
Cache Resident Data Locality Analysis

Q. G. Samdani M. A. Thornton
 Intel Corporation Mississippi State University
 galib.samdani@intel.com mitch@ece.msstate.edu

ABSTRACT
The data cache organization of a computer can

significantly affect overall data access latencies when a
program is executed. The cache performance depends on
the locality characteristics of the data being processed in
a program as well as the underlying architecture. A
typical executing program has a data access profile that
exhibits both temporal and spatial locality characteristics.
Since most processors contain single data caches at a
given level and since the single data cache cannot be
optimized for purely spatial nor purely temporal locality
data accesses, cache space pollution and inefficient usage
of cache resources can occur. In the worst case, these
phenomena can actually introduce additional data access
latency through repeated line fills. Here an analysis and
modeling scheme is presented that describes the runtime
data access behavior of several benchmark programs in a
typical, unified data cache. The motivation for the
development of this model is to produce information that
may aid in the design of a split data cache with one side
optimized for temporal locality accesses and the other for
spatial locality accesses.

1. Introduction

Cache memory usage is mandatory in state-of-the-art
computers in order to reduce the overall data access
latency resulting from slower main memory in comparison
with the increasing speed of the processing element
[1,2,3]. Cache memory hides data access latency by
exploiting the locality characteristics of the running
programs. A good knowledge of memory access behavior
can lead to efficient cache memory subsystem designs.
Memory access behavior is characterized by the principle
of locality. Locality analysis of different types of programs
during runtime can aid in defining an optimized cache
subsystem organization. Locality modeling and analysis is
necessary in research projects that investigate cache
subsystem design. The locality behavior of a program can
be of two types, spatial or temporal. Most current research
projects [4,5,6] are investigating the spatial reuse of data

of executing programs and strive to find a means to exploit
this spatial reuse of data.

The purpose of the results discussed here is to analyze
and model the actual runtime data access behavior in a
typical cache. The analysis of the results motivates us to
investigate alternative cache organizations that are able to
intelligently use available resources. Instead of using a
unified data cache, a cache organization that is split with
each side optimized for a particular type of locality (i.e.
spatial and temporal) has been proposed.

In the current literature, several investigations have
proposed different schemes for instruction and data cache
organization to reduce overall memory access latency.
These include lockup-free caches [7,8], cache-conscious
load scheduling [9], hardware and software pre-fetching
[10,11] and multithreading [12]. The mechanism proposed
in [9] identifies non-cacheable data by means of profiling.
The scheme proposed in [10] is based on a run-time
managed history table of the most recent load/store
instructions. In [13] a pre-fetch engine is used which relies
on a software or hardware optimized Deterministic
Prediction Approach (DPA) in order to pre-fetch data that
is estimated to be referenced in the future. Combined
compile-time and run-time caching policies as proposed in
[14] use memory access detection and automatic data
caching based on compiler provided analysis of run-time
memory access requirements.

A selective caching policy proposed in [14] leads to an
organization that is similar to a conventional cache in
which all memory instructions have an additional bit that
is set (or reset) by the compiler. When a cache miss
occurs, this bit controls whether a new block is retrieved
from the L2 cache and placed in L1 or if the requested
data is retrieved from the L2 cache directly and not written
into the L1 cache.

A cache organization with both temporal and spatial
subsystems has been proposed in [16,17,18] which uses a
very simple heuristic based on the data type which can be
changed by dynamic or pre-runtime profiling. Selective
caching is a feature of current microprocessors such as that
being used in the PowerPC. The HP PA-7200 [17] uses a
software-managed data caching policy. Every memory
instruction used by the HP PA-7200 includes a “hint bit”

indicating that spatial locality is used to predict if the data
referenced by that instruction shows only spatial locality
characteristics and not temporal locality. The HP PA-7200
consists of two cache modules; the on-chip, fully
associative, assist cache and a large direct-mapped off-
chip cache. The assist cache holds data related to all
memory references for which hint bits are explicitly set
indicating spatial locality, whereas the off-chip main cache
holds all data in which the hint bit is not set indicating the
lack of spatial locality.

Current computer architectures typically use a fixed
cache line size. Typically these cache lines can store a
multiple number of memory words in a single cache line.
This policy provides the advantage of prefetching a spatial
memory zone on a miss. If the consecutive memory
reference made by the processor is within the spatial space
of the cache line, then the overall miss rate is reduced. The
major drawback of using this policy is that data which
exhibits temporal locality is stored with a set of data close
to it in address space, but that may not exhibit any locality.
Thus, the available cache space and bandwidth may be
polluted by system when a large amount of non-usable
data is resident in the cache. About 60 percent of
available cache space can be polluted in some extreme
cases due to this phenomenon [19].

To avoid cache pollution and latency, some intelligent
spatial prefetching schemes have been proposed [6,19]. In
[6] a Spatial FootPrints (SFP) table is maintained by using
specialized hardware. Depending on the content of the
SFP table, the predictor mechanism fetches a smaller or
larger number of blocks when misses occur in the cache.
Also, in [19] a somewhat similar strategy based on a
Spatial Locality Detection Table (SLDT) is used to
prefetch multiblocks or less in order to reduce memory
access latency during runtime.

In this work, we present a model and the analysis of
results from the model for determining the locality
behavior exhibited by several benchmark programs
executing in a load/store based uniprocessor with a typical
unified data cache. The motivation for this analysis is to
determine the data locality behavior of different programs,
and to use the results to design an efficient cache
organization that will not suffer from the inability to
exploit varying data locality behaviors over a variety of
executing programs.

The subsequent sections of this paper are organized as
follows. Section 2 presents an overview of locality and
the need for runtime locality analysis and modeling of
executing programs. In section 3 we present the model
that is used for the locality analysis. Next, we present and
discuss experimental results of the cache access behavior
by different SPEC integer and floating point programs.
Finally, in section 5, we provide conclusions based on the
experimental data.

2. Principle of Locality

To hide memory access latency due to fast processors
with relatively slower main memory, a cache subsystem is
used to attempt to store data which will be accessed in the
future by the processor. This is accomplished by loading
additional data other than that being requested by the
processor during a cache line fill. A typical way of doing
this is to retrieve additional data from the neighboring
address space of the requested data. The purpose of
writing neighboring data into the cache is to exploit the
principle of spatial locality. Spatial locality exists due to
the empirical observation that “data tends to be accessed
that is close (in address space) to previously accessed
data”. Figure 1 shows an example of this type of locality
where data block B is requested by the processor and the
resulting cache miss causes a line fill to occur that loads
blocks A through D. Thus, any consecutive memory
blocks requested by the CPU within this spatial region will
result in a cache hit and the access time of these data is
equal to the (faster) cache access time.

Figure 1: Cache Line Fill Illustrating the

“Spatial Access”

Whenever the data access pattern is largely spatial in

nature, the inclusion of large cache lines that contain more
neighboring data can reduce the overall memory access
latencies drastically. For strictly spatial data access
patterns the reduction in memory access latency depends
mainly on the cache line size.

Another type of locality is “temporal” locality or
locality in time. This type of locality is characterized by
certain locations in memory being accessed repeatedly in
time. For example, this occurs when a CPU requests data
blocks in the order B, G, M, B, G, M repeatedly during the
execution of a program. The illustration shown in Figure 2
depicts this type of access pattern. In this case, the cache
line fills are bringing additional memory blocks in each
cache line that are not needed by the processor.

A
 B

 C
 D

CPU

CPU requesting
memory block
B

Cache

Cache
line fill
fetching

blocks A,

B, C and

D

A B C D

I J K L

E F G H

M N O P

Main Memory

2.1 Motivation for Locality Analysis

In past work on data cache optimization, mainly
numeric (scientific) programs have been considered for
analysis of the data locality pattern. Since most numeric
codes contain a large amount of nested loops, a significant
amount of research has been attributed to the incorporation
of more spatial reuse through different compiler
optimization techniques such as unimodular
transformations, loop fusion and distribution and tiling
[20]. Some assertions of the spatial reuse of data have
been made without doing any intra-loop reuse analysis [4].
Some computer architectures, such as the HP-7200 [17] do
not use any detailed program locality information and
depends only on spatial reuse of data.

To fully take advantage of the spatial locality present in
a program’s data access patterns and to also benefit from
the temporal locality that is also present, a data cache may
be organized with multiword line sizes. In Figure 1 it is
seen that for the spatial access pattern B, C, D and A the
access penalty is one cache miss since the next three
consecutive accesses result in a cache hit. Thus, the
effective miss rate is 25 percent and cache space
utilization is 100 percent for this case. From Figure 2, if
the access pattern is like B, G, M, B, G, M then the
effective miss rate is increased to 50 percent and cache
space utilization is reduced to 25 percent. This clearly
indicates that the relatively large line size for taking
advantage of spatial locality results in the pollution of the
cache asset and also increases the memory access
bandwidth. About 40% cache capacity wastage has been
reported to be common [19].

Figure 2: Cache Line Fill Illustrating the
“Temporal Access”

The depicted scenario indicates that the same cache

organization will not perform equally well in all cases. To
get an optimized performance, the cache organization
needs to be tuned to benefit from both spatial and temporal
data access behavior in executing programs. The tradeoff

arises because increasing cache line size to exploit more
spatial locality causes more cache pollution and wasted
bandwidth when temporal accesses are requested.
Alternatively, decreasing line size and adding more lines
to a cache can result in inefficient usage when the accesses
are largely spatial in nature since cache miss rates will
increase. Furthermore, as is demonstrated later in this
paper, the data access behavior varies largely from
program to program. Data access behavior can be purely
spatial, purely temporal or (more typically) a combination
of both types of locality. It is possible to optimize a cache
organization to provide optimum performance for a
particular program. But, it is a very difficult task (if not
impossible) to provide optimum performance for all types
of program data access behavior. A reasonable choice in
this case is to design a cache subsystem that will perform
well on average. Analysis and modeling of the program
data access behavior over a number of different programs
can provide estimates of average-case behavior. This
motivates us to carefully study and analyze the data access
behavior of the programs that cover a wide range of
applications. We use the SPEC benchmark suite as a
representative sample of different types of application
programs.

3.0 Locality Analysis Method

The data locality behavior of different application
programs is analyzed during runtime in order to observe
the characteristics of interest. In the results we present
here, parameters of interest are generated through the
accumulation of statistics based on data access patterns in
a general cache as a program executes. In this approach, a
specific cache architecture is considered and runtime data
access profiles of different SPEC benchmark programs are
stored. Initially, we modeled different cache sizes with
varying line sizes. Among these, a four-way set
associative 32 KB cache with 128 byte (32-bit words) line
size was considered as the baseline organization to analyze
and model cache data locality in terms of miss rates and a
window width to capture both spatial and temporal
locality. This target cache architecture was simulated
using the C language and complied using the Unix cc
compiler. Input to the program consists of memory traces
gathered during the execution of the SPEC benchmarks.

The memory traces of the SPEC benchmarks used in
this investigation are those available from the anonymous
ftp site of the New Mexico State University Trace
Database [21]. The traces contain the addresses of the
memory references and also a field indicating whether it is
instruction address or data read/write address. Since we
are only interested with data caching, a filter program
written in C to extract only the data load/store related
addresses is used. The cache simulator then uses the data

Cache

Main Memory

A B C D

CPU

CPU requesting memory
blocks B, G and M in
progression of time

Fetching
patterns of
Cache lines for
requests B, G
and M

A B C D

I J K L

E F G H

M N O P
E F G H

M N O P

load/store related traces as input and generates the analysis
results after simulating the cache.

For locality profiling purposes, the simulator keeps
track of the number of accesses in each line of the cache as
well as the average time difference of each word being
accessed in a line over successive hits, or the “temporal
stride”. Although the term “stride” is generally used to
refer to the absolute distance between different memory
addresses, here we are using it in a temporal sense to refer
the relative time difference in terms of the processor clock
cycles. Also, the analysis tool records the number of hits
for each word in a line. Analyzing the runtime behavior of
the SPEC benchmark programs’ memory traces allows the
data access locality characteristics of these programs to be
noted.

For the locality analysis, we use the line hit-rate and
strides of the words in the lines as well as word hit
frequency. Usually, for spatial locality, the strides of the
words in a line should be similar or should have a fixed
difference with an equal or close number of hits. For
temporal locality behavior, the number of access to a line
should become very high and we may also expect that the
strides of the words and word-hit frequencies will vary a
lot. Figures 3 and 4 show the typical nature of the strides
for temporal and spatial locality behavior in a cache line
for two benchmark programs used in this test bench.

Temporal Locality Pattern in a Line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 4 7 10 13 16

Word Number

W
o

rd
 H

it
 C

o
u

n
t

a
n

d

S
tr

id
e

Word Hit Count

Average Stride

Figure 3. Temporal access pattern in a cache line

Figure 4. Spatial access pattern in a cache line

We used the following equation for the estimation of

hit rate (in %) for spatial or temporal locality:

Where:
EHit = Estimated percent of Hits due to Spatial or

Temporal Locality
WHCi = ith Word Hit Count due to Spatial or Temporal

Locality
NSpatial/Temporal = Number of Word Hits due to Spatial or

Temporal Locality
TWHC = Total Number of Word Hit Count in the cache

To facilitate this estimation process, our model uses

counters for each line of each set in the cache and for all
corresponding words in the lines. Two-dimensional
unsigned integer array variables are used to store the count
values. The mapping process of a 4-way set associative
cache is used to get the array indexes of these counter
variables in a manner similar to hashing where the hash
function is actually the cache mapping function. These
counters are used to maintain the hit counts for each word
in each line of the sets. For each respective word in the
cache, the average time between successive hits is also
maintained in another variable in terms of memory access
cycles that we refer to as stride (in this case, temporal
stride) in the plots. Figure 5 illustrates this basic strategy
of counting the hits for a single 4-way set that contains 4
words per line.

As input, the analysis program uses memory traces
obtained through the simulated execution of the SPEC
benchmarks assuming a load/store CPU with the cache
structure described above. After processing the hit rate and
average stride of all words in the cache, the portion of the
cache hits due to spatial and due to temporal accesses is
determined. This determination is based on the ‘hit count’
and ‘average stride’ values for each word in the cache and
is compared with the other words’ hit count and stride
values. For spatial accesses, the hit count and stride should
be similar in value for each word in relation to the other
words in a specific line of the cache. This observation
forms the basis of how spatial locality is detected. The
spatial accesses are isolated by simple relative
comparisons of both the word and total line hit count
values. For temporal accesses, the words with large
differences in stride and hit count as compared with other
words in the line are considered and their cumulative
counts are also recorded for each line. Following the same
process for all of the lines in the cache, a combined set of
statistics based on spatial, temporal and unused word
counts are obtained to calculate the percentage of cache
hits due to spatial versus temporal locality. Figure 6 shows
a flow diagram illustrating the major steps of the analysis
method.

/

/
1

100 Spatial TemporalN

Spatial Temporal i
i

EHit WHC
TWHC =

� �= � �
� �

�

Spatial Locality Pattern in a line

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04

1 4 7 10 13 16
Word Number

W
o

rd
 H

it
 C

o
u

n
t

a
n

d

S
tr

id
e

Word Hit Count
Average Stride

Figure 5. Line and word hit count strategy in a set

4.0 Data Locality Analysis Results

Data locality behavior of several SPEC integer and
floating point programs is shown in Table 1. From the
data locality behavior of the benchmark programs, it is
apparent that the data access patterns do not show purely
spatial or temporal locality in any case. The ratio of
spatial versus temporal locality varies from program to
program. These results indicate that the spice2g6, gcc
and doduc benchmarks have a bias toward more
temporal locality. Table 1 also indicates that most of the
benchmark programs have some significant amount of
temporal locality. The average spatial locality is 68
percent and average temporal locality is 32 percent for
the SPEC benchmark programs that were used in this
study. The spatial and temporal locality distributions of
the SPEC benchmarks are shown in Figures 7 and 8.

Figure 9 shows the pollution of cache space due to
spatial fetching of data in the cache lines. The results
suggest that, on average, 23% of the available cache

space is polluted by the spatial pre-fetching of data. In an
extreme case the pollution was 62% (wave5).

Careful analysis of the results suggests that the
address space of the memory references could be pre-
dominantly spatial, pre-dominantly temporal or a
combination of each. This is illustrated in Figure 11
where set A represents accesses that exhibit spatial
locality and set B indicates those with temporal locality.
The results indicate that programs typically contain a
subset of accesses that have characteristics of both sets A
and B. The intersection of these two classes of memory
access types is represented by the set, C, in Figure 11.
As an example, consider a program that consists of
several consecutive loops, each of which accesses an
array of data sequentially. Clearly, the accesses within a
single loop are spatial in nature, however examining the
access pattern of a single array element is temporal in
nature due to the existence of multiple loops, and hence,
multiple accesses of the same element.

Counter
Set ‘0’ Line ‘0’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’

HIT

Set ‘0’
Line ‘0’

HIT

Counter
Set ‘0’ Line ‘1’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Counter
Set ‘0’ Line ‘2’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Counter
Set ‘0’ Line ‘3’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Set ‘0’
Line ‘1’

HIT

Set ‘0’
Line ‘2’

HIT

Set ‘0’
Line ‘3’

HIT

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’

HIT

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’

HIT

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’

HIT

Figure 6. Diagram illustrating the cache data analysis

Table 1: Locality behavior of SPEC benchmark programs

Benchmark Spatial
Reuse

(%)

Average
Spatial
Reuse

(%)

Temporal
Reuse

(%)

Average
Temporal

Reuse
(%)

Cache
Space

Pollution
(%)

Average
Space

Pollution
(%)

espresso 0.54 0.46 0.34

spice2g6 0.38 0.62 0.25
doduc 0.45 0.55 0.01

li 0.54 0.46 0.07

eqntott 0.67 0.33 0.18
compress 0.63 0.37 0.01

mdljdp2 0.64 0.36 0.28

wave5 0.63 0.68 0.37 0.32 0.62 0.23
tomcatv 0.99 0.01 0.14

ora 0.90 0.10 0.61

alvinn 0.79 0.21 0.15

ear 0.81 0.19 0.10
sc 0.55 0.45 0.40

mdljsp2 0.49 0.51 0.31

swm256 0.96 0.04 0.10
gcc 0.44 0.56 0.10

su2cor 0.87 0.13 0.01

nasa7 0.99 0.01 0.38

START

Check for
Data Match

HIT?

Compute Hit
Count & Stride

Update
Cache

End ?

Process Hit and
Pollution Counts

END

NO

YES

YES

NO

Figure 7. Spatial reuse patterns with SPEC92

benchmarks

Figure 8. Temporal reuse patterns with

SPEC92 benchmarks

Figure 9. Cache space pollution using SPEC92

benchmarks

Figure 10. Reuse pattern of portion of cache

space by the benchmark espresso

5.0 Conclusion

Based on the locality analysis made above, we
conclude that data access behavior of different programs
needs to be supported. Thus, both spatial and temporal
locality data should be cached. Therefore, a split data
cache is justified to facilitate both types of locality. A
unified data cache can perform poorly in some cases by
wasting valuable cache capacity. The data that should be
cached in a spatial cache are those whose reuse frequency
is good enough to allow for future cache hits. Since,
spatial reuse is dominant in most of the cases, a relatively
larger spatial cache with bigger line sizes should be used
as compared to the temporal cache in the split data cache.

Figure 11. Diagram of Overlapping Spatial and
Temporal Locality Characteristics

REFERENCES

[1] Patterson, D., Anderson, T., Cardwell, N.,
Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,
and Yelick, K. “A Case for Intelligent RAM: IRAM”,
IEEE Micro, vol.17, (no. 2), March-April 1997,
pp.34-44.

Temporal Data Locality Distribution of the SPEC

Benchmarks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Benchmark

Temporal Locality

(%)

Cache space pollution index of the SPEC

Benchmarks

0.00
0.10

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Benchmark

Space

Pollution (%)

SPATIAL
ADDRESS SPACE

TEMPORAL
ADDRESS SPACE

Spatial Data Locality distribution of the SPEC

Benchmarks

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

esp
res
so

spi
ce
2g
6

do
du
c

li eq
nto
tt

co
mp
res
s

md
ljd
p2

wa
ve
5

to
mc
atv

ora alv
inn

ear sc md
ljs
p2

sw
m2
56

gc
c

su
2c
or

nas
a7

Benchmark

Spatial Locality

(%)

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

S 1

S 12

S 23
0

1 0000

20 000

3000 0

40000

5 0000

600 00

700 00

8000 0

W
ord

 N
um

ber
 in

 C
ac

he
Lin

e

C ach e L in e N u m b e r

R eu se

C o u n t

R e u s e p a tte rn o f th e c a c h e l in e s fo r th e B e n c h m a rk E s pre s s o

[2] Chen, T. F. “Reducing memory penalty by a
programmable prefetch engine for on-chip caches”,
Microprocessors and Microsystems, 21, 1997, pp.
121-130.

[3] Handy, J. The Cache Memory Book, 2nd
Edition, Academic Press, New York, 1998, pp. 188-
198.

[4] McKinley, K. S., Temam, O. “A Quantitative
Analysis of Loop Nest Locality”, Proceedings of the
7th International Conference on Architectural Support
for Programming Languages and Operating Systems,
Boston, MA, October, 1996.

[5] Sanchez, J. and Gonzalez, A. “Fast, Accurate and
Flexible Data Locality Analysis”, Proceedings of
Parallel Architectures and Compilation Techniques,
October 13-17, Paris, 1998.

[6] Johnson, T. L., Merten, M. C., and Hwu, W.
“Run-time Spatial Locality Detection and
Optimization”, Proceedings of the 30th Annual
International Symposium on Microarchitecture, pp.
57-64, Research Triangle Park.

[7] Hennessy, J. L., and Patterson, D. Computer
Architecture: A Quantitative Approach, 2nd
Edition, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996, pp. 390-426.

[8] Flynn, M. J. Computer Architecture –
Pipelined and Parallel Processor Design, Narosa
Publishing House, London, 1996, pp. 396-417.

[9] Abraham, S. G., Sugumar, R. A., Rau, B. R., and
Gupta R. “Predictability of Load/Store Instruction
Latencies”, Proceedings of the 26th International
Symposium on Microarchitecture, December, 1993,
pp. 139-152.

[10] Callahan, D., Kennedy, K., and Porterfield, A.
“Software prefetching”, Proceedings of the Fourth
Symposium on Architectural Support for
Programming Languages and Operating Systems,
April, 1991, pp. 40-52.

[11] Chen, T. F., and Baer, J. L. “A Performance
Study of Software and Hardware Data Prefetching
Schemes”, Proceedings of the 21st Annual
International Symposium on Computer Architecture,
April, 1994, pp. 69-73.

[12] Burger, D., Goodman, J. R., and Kagi, A.
“Memory Bandwidth Limitations of Future

Microprocessors”, Proceedings of the International
Symposium on Computer Architecture, 5/96, USA.

[13] Avila A. Reference Prediction Based on
Memory Access Patterns for Scientific Codes,
Ph.D. Dissertation, University of Arkansas,
Fayetteville, December 1998, pp. 15-19.

[14] Dwarkadas, S., Lu, H., Cox, A. L., Rajamony, R.,
and Zwaenepoel, W. “Combining Compile-Time and
Run-Time Support for Efficient Software Distributed
Shared Memory”, Technical Report, Dept. of
Computer Science, Univ. of Rochester and Dept. of
Electrical & Computer Engineering, Rice University.

[15] Sanchez, F. J., Gonzales, A., and Valero, M.
“Static Locality Analysis for Cache Management”,
Proceedings of Parallel Architectures and
Compilation Techniques, 1997.

[16] Milutinovic, V., Milutinovic, D., Ciric, V.,
Starcevic, D., Radenkovic, B., and Ivkovic, M. “Some
Solutions for Critical Problems in the Theory and
Practice of Distributed Shared Memory: Ideas and
Implications”, IEEE Proceedings, 1997.

[17] Chan, K. K., Hay, C. C., Keller, J. R., Kurpanek,
G. P., Schumacher, F. X., and Sheng J. “Design of the
HP PA 7200 CPU”, Hewlett-Packard Journal,
February 1996.

[18] Gonzalez, A., Valero, M., and Aliagas, C. “A
data cache with Multiple Caching Strategies Tuned to
Different Types of Locality”, Proceedings of ICS, pp.
338-347, 1995.

[19] Kumar, S, Wilkerson, C. “Exploiting Spatial
Locality in Data Caches using Spatial Footprints”,
IEEE, pp. 357-368, 1998.

[20] Muchnick, S. Advanced Compiler Design and
Implementation, Morgan Kaufman Publishers, San
Francisco, CA, pp. 687-697, 1997.

[21] “New Mexico State University Trace Database”,
Parallel Architecture Research Laboratory, (Online),
Available: ftp://tracebase.nmsu.edu/pub/README.,
Accessed: January 15th, 2000.

