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Abstract—A method for the detection and suppression of 
side band channel attacks has been proposed and evaluated 
using machine learning and processor core events. A supervised 
learning model is used in the implementation of a system based 
on hardware event counters to detect malicious exploits such as 
SPECTRE variants running in a process on a Linux based 
system operating as an Edge computing device. The approach 
uses existing on-chip hardware to detect variants of malicious 
exploitation in the midst of other application processes and 
suspend the offending process.  In this work we analyze multiple 
variants of side channel attack and demonstrate how our 
detection system can  be trained to detect and react to multiple 
attacks simultaneously.  We demonstrate this prototype on 
variants of the classic SPECTRE attack such as the micro-ops 
cache attack based on x86 based machines.  We use 
dimensionality reduction techniques and feature selection 
techniques from a large set of counter data to improve 
performance results. The detection system has successfully 
performed on multiple instruction set architectures including 
x86 as well as Cortex-A class ARM architectures. 

Keywords— Edge Processing, supervised learning, malicious 
event, SPECTRE, embedded system, event counter, SVM, micro-
ops cache, feature selection 

I. INTRODUCTION 
     Computing at the edge of a network requires a broad range 
of capabilities to achieve optimal security, energy efficiency, 
connectivity, performance, and machine learning intelligence.  
These capabilities often times must work together to achieve 
desired goals.  For example, protecting an IoT system from 
malicious attack may require a combination of security, 
performance, and machine learning.  Detecting and 
suppressing malicious attacks in IoT and Edge processing is 
an on-going battle for researchers and vendors alike. 

    One of the more famous side channel attacks is SPECTRE, 
a security vulnerability that exploits speculative execution and 
indirect branch prediction circuitry that is common and 
present in most modern CPU cores.  The exploit allows access 
to unauthorized information by implementing side channel 
analysis of information in the data cache of the system [1].  
SPECTRE is documented in the Common Vulnerabilities and 
Exposures (CVE) database as CVE-2017-5717 and CVE-
2017-5753.  The general idea behind the attack is that the 
attacker uses the performance enhancement features of the  

processor, namely the cache and branch predictor plus 
speculative execution circuitry, to read higher privileged data. 

A method for the detection of SPECTRE using 
performance counters have been experimentally verified [2].  
Additionally, edge based techniques using support vector 
machines (SVM) have been devised and experimentally 
verified [3]. The technique in [3] is based upon monitoring on-
board, hardware event counters rather than characteristics of 
the targeted data. The technique requires a minimal amount of 
modification to hosting computer systems since it uses pre-
existing event counters and supporting circuitry and 
associated system software assets with no additional hardware 
required.  The disclosed SPECTRE detection technique has 
been experimentally shown to be effective for Linux based 
operating systems in a real time embedded system based on a 
prototype implementation and associated experimental 
results. 

Variants of SPECTRE continue to be discovered.  These 
variants use methods such as bounds check bypass store 
(CVE-2018-3693), branch target injection (CVE-2017-5715), 
speculative store bypass (CVE-2018-3639), and same 
exception level training (CVE-2022-23960).   

Other SPECTRE variants exploit the micro-op cache on 
x86 machines.  A micro-op cache speeds up computing by 
storing simple commands which allows the processor to fetch 
these commands quickly and earlier in the speculative 
execution process.  Hackers can steal data when a processor 
fetches commands from the micro-op cache.   

The goal of this paper is to design a generic detection 
system to reliably detect and suppress multiple variants of the 
SPECTRE class of side channel attack in the presence of other 
applications executing in parallel. 

We will assess the efficacy of the detection system using 
the key metrics of precision, recall, and F1. Precision 
measures how many of the positive predictions our detector 
makes correctly and reflects the ability of the detector not to 
label as positive (attack) a sample that is in fact negative (no 
attack).  Recall measures how many of the positive cases our 
detector correctly detected over all of the positive cases in the 
data and measures the ability of the detector to find all positive 
samples (attacks).  F1 is a metric that weights both Precision 



and Recall in a balanced way.  A higher F1 score is achieved 
when both Precision and Recall are high.  

II. PREVIOUS RESULTS 
The detection system in [3] has shown effective results in 

detecting  a common variant of SPECTRE running in a system 
including multiple other non-threatening tasks (1-8); 

1. System idle task 
2. I/O operations on the network file system  
3. I/O operation on a sdcard using iozone file 

benchmarking tool 
4. Graphics operations using an OpenGL benchmark 

called glmark2 
5. TCP/IP communication using iperf measurement 

tool 
6. I/O operations on the Linux networking file system 

using a tool called fio 
7. Openssl crypto operations 
8. The benchmarking application lmbench which 

measures latency and bandwidth 
9. SPECTRE attack; the standard proof of concept 

SPECTRE attack 

The work in [3] analyzed a variety of different machine 
learning algorithms.  Fig. 1 shows the cross validation results 
of several machine learning classifiers including decision 
trees, gaussian naïve bayes, random forests, K-nearest 
neighbors support vector machines, and multilayer 
perceptrons. 

The bar chart in Fig. 1 shows the mean recall, precision 
and F1-score averaged across all testing folds. All machine 
learning methods performed well, and  two methods perform 
perfectly on the training and test sets: K Nearest Neighbor 
(KNN) and Support Vector Machine (SVM).   SVM was 
chosen over KNN because of the time it takes to predict when 
the model is deployed.  
 

 
Fig. 1; Time series validated performance of machine learning models 
based on K-fold cross validation 

III. GENERIC SIDE CHANNEL ATTACK DETECTION 
Our work significantly enhances the detection capabilities 

of that demonstrated in [3].  Our work demonstrates the 
ability to detect multiple variants  of  malicious attack 
simultaneously in with similar suppression capability. Our 
detection system operates robustly in the presence of  varying 
amounts of application “noise”. 

A. Prototype Detection System 
Our work expands upon the prototype architecture and 

results in [3]; 

1. Creating a generic detector that can operate as an 
Edge processing system as well as cloud based. 

2. Detecting multiple variants of the SPECTRE attack 
and other forms of malicious attack such as that 
described in [4] simultaneously using an enhanced 
machine learning model. 

3. Enhanced performance counter analysis using 
dimensionality reduction techniques such as 
Principal Component Analysis (PCA) to select an 
orthogonal and dominating set of events to be 
counted to further enhance detection performance 
for the exploits previously studied and the new 
exploits considered here. 

4. Effective detection on both ARM and x86 instruction 
set architectures. 

Fig. 2 shows the two main components of the prototype 
implementation.  The Embedded Detection Agent collects 
event counter samples that represent the runtime profiles of 
the active processes on the embedded system. In our prototype 
system, these samples are communicated to a computer 
representing an edge-resident processor and referred to as the 
“Edge Detector.” The Edge Detector predicts whether or not 
the exploit is present. If the Edge Detector predicts that a 
malicious event is present, the process is killed by the 
“Embedded Detection Agent.” 

 
 
Fig. 2 Edge Detector and Embedded Detector Agent Components of the 
System Architecture 

B. Real-time Software Architecture 
The software architecture for the detection system is 

shown in Fig. 3. The Embedded Detection Agent running on 
the embedded device uses “perf” to collect hardware based 
event samples from the applications running on the target 
device and sends them to the Edge Detector requesting a 
classification.  If the Edge Detector predicts that there is a 
malicious attack running on the embedded device process, it 
will kill or suspend the process.  The embedded devices we 
target include ARM-based systems such as the iMX 
heterogeneous SoC as well as x86 based systems.   

 
 

 



Machine learning training and classification is a 
component of the Edge Detector as well.  We made 
modifications to the Linux kernel to allow a simulated attack.  
Specifically, a SPECTRE victim kernel module, which is the 
SPECTRE gadget module designed to have a vulnerable 
driver, is implemented in the kernel and is used to 
demonstrate the SPECTRE attack against the kernel space.  
Additional kernel modifications were made to grant access to 
the Performance Measurement Unit (PMU) counters from 
user space since the SPECTRE proof of concept uses the 
PMU counters as a timing measurement method. 

 
Fig. 3 Software Architecture for the detection system 

     The sequence diagram showing the interactions between 
the Edge Detector, Embedded Detection Agent, and the 
embedded processes running in user space is shown in Fig. 4.  
Our detection system continuously polls for top three CPU 
loaded processes for detection analysis in this prototype. 
 

 
Fig. 4 Sequence Diagram for Edge Detection System 

IV. DETECTION OF MULTIPLE MALICIOUS ATTACKS 
Successful detection of the original SPECTRE attack by 

our edge detector agent was encouraging, and motivated us 
to experiment with the detection of other variants of side 
channel attacks. We experimented with several newer forms 
of malicious attacks; 

• Micro-op cache attack detection on x86 [4] 
• Google SPECTRE browser proof of concept attack 

[5][6] 

• Spook.js attack [7] 
 

A. Detection of New Attack Variants 
In order to assess the detection of the new attack variants 

we have replicated the setup published in [3] using the 
following core events (x86) to train a model and using SVM 
inferencing:  

• L1 data cache loads (r81D0) 
• L1 data line replacements (r0151) 
• Not taken macro-conditional branches (r4189) 
• Not taken speculative and retired mis-predicted 

macro conditional branches (r8188) 
 

For each attack variant we created or obtained code that 
simulated the attack and ported that to our detection system 
as a process running in Linux user space. 
The sequence of  steps used to create and detect the attack 
variants is: 

1. Replicate and integrate the attack code into the 
detection system environment 

2. Collect the training dataset using the counters listed 
above for each attack variant, label as attack and 
non-attack, and integrate into a comprehensive 
attack model 

3. Create an SVM inference 
4. Use the dataset to train and test the SVM 
5. Run the attack(s) in the presence of the other 

application processes 
6. Collect counters from the top 3 processes 
7. Use SVM inferencing to predict attacks in the 

presence of other application processes  
8. Kill the attack process if the prediction is “attack” 

 

B. Attack Variant 1; Micro-op Cache  
A micro-op cache speeds up computing by storing simple 

commands which allows the processor to fetch these 
commands quickly and earlier in the speculative execution 
process.  Hackers can steal data when a processor fetches 
commands from the micro-op cache.  Reference [4] presents 
a detailed characterization of the micro-op cache in Intel 
Skylake and AMD Zen microarchitectures.  Attacks can 
exploit the micro-op cache to leak secrets in three primary 
settings: (1) across the user-kernel boundary, (2) across co-
located SMT threads running on the same physical core, but 
different logical cores, and (3) two transient execution attack 
variants that exploit the micro-op cache timing channel, 
bypassing many recently proposed defenses in the literature. 

 
    Through close collaboration with University of Virginia, 
we obtained a code implementation of the micro-ops attack 
variant and integrated it into our detection system 
environment.  
 

Table I shows detector performance for the Micro-Ops 
attack variant. The results indicate an effective detector for the 
micro-op attack variant.  Detection performance is effective 
with no false negative or false positive conditions. The 
Support column in Table I indicates the number of 
occurrences in each class 



 
C. Attack Variant 2; Google SPECTRE Proof of 
Concept  

     Web browsers are not immune to SPECTRE like attacks.   
Although web browser vendors have been collaborating on 
approaches intended to mitigate this form of attack, it still 
remains a concern and has led to web developers deploying 
various forms of application level mitigations.  Google 
recently shared the results of their Google Security Team’s 
research on the exploitability of SPECTRE against web users.  
The Google Security Team has developed a fast versatile 
proof-of-concept written in JavaScript which is designed to 
leak information from the browser's memory.   The team also 
confirmed that this proof-of-concept, and its variants, 
function across a variety of operating systems, processor 
architectures, and hardware generations. 
 

The proof of concept is publicly available in both the 
leaky.page web address and in the community github. We 
reproduced  this attack using  Chrome browser version 
90.0.4430.85.  We have tested it using our Edge Detector, 
performing a similar process as we did for the micro-ops 
attack. 
 

Table II shows detection performance for the Google 
SPECTRE attack variant.  These results indicate effective 
detection performance for this attack variant. 

 

 

 
D. Attack Variant 3; Spook.js  

    Spook.js is a transient execution side channel attack which 
targets the Chrome web browser. Spook.js attacks exploit the 
SPECTRE vulnerability by taking advantage of the fact that 
web pages contain large amounts of program code that get 
executed on a user’s computer each time it is loaded.  When 
an infected page loads the code gets executed by the browser 
which enables the hacker to steal confidential data.  This has 
been demonstrated against applications such as Tumblr, 
Lastpass, and a Google server [5]. 
 
     Using the Spook.js proof of concept code, we created a 
similar environment to reproduce the attack using our 
detection system.   
 

Table III shows detector performance for the Spook.js 
attack variant.  In this experiment a larger number of false 
positives were detected.  We believe this is because Spook.js 
is implemented as a single process executing inside a browser 
which contains both attack and “normal” application code. 

This makes it difficult to label the counters for the normal code 
properly.  Nevertheless, the attack variant is still detected with 
a F1 score of .995. 

 

 
E. Simultaneous Detection Of Attacks 

After confirming that we could detect the new attack 
variants  separately, we extended the detection system to 
detect multiple types of attacks simultaneously, using one 
SVM model and training it with the combined recorded 
samples from the different attack variants. 

The results listed in Table IV represent SVM performance 
for the initial SPECTRE prediction. 

 

 
 PRECISION RECALL F1-

SCORE 
SUPPORT 

0 0.999     0.997    0.998     19555 
1  0.963     0.990    0.976      1381 

 

 
 PRECISION RECALL F1-

SCORE 
SUPPORT 

0 0.999 0.996 0.998 19551 
1 0.960 0.987 0.974 1718 

 
Table V shows SVM performance prediction for the 

combined attacks. The results are consistent with the 
SPECTRE performance presented in Table IV..   

F. Performance Counter Analysis 
To better understand the behavior of the attacks and the 

success rate of our method, we performed an analysis of the 
time series representing the four selected core events (r81D0, 
r0151, r4189, r8188). 
 

Fig. 5 shows a distribution profile of the counter events 
for non-attack applications versus the SPECTRE attack.  The 
SPECTRE profile demonstrates a constant pattern with small 
standard deviation for each core event. 
 

 
 

TABLE I: DETECTION PERFORMANCE FOR MICRO-OP ATTACK   

 
 PRECISION RECALL F1-

SCORE 
SUPPORT 

0 1.000 1.000 1.000 19571 
1 1.000 1.000 1.000 218 

 

Table II: DETECTION PERFORMANCE FOR GOOGLE SPECTRE ATTACK 

 PRECISION RECALL F1-
SCORE 

SUPPORT 

0 1.000 1.000 1.000 19567 
1 0.968 0.948 0.958 96 

 

Table III: DETECTION  PERFORMANCE SPOOK.JS 
 

 PRECISION RECALL F1-
SCORE 

SUPPORT 

0 0.997 0.993 0.995 19589 
1 0.938 0.971 0.955 2261 

 

Table IV: SVM PERFOMANCE SPECTRE 
 

Table V: SVM PERFORMANCE ALL ATTACKS 
 



 
Fig. 5 : Distribution of counter values over time for the non-attacked 

application environment versus the distribution profile of a SPECTRE 
attack 

Table VI: Performance counter profiles 

MEAN NORMAL SPECT MICROOPS SPOOK 
r81D0 0.169378896 0.1560 0.051453166 0.201235 
r0151 0.016311552 0.0034 0.002399916 0.01737 
r4189 0.00048171 0.0002 7.34789E-05 0.000281 
r8188 0.169378896 0.0342 0.000715383 0.020877 

 

STD
DEV 

NORMAL SPECT MICROOPS SPOOK 

r81D0 0.127270103 0.00553 0.00129856 0.083282 
r0151 0.025319842 0.00061 2.4931E-05 0.009317 
r4189 0.000276354 0.00004 1.1448E-05 0.000404 
r8188 0.127270103 0.00174 0.00013805 0.024806 

 

    Table VI shows the attack profiles for the SPECTRE 
attack, the micro-ops attack variant and the Spook.js attack 
variant.  Comparing this with the normal applications profile, 
the SPECTRE and Micro-ops profiles have different average 
and lower standard deviations. Alternatively, the Spook.js 
attack profile shows a larger standard deviation with 
significant overlap with the normal applications.  This makes 
detection of this particular variant more challenging. We 
believe this is partially due to the way the attack simulation 
is implemented. 

V. PERFORMANCE COUNTER SELECTION 
A critical part of our method is feature selection which 

includes the identification of the relevant event counters to 
extract from the system for inferencing and detection. The 
selected events should contain counters that provide relevant 
information to indicate side-channel attack operations and 
their side effects. The initial investigation was based on event 
counters that were selected by subject matter experts.  We 
also selected a smaller number of event counters that met the 
hardware extraction constraints for each processor.  Now we 
assess performance counter selection based on a more 
rigorous approach. 

A. Extended Performance Counters 
The hardware event counters, which are at the heart of this 

solution, are limited resources. For example, i7-6950X x86 
Broadwell processor used in previous investigation 
comprises 5 counters in the Performance Monitoring Unit, 
while the i7-6600U x86 Skylake processor selected for this 

investigation comprises only 4 counters. ARM Cortex-A72 
cores present in i.MX8 processors comprises 6 counters.  This 
limits how much information can be extracted in each cycle 
from the processor. 
 
    New enhancements to modern kernels and the perf tool 
provide software mechanisms for counter multiplexing and 
cycle scaling. Using cycle normalization allows for an 
extended list of events to be captured with high precision. 
perf provides a grouping mechanism for events which 
improves the precision even further.  This is accomplished by 
sampling the cycle counters for each sub-group. 
 
  Our approach focused on feature selection methods from a 
larger set of counters which capture side channel attack 
operations and side-effect.  Key categories include 
speculative execution, branch prediction and cache 
operations  In particular, for x86 Skylake we identified 35 
counters types.  On Arm A72 we identified 38 counters types 
that match these criteria. 

B. PCA Dimensionality Reduction  
Dimensionality reduction techniques can be used to 

reduce the number of features in our dataset without losing 
accuracy/information so that we preserve or improve the 
model performance.  Dimensionality reduction has a number 
of benefits including reduced space requirements for storing 
data, less computation due to fewer dimensions, removal of 
redundant features which eliminates multicollinearity, 
removal of noise, and better visualization of the data among 
others [8]. 

 
PCA is a dimensionality reduction approach that focuses 

on feature extraction. PCA can compress a dataset into a 
lower dimensional feature subspace with the principal goal of 
maintaining most of the relevant data [9].  Here we use PCA 
to determine which features are important for best describing 
the variance in the data set. 

 
Table VII shows a summary of the results of PCA for the 

x86 and Arm based systems.  Thirty five x86 counters were 
collected for the SPECTRE based attacks.  The top twelve 
principal components provide 90% variance on the data.  
Thirty eight Cortex-A72 counters were collected for the 
SPECTRE based attacks.  The top ten principal components 
provide 90% variance on the data.  90% cumulative variance 
was our target. 

In Fig. 6, we have plotted the transformed counter data in 
the planar space of the top two principal components for x86 
and Cortex-A72.  We highlighted counter contribution to 
these principal components with the red arrows representing 
the eigen vectors.  Fig. 5 also shows the transformed counters 
data into the 3D space of the top three principal components 
and highlights the variance and separation of the data in the 
new sub-space. 

 
Table VII: PCA results for x86 and Arm Cortex-A72 performance counter 

data: principal components variance and features contribution 



PRINCIPLE 
COMPONENT 

VARIANCE 
X86 

VARIANCE 
ARM A72 

1 0.33 0.35 
2 0.16 0.15 
3 0.11 0.11 
4 0.07 0.10 
5 0.05 0.05 
6 0.04 0.05 
7 0.03 0.04 
8 0.03 0.03 
9 0.03 0.02 
10 0.02 0.02 
11 0.02  
12 0.02  

TOTAL 0.903 0.92 
 

  
 

 
a. 

  

 

 
b. 

Fig. 6 : 2D and 3D representation of the top two principal components with 
the contribution of each performance counter data for SPECTRE attack 

variant for a. x86 and b. Cortex-A72 

C. Feature selection 
     While PCA attempts to reduce dimensionality by 
exploring how one feature of the data is expressed in terms of 
the other features (linear dependency), feature selection is a 
search technique for proposing new feature subsets, along 
with an evaluation measure which scores the different feature 
subsets.  

 This can reduce computational cost as potentially improve 
the performance of the model.  In our case this can also be 
used to adhere to the constraints on the hardware available for 
extracting event counters from the processor.  This is done by 
selecting a subset of core events that are most effective in 
prediction accuracy. 

We used the LASSO algorithms from the scikit library to 
determine feature importance.  LASSO (Least Absolute 
Shrinkage and Selection Operator) , a statistical formula with 
the main purpose of feature selection and regularization of the 
data model.  In our detector, the features (input variables to 
the model) are the core events.  Choosing the right input 
variables improves the accuracy of our model.  The features 
selection phase of LASSO helps in the proper selection of 
these variables. 

The results of the feature selection for x86 and Arm are 
listed in and Table VIII and Table IX. 



 

 
D. Performance Comparison 

We integrated the performance counter events in Tables 
VIII and IX into our detection system and did a comparison of 
the SVM performance results. 

 
Features/ 

Negative results 
PRE
CISI
ON 

RECA
LL 

F1-
SCORE 

SUPPO
RT 

6 features [3] 0.987 0.982 0.984 7381 
35 features 1.000 1.000 1.000 7347 

11 principal comp 1.000 1.000 1.000 7353 
7 features selection 1.000 0.999 0.999 7291 

11 features selection 1.000 1.000 1.000 7393 

 
 

Features/ 
Negative results 

PRECI
SION 

RECA
LL 

F1-
SCOR

E 

SUPP
ORT 

6 features [3] 0.978 0.983 0.981 5922 
35 features 1.000 1.000 1.000 5956 

11 principal comp 1.000 1.000 1.000 5950 
7 features selection 0.999 1.000 0.999 6012 

11 features selection 1.000 1.000 1.000 5910 

 
    Table X shows SVM performance for negative results 
(normal applications) comparing the same sets of features 
discussed previously: 

• Row “6 features” - the baseline manual selection used 
in Reference [3] 

• Row “35 features” - all 35 relevant features used in 
detection, prior to feature selection 

•  Row “11 principal components” - the key principal 
components accounting for 90% variation 

• Row “11 feature selection” – a reduced set of 11 
features selected from the 35 features using filtering 
and wrapper approaches to feature selection, 
specifically Lasso and Gradient Boost feature 
selection methods from scikit 

• Row “feature selection” -  the top 7 features selected 
from the 35 features using filtering and wrapper 
approaches to feature selection, specifically Lasso 
and Gradient Boost feature selection methods from 
scikit 

   Similarly, Table XI shows SVM performance for 
positive results (attacks) comparing the same feature 
options. 

    A comparison of results shows that the new list of 
features proposed in this paper, based on principal 
component analysis and feature selection algorithms, 
provides significantly better results than [3] and with 
similar performance to the study with the larger number of 
counters. 

VI. CONCLUSION 
We expand on a method for the detection of branch 

prediction and speculative side channel attacks using 
hardware performance counters and a support vector machine. 
The technique is based upon monitoring on-board, hardware 
event counters rather than characteristics of the targeted data. 
The technique requires a minimal amount of modification to 
an edge-based computer system since it uses pre-existing 
event counters and supporting circuitry and associated system 
software assets with no additional hardware required.  Our 
detection technique has been experimentally shown to be 
effective for Linux based operating systems in either an edge 
processing or cloud based environment communicating with 
one or more embedded system end nodes based on our 
prototype implementation and associated experimental 
results. 

Multiple variants of the attack were reproduced and 
detected concurrently including a standard SPECTRE variant, 
a micro-ops cache based variant, a Chrome browser variant 
and a Spook.js variant. 

A more robust method for selecting event counters was 
investigated and validated against the original SPECTRE 
attack  on x86 and Cortex-A72.  Feature selection algorithms 
were used to determine the optimum event counters to achieve 
maximum performance.  The performance of the new counter 
selections was compared against the original selection based 
on subject matter expert analysis and showed significantly 
better results. 
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