second and third level tree. In the second level, sub-

trees between level 7 and 8 are represented as a 6-bit field. [ 9]a′  and [ 10 : 9]a a′ ′  are 

applied to select one bit from the selected field respectively. Therefore, a total of 2 bits 

are extracted from the 6-bit field. In the third level, 16 sub-trees between level 7 and level 

10 are formed as 16 bytes. [ 12 : 9]a a′ ′  are used to select one of 16 bytes. [ 13]a′  and 

[ 14 : 13]a a′ ′  are used to select two bits from the selected byte respectively, while the other 

two bits are extracted directly without selection. Therefore, a total of 4 bits are extracted 

from the selected byte. Finally, a 13-bit output is formed from the select logic. 
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Figure 5.12 13-bit Table Lookup Architecture 
 

Post-processing for the smaller table lookup scheme is more complex as compared to 

the larger table approach. Since normalization is performed in the pre-processing 

circuitry, de-normalization is necessary. All bits whose index is less than p  are padded 

with zeros, while all bits whose index is larger than p  are filled with lookup values. 

Since only the left sub-tree are stored, conditional complementation of the result from the 

output of de-normalization logic with the input word is necessary to obtain the final 

result. Sixteen 2-bit-input XOR gates are used for conditional complementation as 

described previously. 

We implemented the integer powering operation circuits with the DLStable 

conversion/deconversion shown in Figure 5.11 and Figure 5.12 by describing them in a 

Verilog module and using the Synopsys tool set (Design Compiler and Physical 
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Compiler) based on a standard cell library obtained from the Synopsys tutorial files 

[Syn03]. More detailed information can be found in [LFTM06].  

Table 5.4 shows the comparison between the two schemes for directed lookup table 

conversion for k=16. The ROM size is given in KB. The core area is the area of standard 

cell implementation for all other logic except the ROM. Both circuits have the same 

minimal clock period of 1.7ns but the larger table implementation requires one less cycle 

for post-processing. We do not compare the result of DLStable with MM and DLSiter 

since both MM and DLSiter are iterative computation based approaches where the 

latencies depend on the word size k . 

 
Table 5.4 Comparison of Results for Two DLStable conversions 

 

k=16 ROM size 
(KB) 

Core 
area( 2mµ )

Clock period 
(ns) 

Latency 
(clock 
cycles) 

DLStable with Larger Table 8.25 21011.2 1.70 2 
DLStable with Smaller Table 2.25 19003.5 1.70 3 

 
 

5.3 Verification Procedure and Results 

In this section, the DLSiter and DLStable circuits described in the previous section are 

validated using the IDV system. The above designs include a memory unit (ROM), a 

datapath, control logic (counter and state controller), and some small components, such 

as mux and xor.  
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5.3.1 DLSiter Circuit Verification 

In the DLSiter circuit, a small memory unit, a datapath, and a control logic block are 

present. For the DLSiter circuit, the properties that need to be verified are listed as 

follows: 

a. Liveness property: load=1  AX:2(AF(busy=0)): Along all the state trajectory 

paths in the future, there will be a state that busy=0 and it will last for at least the next 

two states. The signal load is asserted means two integers are loaded for calculating 

the powering operation. The signal busy is one while in the process of calculating the 

powering and zero when it is idle or when the calculation is complete. This property 

indicates that if integers are loaded for powering, the circuit must finish the 

calculation sometime in the future and will not get into an endless loop (busy will 

never be zero). This is a liveness property since it indicates that the circuits will 

eventually finish a powering operation. 

b. Safety property: load=1  Next(busy=1 && current_state=Init): If the signal 

load is asserted, the signal busy has to be one in the next cycle and the current_state 

has to be in the Init state. As indicated before, busy is asserted when the circuit is 

initiating the calculation process. This property ensures that if integers are loaded, the 

calculation is started in next cycle. 

State Transition properties: 

c. (current_state = Init)  Next(current_state = Loop_DLG): if the current_state 

is in state Init, then current_state has to in state Loop_DLG in next cycle. The same 

as the following several state transition properties. 
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d.  (current_state = Loop_DLG)  Next(current_state = Loop_ACC) 

e. (current_state=Loop_ACC)  Next(current_state=Loop_EXP) 

f. (current_state=Loop_EXP)  AF(current_state=Ready) 

g. current_state=Loop_EXP && Count<Bound)  Next (current_state = 

Loop_ACC) 

h. Properties related to Memory: RE=1 ∧  addr  ROM_out = Next(M[addr]): The 

signal RE indicates read enable for ROM. The property can be interpreted as: if read 

enable for ROM is on and a valid address is given, the output of ROM in next cycle 

should be the value stored in that address.  

 

5.3.1.1 Partitioning  

Design hierarchy is explored in this stage. A process-module graph which describes 

the hierarchy of the design is built. Each node in the graph represents a 

component/module/process and edge corresponding to the interconnections of these 

components. The process-module graph for DLSiter powering circuit is shown in Figure 

5.13. This information is used for partitioning and system level functional simulation. 

 

Figure 5.13 Graph Representation of Design Hierarchy 
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Initially a coarse-grain partition is explored and the tool continuously decreases the 

granularity of the partitions until the desired coverage goal for validation is reached. 

Given the above example, the top-level consists of three parts, a controller, a ROM, and a 

datapath. These three parts are extracted and supplied to complexity analyzer. 

 

5.3.1.2 Complexity Analyzer 

The complexity analyzer is responsible for: 

a. Analyzing the properties that need to be checked and assigning them to 

appropriate verification tools. Complex properties specified in CTL are supplied as 

input to VIS while properties given in the trajectory formula format are supplied as 

input to STE. Given the above example, the liveness property (a) is quite complicated 

and unsuitable for STE and thus is supplied to VIS while properties b-g can be 

verified via either VIS or STE. In such a case, STE is preferred since STE has a larger 

capacity in terms of number of states variables in a design. Also, the property related 

to memory, h, is supplied to STE for formal verification since STE performs better 

for such components and the related properties usually can be expressed as trajectory 

formulas. 

b. Selecting equivalence checking or simulation for datapaths. Simulation is more 

time consuming but can handle any design while an equivalence checking is faster for 

the “types” of designs that do not cause the memory explosion problem to occur. 

Currently, a rule based approach is used to select the appropriate method: 1) if the 

number of variables exceeds a threshold, or 2) if the circuit contains certain elements 
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(i.e. multiplier), simulation is selected. Otherwise equivalence checking is utilized for 

datapaths. Even if an equivalence checking tool were selected, a timing threshold is 

set and simulation will be started if the equivalence checking tool cannot generate the 

result in given timing threshold. 

Complexity analysis concludes that the controller is verified by property checking, 

the datapath is validated by simulation since the multiplier presented in the datapath 

causes memory problem due to the size of BDD. The read operation for the ROM can be 

verified with STE while the content of the ROM can be validated with equivalence 

checker. 

 

5.3.1.3 Verification or Simulation Processing 

After complexity analysis and partitioning are completed, the subcircuits and 

corresponding constraints are supplied to appropriate tools for verification and/or 

simulation. The results are shown in Table 5.5 for the DLSiter circuit. The results 

demonstrate runtime for the different tools. These results were obtained using a Pentium 

4 PC with 512MB of Memory. 

 
Table 5.5 Verification/Simulation Result 

 

 
 
 
 
 
 
 

Component Properties Tools Result Time 
a VIS T 1.2s Controller b-g STE T 15s 
h STE T 1.5s Memory content SMU-EQ 100% 18s 

Data Path  Speed 10% 170s 
Functional  Func. Sim 1% 230s 
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5.3.1.4 Coverage Analysis 

Different coverage metrics have been proposed in different tool sets. We are currently 

focusing on vector coverage and plan to expand to other coverage metrics. The vector 

coverage of an output is based on:  

a. the coverage rate of the components related to the output when they are simulated 

or verified at the block level 

b. the contributions or importance of each component related to the output 

c. the vector coverage of the system-level simulation and the interconnection error 

Detailed descriptions for the above three points are demonstrated as follows. The first 

point is easy to understand. For each output of the design, not all components contribute 

such as the output signal busy which is only related to the component controller. If an 

output is related to the n components C1 … Cn, each component has a corresponding 

normalized coverage value R1 … Rn when they are verified or simulated at the block 

level. Ri is one if the component has been fully verified or a value (0,1)iR ∈  that 

corresponds to the percentage of vectors simulated. The coverage for an output will 

increase as the coverage for each related component increases. However, even if all 

related components are fully verified ( 1iR = ), the coverage for the output may not reach 

a perfect level of 100% since the interconnection may cause an error such as the case 

where two interconnections are reversely connected. 

Also, not all components related to an output have the same contribution. For 

example, the output z is related to all three components and it is the direct output of the 

component datapath which in turn relates to the other two components. The contribution 
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of the component Ci to the output is denoted as wi. Currently, there are two ways to 

determine the value wi: (1) designers assign the value, (2) automatic method based on the 

input distribution of the directly related component. An example is used to demonstrate 

the automated method. For the DLSiter circuit, the directly related component datapath 

has five inputs. Two of five inputs are from system inputs, two of them are from the 

component controller, and one of them from the component ROM. The contribution of 

each component is proportional to the input distribution. The contribution of the 

component datapath is 2 / 5 , the contribution of the component controller is 2 / 5 , and the 

contribution of the component controller is 1/ 5 .  

The third point is related to the system level simulation and interconnection errors. 

Even if all related components are fully verified, the coverage for an output may not 

reach a perfect level of 100% since the interconnections may cause errors. System level 

simulation can be used to detect the presence of possible interconnection errors. The 

number of possible interconnection errors is related to the number of interconnections. 

The more interconnections, the more errors are possible. Also, the more system level 

simulation that is accomplished, the less possible interconnection errors present in a 

design. Based on above description, a graph of relationship between possible 

interconnection errors and the coverage of the system level simulation is shown in Figure 

5.14.  
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Figure 5.14 Possible Interconnection Errors vs. Coverage of System Level Simulation 

 

Figure 5.14 shows the changes on coverage of the system level simulation and 

presence of possible interconnection errors. When no system level simulation is 

performed, all possible interconnection errors are normalized to one. The possible 

interconnection errors presented in the system decrease as the coverage of system level 

simulation increases. Various slopes in Figure 5.14 show the different decreasing rate of 

the possible interconnection errors which is referred to as dropping rate p . No 

interconnection error presents in a design once 100% coverage is reached at the system 

level simulation. Dropping rate p  is related to the number of interconnections and the 

interconnection architecture. The smaller is p , the faster possible interconnection errors 

are detected via the system level simulation. The function in Figure 5.14 is referred to as 

the dropping function and denoted as ( , )d s p  where the parameter s  is the vector 

coverage at the system level simulation. Currently ( , )d s p  is calculated as  

1/(1 )p pd s= −                                                              Eq. 1 



95 

where p  is determined by   
 

number of interconnections
total inputs

. Here only the number of 

interconnections is considered and the interconnection architecture is ignored. 

In other words, ( , )d s p  defines the distance between the perfect situation (no 

interconnection error) and the imperfect situation due to interconnection errors. 

1 ( , )d s p−  represents the confidence an output gains for interconnections with s  system 

level simulation. If ( , )d s p  is given, the coverage of an output can be calculated as 

(1 ( , )) R d s p× − considering interconnection errors. In an optimistic analysis, 

interconnection error is ignored. Thus, the coverage for components is adjusted with and 

without considering interconnection errors. The adjusted coverage rate is referred to as 

R′  and is calculated as an interval value 

[ , ]low highR P P′ =                                                  Eq. 2 

 where (1 ( , )) , low highP R d s p P R= × − = . 

Based on the previous analysis, the total coverage rate for the output can be written 

as: 

1 1 2 2 ...o n nP w R w R w R′= + + +                                           Eq. 3 

Although this is a simple approach, it is our first attempt at automating coverage 

analysis. Detailed and in-depth research into automating coverage calculations is the 

research project being investigated by another Ph.D student in our group.  

We now show how to use Eq. 3 to calculate the coverage of the given example, there 

are two outputs, busy and z. Among the three components, controller and ROM are fully 

verified and their coverage values are 1cR =  and 1mR =  respectively. While the 
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component, datapath, is simulated with 10% coverage at the block level yielding 

0.1dR = .  

The output Busy, is only related to the component controller and also the input load. 

The component controller totally controls the functionally of Busy, thus yielding 1cw = . 

Applying Eq. 3, the coverage for the output Busy is 

1 1 1busy c c c cP w R w R′= = = × = =100% 

which indicates that the output Busy has been fully verified. 

The output z  is related to all three components. z  is the direct output of the 

component datapath which accepts inputs from the system level input x  and y , the 

output of the component ROM and the outputs of the component controller. With 

automatic methods based on input distribution, the contribution of the component 

controller is 2 / 5 0.4cw = = , the contribution of the component datapath is 

2 / 5 0.4dw = = , and the contribution of the component ROM is 1/ 5 0.2mw = = . Next, 

the coverage for the component datapath is adjusted.  

In the system-level simulation, 1% of the vectors for x and y have been simulated 

( 0.01xyI = ). Among five inputs for the component datapath, three of them are from 

interconnected component yielding 3 / 5p = . According to Eq. 1, the dropping function 

( , )d s p  is written as 
3 5

5 3(1 )d s= − . Substituting xyI  with s  in the formula yields 

0.89d = . This shows that with 1% of system simulation, 11% of confidence is obtained 

with the system interconnections.  
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The simulated vectors of the component datapath at the block level are 10%. Thus 

the adjusted coverage for the datapath is [0.011,0.1]dR′ =  according to Eq. 2. 

Then the coverage for the output z is calculated as  

0.4 1 0.2 1 0.4 [0.011,0.1]
[0.604,0.640]

z c c m m n dP w R w R w R′= + +
= × + × × + ×
=

 

The coverage of the output z  with the initial partition is [0.604 0.640]. This coverage 

can be further improved by refinement. 

 

5.3.1.5 Loop Back 

When coverage is too low, IDV loops back to perform more partitioning over 

previously simulated components. In the above example, the datapath is the only 

component simulated, all others are completely verified. When IDV loops back and 

examines the component datapath, it contains three small modules, conversion, multipler, 

and deconversion. The component datapath can be further partitioned into three smaller 

modules and IDV can verify some of the smaller modules. The tools progress into a finer-

grained partition of the design. Since all of the three modules cannot be formally verified, 

one way to improve the coverage is to increase the coverage rate of each module in the 

component datapath by simulation. After component-level simulation, the coverage of 

the datapath is recalculated. Using the automatic contribution methods described 

previously, equal contribution is assigned to the three components, 
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mult dlg exp 1/ 3w w w= = = . All three components have been simulated at the same rate, 

dlg mul exp 0.3R R R= = = . Thus applying these results, the new coverage value becomes:  

2
mult mult dlg dlg exp exp

1/ 3 (0.3 0.3 0.3) 0.3
dR w R w R w R= + +

= × + + =
 

The coverage of the component, datapath, has been improved from 10% to 30% by 

refined partitioning. With the increased coverage for the component datapath, the 

adjusted coverage rate of the component datapath is calculated as [0.033, 0.30] according 

to Eq. 3. Given that all other parameters stay the same, the entire system coverage of the 

output z  is calculated in the following 

0.4 1 0.2 1 0.4 [0.033,0.30] [0.613,0.720]
z c c m m n dP w R w R w R′= + +

= × + × × + × =
 

 

5.3.2 DLStable Circuit Verification 

The table-based design consists of a memory unit, a datapath for pre- and post- 

processing and multiplier, and a very simple control logic subcircuit. The following three 

properties need to be verified for the DLStable circuit:  

a. Liveness property: load=1  AX:2(AF(busy=0)): Along all state trajectory paths 

in the future, there will be a state such that busy=0 and it will be asserted for at least 

the next two states. The signal load is one means two integers are loaded for 

calculating the powering operation. The signal busy is asserted while in the process of 

calculating the result and zero when it is idle or the calculation is complete. This 

property indicates that if integers are loaded for powering, the circuit must finish the 
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calculation sometime in the future and will not enter an endless loop (busy will never 

be zero). This is a liveness property since it checks that the circuit will not be 

deadlocked. 

b. Safety properties: load=1  Next(busy=1): If the signal load =1, the signal busy 

has to be asserted in the next cycle. As indicated before, busy is one when the circuit 

is initializing the calculation process. This property checks that if integers are loaded, 

the calculation should be started in next cycle. 

c. Properties related to Memory: RE=1 ∧  addr  ROM_out = Next(M[addr]): The 

signal RE indicates read enable for ROM. The property can be interpreted as: if read 

enable for ROM is on and a valid address is given, the output of ROM in next cycle 

should be the value stored in that address. 

 

5.3.2.1 Partitioning  

A PM graph is built which describes the hierarchy of the design. The PM graph for 

the DLStable powering circuit is shown in Figure 5.15. 

 

Figure 5.15 Graph Representation of Design Hierarchy for DLStable 
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Given the above example, the top-level consists of three parts, a controller, a ROM, 

and a datapath. These three parts are extracted and feed into complexity analyzer. 

 

5.3.2.2 Complexity Analyzer 

The liveness property (a) is quite complicated and unsuitable for STE, thus VIS is 

applied. Property b can be verified via STE. 

The read operation for the ROM can be verified with STE while the content of the 

ROM can be validated with equivalence checker. The component datapath in DLStable 

circuit also cannot be formally verified since it contains multiplier. The controller is 

verified by property checking.   

 

5.3.2.3 Verification or Simulation process 

After the complexity analysis and partitioning are completed, the subcircuits and 

corresponding constraints are supplied to appropriate tools for verification and/or 

simulation. The results obtained using a Pentium 4 PC with 512MB of Memory are 

shown in Table 5.6 for DLStable circuit.  

 
Table 5.6 Verification/Simulation result 

 
 

 

 

 

 

Component Properties Tools Result Time 
Controller a-b VIS T 1.2s 

c STE T 18s Memory 
content SMU-EQ 100% 200s 

Data Path  Speed5 10% 78s 
Functional  Func. Sim 1% 95s 
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5.3.2.4 Coverage Analysis 

Based on the equations in the previous section, the coverage for outputs busy and z 

are calculated.  

The components controller and ROM are fully verified and their coverage rates are 

1cR =  and 1mR =  respectively. The component datapath is simulated with rate 0.1dR = . 

In the system-level simulation, the input load is simulated in both phases ( 1loadI = ) and 

1% of vectors for x and y have been simulated ( 0.01xyI = ).  

The output Busy, is only related to the component controller and also the input load. 

The component controller totally controls the functionally of Busy yielding 1cw = . 

Applying Eq. 3, the coverage rate for the component Busy is 

1 1 1busy c c c cP w R w R′= = = × = =100% 

which indicates that the output Busy has been fully verified. 

z  is related to all three components and is directly the output of the component 

datapath which accepts four inputs; two of the inputs come directly from the system 

input, one input is the output of controller, and the other one is produced by the 

component ROM. Based on the automatic method, the contribution of the component 

datapath is 2 / 4 0.5dw = = . The other two components have equal contribution with 

0.25mw =  and 0.25cw =  each. Next, the adjusted coverage rate for the component 

datapath is determined. Among the four inputs for the component datapath, two of them 

are from interconnected components yielding 1/ 2p = . Based on Eq. 1, the dropping 

function ( , )d s p  is written as 
1 22(1 )d s= − . Substituting xyI  with s  in the formula yields 
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0.81d = . This shows that with a 1% of system coverage, 19% of confidence is obtained 

with the interconnections. The component datapath is simulated with 10% coverage. The 

adjusted coverage for the component datapath is interval [0.019, 0.10]. 

We now calculate the coverage for the output z .  

[ ]0.25 1 0.25 1 0.5 0.019,0.10
[0.51,0.55]

z c c m m n dP w R w R w R′= + +

= × + × × + ×
=

 

 

5.3.2.5 Loop Back 

IDV loops back to perform more partitioning over the previously simulated 

component datapath. In the component datapath, three small modules, conversion table 

lookup, multipler, and deconversion table lookup exist. The component datapath is 

further partitioned into three smaller modules and we verify some of the smaller modules. 

Two table lookup modules can be formally verified with equivalence checker SMU-EQ 

yielding dlg exp 1R R= = . After the component-level simulation, the coverage of the 

datapath is calculated using Eq. 3. Using the automatic contribution methods described 

previously, equal contribution is assigned to the three components, 

mult dlg exp 1/ 3w w w= = = . The component multiplier is simulated with 10% coverage 

yielding mul 0.1R = . Thus applying these results, the coverage value for the component 

datapath at the system level is:  

2
mult mult dlg dlg exp exp

1/ 3 (1 0.1 1) 0.70
dR w R w R w R= + +

= × + + =
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The coverage of the component datapath has been improved from 10% to 70% by 

refined partitioning. With the increased coverage for the component datapath, the 

adjusted coverage for the component datapath is calculated as [0.133, 0.7] according to 

Eq. 2. All other parameters stay the same. Thus, the coverage of the output z  is 

calculated in the following 

0.25 1 0.25 1 0.5 [0.0133,0.70] [0.567,0.85]
z c c m m n dP w R w R w R′= + +

= × + × × + × =
 

 

5.4 Summary 

The purpose of the IDV is to provide one tool so that a designer can validate designs 

that can not be validated by any single tool. Through the above example, the IDV system 

is shown to have compatibility with different tools. Currently, the IDV system has not 

been fully automated and requires some amount of human interaction. The coverage 

calculation can be further improved by introducing more accurate models. Other 

members in the CAD methods research group are focusing their research on improvement 

of the coverage calculations and further automation of IDV. 
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CHAPTER 6 

6. CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

Formal verification plays an increasingly important role in design validation since 

evolving markets demand short design cycles while the increasing complexity of a 

modern design makes simulation coverage less and less complete.  

Image/Pre-Image computation is a core algorithm in formal verification. BDD-based 

methods are usually faster but can exceed memory capacity for larger designs, limiting 

scalability. SAT solvers are less vulnerable to memory explosion but can be slow. We 

extended BDD-based image computation with a genetic algorithm and also presented a 

way of combining BDD and SAT approaches under one framework. A BDD-based 

approximation method was used to calculate the over- and under- approximation 

boundaries of reachable states. A SAT solver was used to find the remaining states. The 

SAT solver was enhanced by techniques referred to as “early detection” and “expansion” 

to find a satisfiable assignment containing more don’t cares. The experimental results 

showed that our approach can check more circuits than purely BDD-based symbolic 

model checking tools. 
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Formal verification itself cannot solely accomplish the validation task. Thus, we are 

motivated to combine different approaches to serve the purpose of validation of diverse 

digital designs. The IDV project resulted in the development of an integrated approach 

for design validation and takes advantage of current technology in the areas of 

simulation, and formal verification resulting in a practical validation engine with 

reasonable runtime. The focus in this approach is the circuit complexity analyzer and 

partitioning tool based upon design hierarchy. The IDV system also incorporates 

coverage analysis methods that compute the degree of design validation, a method for 

intelligently updating the complexity analyzer for further validation iterations, and 

integration of these techniques with existing simulation and formal verification 

techniques.   

To demonstrate the capability of the IDV, two practical application circuits designed 

in our lab that are “hard cases” for validation were considered. The circuits were 

designed to implement a powering operation with two approaches: DLSiter and 

DLStable. The algorithms as well as hardware implementations were also outlined. IDV 

was then applied to validate the circuits. Since the designs are used to benchmark the 

algorithms being developed for integer operations, it is important to verify these designs.  

 

6.2 Future Work 

Currently, the IDV system has not been fully automated and requires some amount of 

human interaction. Ongoing work is in progress to make the IDV system automatic. 

Coverage analysis is also a major issue in IDV and in the verification research 
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community in general. How one handles functional coverage and other coverage metrics 

should be explored further. Automatic feedback to improve the coverage is a very hot 

topic now. Several commercial EDA companies are working on this topic. Opening the 

IDV system to incorporate more tools is also one of our objectives.  

At this stage, only formal verification and functional simulation are integrated in the 

IDV system. We also plan to extend IDV to include other types of simulations such as 

critical timing and fault simulation. ATPG is another important functionality to consider. 

Besides the partitioning based on the design hierarchy, automatic partitioning a 

design is also desired. A methodology for automatically extracting controllers from an 

RTL-HDL specification is described in [LJ00]. This work introduces an algorithm for 

automatically separating the datapath and controller described at the RTL level by 

locating general patterns of FSMs in a PM graph representation of the design.  In such a 

representation, the hierarchy is preserved and each module contains its own PM graph. 

Because a FSM’s next-states always functionally depend on their current state, signals 

stemming from state-registers will loop back after some combinational paths have been 

traversed. Finding the FSMs in the HDL is based on finding such loops in the PM graph. 

Some loops that are found, however, may have a valid pattern topologically but not be 

part of the FSM. To deal with such instances, the checking of functional dependency 

follows the loop search to determine if the loop is a valid part of the FSM. The extraction 

process is divided into four phases, most of which are traversal procedures resembling a 

depth-first search of the PM graph. All steps are of linear complexity. This research 
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demonstrates feasibility by focusing on the separation of a design into separate controller 

and datapath circuits. This can be used as a starting point. 

One direction to expand IDV is to consider software verification, especially device 

driver verification. Some specific details that can be investigated include (1) automatic 

generation of Boolean programs along with a set of predicates from high-level languages 

such as C/C++ programs, (2) method of modeling a Boolean program in the form of a 

microprogramming controller, (3) applying suitable formal verification tools for memory 

to validate the microprogrammed-based model of a device driver. 

We would also like to apply IDV for quantum logic and reversible logic. Quantum 

computing has many powerful applications that a classical computer cannot accomplish 

efficiently. Quantum hardware design remains an emerging field, but the work done thus 

far suggests that it will only be a matter of time before quantum devices are available to 

test Shor's and other’s quantum algorithms.  If this prediction comes to pass, quantum 

computers will emerge as computational devices that have profound implications in 

computing. Developing CAD tools for quantum hardware design will greatly benefit the 

quantum computing community. 

System specification of a design is usually given in a natural language which is hard 

to translate into properties or assertions that can be supplied to formal verification tools 

directly. It is necessary to describe the system specification in a more rigorous and well-

formed language in order to bridge the gap between a system specification and properties 

or assertions that formally verified. Unified Modeling Language (UML) has commonly 

applied to model software project and we adopt UML as tool for system specification. 
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Some preliminary work has been accomplished and the results are very promising 

[LOT06].  

The SystemVerilog language evolved from the Verilog hardware description 

language as an industrial standard language to describe hardware design as well as to 

write assertions supporting the enormous task of verifying the correctness of a design. 

Incorporating SystemVerilog into the IDV system will greatly benefit the validation 

procedure.  
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