
A Side Channel Attack Detection System Using
Processor Core Events and a Support Vector Machine

Rob Oshana

Edge Processing Business Line
NXP Semiconductors

Austin, USA
robert.oshana@nxp.com

Mike Caraman

Edge Processing Business Line
NXP Semiconductors
Bucharest, Romania

mike.caraman@nxp.com

Mitchell A. Thornton

Darwin Deason Institute for Cybersecurity
Southern Methodist University

Dallas, Texas, USA
mailto:mitch@smu.edu

Abstract—A method for the detection and suppression of
side band channel attacks has been proposed and evaluated
using machine learning and processor core events. A supervised
learning model is used in the implementation of a system based
on hardware event counters to detect malicious exploits such as
SPECTRE variants running in a process on a Linux based
system operating as an Edge computing device. The approach
uses existing on-chip hardware to detect variants of malicious
exploitation in the midst of other application processes and
suspend the offending process. In this work we analyze multiple
variants of side channel attack and demonstrate how our
detection system can be trained to detect and react to multiple
attacks simultaneously. We demonstrate this prototype on
variants of the classic SPECTRE attack such as the micro-ops
cache attack based on x86 based machines. We use
dimensionality reduction techniques and feature selection
techniques from a large set of counter data to improve
performance results. The detection system has successfully
performed on multiple instruction set architectures including
x86 as well as Cortex-A class ARM architectures.

Keywords— Edge Processing, supervised learning, malicious
event, SPECTRE, embedded system, event counter, SVM, micro-
ops cache, feature selection

I. INTRODUCTION
 Computing at the edge of a network requires a broad range
of capabilities to achieve optimal security, energy efficiency,
connectivity, performance, and machine learning intelligence.
These capabilities often times must work together to achieve
desired goals. For example, protecting an IoT system from
malicious attack may require a combination of security,
performance, and machine learning. Detecting and
suppressing malicious attacks in IoT and Edge processing is
an on-going battle for researchers and vendors alike.

 One of the more famous side channel attacks is SPECTRE,
a security vulnerability that exploits speculative execution and
indirect branch prediction circuitry that is common and
present in most modern CPU cores. The exploit allows access
to unauthorized information by implementing side channel
analysis of information in the data cache of the system [1].
SPECTRE is documented in the Common Vulnerabilities and
Exposures (CVE) database as CVE-2017-5717 and CVE-
2017-5753. The general idea behind the attack is that the
attacker uses the performance enhancement features of the

processor, namely the cache and branch predictor plus
speculative execution circuitry, to read higher privileged data.

A method for the detection of SPECTRE using
performance counters have been experimentally verified [2].
Additionally, edge based techniques using support vector
machines (SVM) have been devised and experimentally
verified [3]. The technique in [3] is based upon monitoring on-
board, hardware event counters rather than characteristics of
the targeted data. The technique requires a minimal amount of
modification to hosting computer systems since it uses pre-
existing event counters and supporting circuitry and
associated system software assets with no additional hardware
required. The disclosed SPECTRE detection technique has
been experimentally shown to be effective for Linux based
operating systems in a real time embedded system based on a
prototype implementation and associated experimental
results.

Variants of SPECTRE continue to be discovered. These
variants use methods such as bounds check bypass store
(CVE-2018-3693), branch target injection (CVE-2017-5715),
speculative store bypass (CVE-2018-3639), and same
exception level training (CVE-2022-23960).

Other SPECTRE variants exploit the micro-op cache on
x86 machines. A micro-op cache speeds up computing by
storing simple commands which allows the processor to fetch
these commands quickly and earlier in the speculative
execution process. Hackers can steal data when a processor
fetches commands from the micro-op cache.

The goal of this paper is to design a generic detection
system to reliably detect and suppress multiple variants of the
SPECTRE class of side channel attack in the presence of other
applications executing in parallel.

We will assess the efficacy of the detection system using
the key metrics of precision, recall, and F1. Precision
measures how many of the positive predictions our detector
makes correctly and reflects the ability of the detector not to
label as positive (attack) a sample that is in fact negative (no
attack). Recall measures how many of the positive cases our
detector correctly detected over all of the positive cases in the
data and measures the ability of the detector to find all positive
samples (attacks). F1 is a metric that weights both Precision

and Recall in a balanced way. A higher F1 score is achieved
when both Precision and Recall are high.

II. PREVIOUS RESULTS
The detection system in [3] has shown effective results in

detecting a common variant of SPECTRE running in a system
including multiple other non-threatening tasks (1-8);

1. System idle task
2. I/O operations on the network file system
3. I/O operation on a sdcard using iozone file

benchmarking tool
4. Graphics operations using an OpenGL benchmark

called glmark2
5. TCP/IP communication using iperf measurement

tool
6. I/O operations on the Linux networking file system

using a tool called fio
7. Openssl crypto operations
8. The benchmarking application lmbench which

measures latency and bandwidth
9. SPECTRE attack; the standard proof of concept

SPECTRE attack

The work in [3] analyzed a variety of different machine
learning algorithms. Fig. 1 shows the cross validation results
of several machine learning classifiers including decision
trees, gaussian naïve bayes, random forests, K-nearest
neighbors support vector machines, and multilayer
perceptrons.

The bar chart in Fig. 1 shows the mean recall, precision
and F1-score averaged across all testing folds. All machine
learning methods performed well, and two methods perform
perfectly on the training and test sets: K Nearest Neighbor
(KNN) and Support Vector Machine (SVM). SVM was
chosen over KNN because of the time it takes to predict when
the model is deployed.

Fig. 1; Time series validated performance of machine learning models
based on K-fold cross validation

III. GENERIC SIDE CHANNEL ATTACK DETECTION
Our work significantly enhances the detection capabilities

of that demonstrated in [3]. Our work demonstrates the
ability to detect multiple variants of malicious attack
simultaneously in with similar suppression capability. Our
detection system operates robustly in the presence of varying
amounts of application “noise”.

A. Prototype Detection System
Our work expands upon the prototype architecture and

results in [3];

1. Creating a generic detector that can operate as an
Edge processing system as well as cloud based.

2. Detecting multiple variants of the SPECTRE attack
and other forms of malicious attack such as that
described in [4] simultaneously using an enhanced
machine learning model.

3. Enhanced performance counter analysis using
dimensionality reduction techniques such as
Principal Component Analysis (PCA) to select an
orthogonal and dominating set of events to be
counted to further enhance detection performance
for the exploits previously studied and the new
exploits considered here.

4. Effective detection on both ARM and x86 instruction
set architectures.

Fig. 2 shows the two main components of the prototype
implementation. The Embedded Detection Agent collects
event counter samples that represent the runtime profiles of
the active processes on the embedded system. In our prototype
system, these samples are communicated to a computer
representing an edge-resident processor and referred to as the
“Edge Detector.” The Edge Detector predicts whether or not
the exploit is present. If the Edge Detector predicts that a
malicious event is present, the process is killed by the
“Embedded Detection Agent.”

Fig. 2 Edge Detector and Embedded Detector Agent Components of the
System Architecture

B. Real-time Software Architecture
The software architecture for the detection system is

shown in Fig. 3. The Embedded Detection Agent running on
the embedded device uses “perf” to collect hardware based
event samples from the applications running on the target
device and sends them to the Edge Detector requesting a
classification. If the Edge Detector predicts that there is a
malicious attack running on the embedded device process, it
will kill or suspend the process. The embedded devices we
target include ARM-based systems such as the iMX
heterogeneous SoC as well as x86 based systems.

Machine learning training and classification is a
component of the Edge Detector as well. We made
modifications to the Linux kernel to allow a simulated attack.
Specifically, a SPECTRE victim kernel module, which is the
SPECTRE gadget module designed to have a vulnerable
driver, is implemented in the kernel and is used to
demonstrate the SPECTRE attack against the kernel space.
Additional kernel modifications were made to grant access to
the Performance Measurement Unit (PMU) counters from
user space since the SPECTRE proof of concept uses the
PMU counters as a timing measurement method.

Fig. 3 Software Architecture for the detection system

 The sequence diagram showing the interactions between
the Edge Detector, Embedded Detection Agent, and the
embedded processes running in user space is shown in Fig. 4.
Our detection system continuously polls for top three CPU
loaded processes for detection analysis in this prototype.

Fig. 4 Sequence Diagram for Edge Detection System

IV. DETECTION OF MULTIPLE MALICIOUS ATTACKS
Successful detection of the original SPECTRE attack by

our edge detector agent was encouraging, and motivated us
to experiment with the detection of other variants of side
channel attacks. We experimented with several newer forms
of malicious attacks;

• Micro-op cache attack detection on x86 [4]
• Google SPECTRE browser proof of concept attack

[5][6]

• Spook.js attack [7]

A. Detection of New Attack Variants
In order to assess the detection of the new attack variants

we have replicated the setup published in [3] using the
following core events (x86) to train a model and using SVM
inferencing:

• L1 data cache loads (r81D0)
• L1 data line replacements (r0151)
• Not taken macro-conditional branches (r4189)
• Not taken speculative and retired mis-predicted

macro conditional branches (r8188)

For each attack variant we created or obtained code that
simulated the attack and ported that to our detection system
as a process running in Linux user space.
The sequence of steps used to create and detect the attack
variants is:

1. Replicate and integrate the attack code into the
detection system environment

2. Collect the training dataset using the counters listed
above for each attack variant, label as attack and
non-attack, and integrate into a comprehensive
attack model

3. Create an SVM inference
4. Use the dataset to train and test the SVM
5. Run the attack(s) in the presence of the other

application processes
6. Collect counters from the top 3 processes
7. Use SVM inferencing to predict attacks in the

presence of other application processes
8. Kill the attack process if the prediction is “attack”

B. Attack Variant 1; Micro-op Cache
A micro-op cache speeds up computing by storing simple

commands which allows the processor to fetch these
commands quickly and earlier in the speculative execution
process. Hackers can steal data when a processor fetches
commands from the micro-op cache. Reference [4] presents
a detailed characterization of the micro-op cache in Intel
Skylake and AMD Zen microarchitectures. Attacks can
exploit the micro-op cache to leak secrets in three primary
settings: (1) across the user-kernel boundary, (2) across co-
located SMT threads running on the same physical core, but
different logical cores, and (3) two transient execution attack
variants that exploit the micro-op cache timing channel,
bypassing many recently proposed defenses in the literature.

 Through close collaboration with University of Virginia,
we obtained a code implementation of the micro-ops attack
variant and integrated it into our detection system
environment.

Table I shows detector performance for the Micro-Ops
attack variant. The results indicate an effective detector for the
micro-op attack variant. Detection performance is effective
with no false negative or false positive conditions. The
Support column in Table I indicates the number of
occurrences in each class

C. Attack Variant 2; Google SPECTRE Proof of
Concept

 Web browsers are not immune to SPECTRE like attacks.
Although web browser vendors have been collaborating on
approaches intended to mitigate this form of attack, it still
remains a concern and has led to web developers deploying
various forms of application level mitigations. Google
recently shared the results of their Google Security Team’s
research on the exploitability of SPECTRE against web users.
The Google Security Team has developed a fast versatile
proof-of-concept written in JavaScript which is designed to
leak information from the browser's memory. The team also
confirmed that this proof-of-concept, and its variants,
function across a variety of operating systems, processor
architectures, and hardware generations.

The proof of concept is publicly available in both the
leaky.page web address and in the community github. We
reproduced this attack using Chrome browser version
90.0.4430.85. We have tested it using our Edge Detector,
performing a similar process as we did for the micro-ops
attack.

Table II shows detection performance for the Google
SPECTRE attack variant. These results indicate effective
detection performance for this attack variant.

D. Attack Variant 3; Spook.js

 Spook.js is a transient execution side channel attack which
targets the Chrome web browser. Spook.js attacks exploit the
SPECTRE vulnerability by taking advantage of the fact that
web pages contain large amounts of program code that get
executed on a user’s computer each time it is loaded. When
an infected page loads the code gets executed by the browser
which enables the hacker to steal confidential data. This has
been demonstrated against applications such as Tumblr,
Lastpass, and a Google server [5].

 Using the Spook.js proof of concept code, we created a
similar environment to reproduce the attack using our
detection system.

Table III shows detector performance for the Spook.js
attack variant. In this experiment a larger number of false
positives were detected. We believe this is because Spook.js
is implemented as a single process executing inside a browser
which contains both attack and “normal” application code.

This makes it difficult to label the counters for the normal code
properly. Nevertheless, the attack variant is still detected with
a F1 score of .995.

E. Simultaneous Detection Of Attacks

After confirming that we could detect the new attack
variants separately, we extended the detection system to
detect multiple types of attacks simultaneously, using one
SVM model and training it with the combined recorded
samples from the different attack variants.

The results listed in Table IV represent SVM performance
for the initial SPECTRE prediction.

 PRECISION RECALL F1-

SCORE
SUPPORT

0 0.999 0.997 0.998 19555
1 0.963 0.990 0.976 1381

 PRECISION RECALL F1-

SCORE
SUPPORT

0 0.999 0.996 0.998 19551
1 0.960 0.987 0.974 1718

Table V shows SVM performance prediction for the

combined attacks. The results are consistent with the
SPECTRE performance presented in Table IV..

F. Performance Counter Analysis
To better understand the behavior of the attacks and the

success rate of our method, we performed an analysis of the
time series representing the four selected core events (r81D0,
r0151, r4189, r8188).

Fig. 5 shows a distribution profile of the counter events
for non-attack applications versus the SPECTRE attack. The
SPECTRE profile demonstrates a constant pattern with small
standard deviation for each core event.

TABLE I: DETECTION PERFORMANCE FOR MICRO-OP ATTACK

 PRECISION RECALL F1-

SCORE
SUPPORT

0 1.000 1.000 1.000 19571
1 1.000 1.000 1.000 218

Table II: DETECTION PERFORMANCE FOR GOOGLE SPECTRE ATTACK

 PRECISION RECALL F1-
SCORE

SUPPORT

0 1.000 1.000 1.000 19567
1 0.968 0.948 0.958 96

Table III: DETECTION PERFORMANCE SPOOK.JS

 PRECISION RECALL F1-
SCORE

SUPPORT

0 0.997 0.993 0.995 19589
1 0.938 0.971 0.955 2261

Table IV: SVM PERFOMANCE SPECTRE

Table V: SVM PERFORMANCE ALL ATTACKS

Fig. 5 : Distribution of counter values over time for the non-attacked

application environment versus the distribution profile of a SPECTRE
attack

Table VI: Performance counter profiles

MEAN NORMAL SPECT MICROOPS SPOOK
r81D0 0.169378896 0.1560 0.051453166 0.201235
r0151 0.016311552 0.0034 0.002399916 0.01737
r4189 0.00048171 0.0002 7.34789E-05 0.000281
r8188 0.169378896 0.0342 0.000715383 0.020877

STD
DEV

NORMAL SPECT MICROOPS SPOOK

r81D0 0.127270103 0.00553 0.00129856 0.083282
r0151 0.025319842 0.00061 2.4931E-05 0.009317
r4189 0.000276354 0.00004 1.1448E-05 0.000404
r8188 0.127270103 0.00174 0.00013805 0.024806

 Table VI shows the attack profiles for the SPECTRE
attack, the micro-ops attack variant and the Spook.js attack
variant. Comparing this with the normal applications profile,
the SPECTRE and Micro-ops profiles have different average
and lower standard deviations. Alternatively, the Spook.js
attack profile shows a larger standard deviation with
significant overlap with the normal applications. This makes
detection of this particular variant more challenging. We
believe this is partially due to the way the attack simulation
is implemented.

V. PERFORMANCE COUNTER SELECTION
A critical part of our method is feature selection which

includes the identification of the relevant event counters to
extract from the system for inferencing and detection. The
selected events should contain counters that provide relevant
information to indicate side-channel attack operations and
their side effects. The initial investigation was based on event
counters that were selected by subject matter experts. We
also selected a smaller number of event counters that met the
hardware extraction constraints for each processor. Now we
assess performance counter selection based on a more
rigorous approach.

A. Extended Performance Counters
The hardware event counters, which are at the heart of this

solution, are limited resources. For example, i7-6950X x86
Broadwell processor used in previous investigation
comprises 5 counters in the Performance Monitoring Unit,
while the i7-6600U x86 Skylake processor selected for this

investigation comprises only 4 counters. ARM Cortex-A72
cores present in i.MX8 processors comprises 6 counters. This
limits how much information can be extracted in each cycle
from the processor.

 New enhancements to modern kernels and the perf tool
provide software mechanisms for counter multiplexing and
cycle scaling. Using cycle normalization allows for an
extended list of events to be captured with high precision.
perf provides a grouping mechanism for events which
improves the precision even further. This is accomplished by
sampling the cycle counters for each sub-group.

 Our approach focused on feature selection methods from a
larger set of counters which capture side channel attack
operations and side-effect. Key categories include
speculative execution, branch prediction and cache
operations In particular, for x86 Skylake we identified 35
counters types. On Arm A72 we identified 38 counters types
that match these criteria.

B. PCA Dimensionality Reduction
Dimensionality reduction techniques can be used to

reduce the number of features in our dataset without losing
accuracy/information so that we preserve or improve the
model performance. Dimensionality reduction has a number
of benefits including reduced space requirements for storing
data, less computation due to fewer dimensions, removal of
redundant features which eliminates multicollinearity,
removal of noise, and better visualization of the data among
others [8].

PCA is a dimensionality reduction approach that focuses

on feature extraction. PCA can compress a dataset into a
lower dimensional feature subspace with the principal goal of
maintaining most of the relevant data [9]. Here we use PCA
to determine which features are important for best describing
the variance in the data set.

Table VII shows a summary of the results of PCA for the

x86 and Arm based systems. Thirty five x86 counters were
collected for the SPECTRE based attacks. The top twelve
principal components provide 90% variance on the data.
Thirty eight Cortex-A72 counters were collected for the
SPECTRE based attacks. The top ten principal components
provide 90% variance on the data. 90% cumulative variance
was our target.

In Fig. 6, we have plotted the transformed counter data in
the planar space of the top two principal components for x86
and Cortex-A72. We highlighted counter contribution to
these principal components with the red arrows representing
the eigen vectors. Fig. 5 also shows the transformed counters
data into the 3D space of the top three principal components
and highlights the variance and separation of the data in the
new sub-space.

Table VII: PCA results for x86 and Arm Cortex-A72 performance counter

data: principal components variance and features contribution

PRINCIPLE
COMPONENT

VARIANCE
X86

VARIANCE
ARM A72

1 0.33 0.35
2 0.16 0.15
3 0.11 0.11
4 0.07 0.10
5 0.05 0.05
6 0.04 0.05
7 0.03 0.04
8 0.03 0.03
9 0.03 0.02
10 0.02 0.02
11 0.02
12 0.02

TOTAL 0.903 0.92

a.

b.

Fig. 6 : 2D and 3D representation of the top two principal components with
the contribution of each performance counter data for SPECTRE attack

variant for a. x86 and b. Cortex-A72

C. Feature selection
 While PCA attempts to reduce dimensionality by
exploring how one feature of the data is expressed in terms of
the other features (linear dependency), feature selection is a
search technique for proposing new feature subsets, along
with an evaluation measure which scores the different feature
subsets.

 This can reduce computational cost as potentially improve
the performance of the model. In our case this can also be
used to adhere to the constraints on the hardware available for
extracting event counters from the processor. This is done by
selecting a subset of core events that are most effective in
prediction accuracy.

We used the LASSO algorithms from the scikit library to
determine feature importance. LASSO (Least Absolute
Shrinkage and Selection Operator) , a statistical formula with
the main purpose of feature selection and regularization of the
data model. In our detector, the features (input variables to
the model) are the core events. Choosing the right input
variables improves the accuracy of our model. The features
selection phase of LASSO helps in the proper selection of
these variables.

The results of the feature selection for x86 and Arm are
listed in and Table VIII and Table IX.

D. Performance Comparison

We integrated the performance counter events in Tables
VIII and IX into our detection system and did a comparison of
the SVM performance results.

Features/

Negative results
PRE
CISI
ON

RECA
LL

F1-
SCORE

SUPPO
RT

6 features [3] 0.987 0.982 0.984 7381
35 features 1.000 1.000 1.000 7347

11 principal comp 1.000 1.000 1.000 7353
7 features selection 1.000 0.999 0.999 7291

11 features selection 1.000 1.000 1.000 7393

Features/
Negative results

PRECI
SION

RECA
LL

F1-
SCOR

E

SUPP
ORT

6 features [3] 0.978 0.983 0.981 5922
35 features 1.000 1.000 1.000 5956

11 principal comp 1.000 1.000 1.000 5950
7 features selection 0.999 1.000 0.999 6012

11 features selection 1.000 1.000 1.000 5910

 Table X shows SVM performance for negative results
(normal applications) comparing the same sets of features
discussed previously:

• Row “6 features” - the baseline manual selection used
in Reference [3]

• Row “35 features” - all 35 relevant features used in
detection, prior to feature selection

• Row “11 principal components” - the key principal
components accounting for 90% variation

• Row “11 feature selection” – a reduced set of 11
features selected from the 35 features using filtering
and wrapper approaches to feature selection,
specifically Lasso and Gradient Boost feature
selection methods from scikit

• Row “feature selection” - the top 7 features selected
from the 35 features using filtering and wrapper
approaches to feature selection, specifically Lasso
and Gradient Boost feature selection methods from
scikit

 Similarly, Table XI shows SVM performance for
positive results (attacks) comparing the same feature
options.

 A comparison of results shows that the new list of
features proposed in this paper, based on principal
component analysis and feature selection algorithms,
provides significantly better results than [3] and with
similar performance to the study with the larger number of
counters.

VI. CONCLUSION
We expand on a method for the detection of branch

prediction and speculative side channel attacks using
hardware performance counters and a support vector machine.
The technique is based upon monitoring on-board, hardware
event counters rather than characteristics of the targeted data.
The technique requires a minimal amount of modification to
an edge-based computer system since it uses pre-existing
event counters and supporting circuitry and associated system
software assets with no additional hardware required. Our
detection technique has been experimentally shown to be
effective for Linux based operating systems in either an edge
processing or cloud based environment communicating with
one or more embedded system end nodes based on our
prototype implementation and associated experimental
results.

Multiple variants of the attack were reproduced and
detected concurrently including a standard SPECTRE variant,
a micro-ops cache based variant, a Chrome browser variant
and a Spook.js variant.

A more robust method for selecting event counters was
investigated and validated against the original SPECTRE
attack on x86 and Cortex-A72. Feature selection algorithms
were used to determine the optimum event counters to achieve
maximum performance. The performance of the new counter
selections was compared against the original selection based
on subject matter expert analysis and showed significantly
better results.

ACKNOWLEDGMENT
We would like to thank Xida Ren and Professor Ashish

Venkat from the University of Virginia for their collaboration
on this research related to micro-op cache attack proof of
concept.

REFERENCES

TABLE VIII: KEY X86 CORE EVENTS

Event count Event description

r0248 Number of times a request needed a FB entry but
there was no entry available for it

r0480 Cycles where a code fetch is stalled due to L1
instruction cache miss.

r0CA3 Execution stalls while L1 cache miss demand load
is outstanding

r40D1 Retired load instructions which data sources were
load missed L1 but hit FB due to preceding miss to
the same cache line with data not ready

r8889 Taken speculative and retired mis-predicted
indirect branches with return mnemonic

r0283 Instruction fetch tag lookups that miss in the
instruction cache (L1I)

r3824 Requests from the L1/L2/L3 hardware prefetchers
or Load software prefetches that miss L2 cache

r010D Core cycles the allocator was stalled due to
recovery from earlier clear event

r01C5 Mis-predicted conditional branch instructions
retired

r8189 Taken speculative and retired mis-predicted macro
conditional branches

rF824 Requests from L2 hardware prefetchers

TABLE IX: KEY A72 CORE EVENTS

Event
count

Event description

r7C Barrier speculatively executed - ISB
r7D Barrier speculatively executed - DSB
r7E Barrier speculatively executed - DMB
r1B Operation speculatively executed
r12 Predictable branch speculatively executed
r4C Level 1 data TLB refill - Read
r75 Operation speculatively executed - VFP

Table X: SVM Performance Comparison On X86 - Negative Results

Table VIIII: SVM Performance Comparison On X86 - Positive
Results

[1] Thomas M. Conte, Erik P. DeBenedictis, Avi Mendelson, and Dejan
Milojičić, “Computers to avoid SPECTRE and meltdown,” IEEE
Computer , vol. 51, iss. 4, April 2018.

[2] L. Congmiao, J. Gaudiot, “Detecting Spectre attacks using hardware
performance counters”, IEEE Transactions on Computers, May 2021

[3] R. Oshana, M. Thornton, X. Roumegue, E. Larson, “Real-time edge
processing detection of malicious attacks using machine learning and
processor core events”, 15th Annual IEEE International Systems
Conference, April 15, 2021.

[4] Ren, X., Moody, L., Taram, M., Tullsen, D., Jordan, M., and Venkat,
A., “I see dead µops: leaking secrets via Intel/AMD micro-op caches”,
International Symposium on Computer Architecture (ISCA), 2021.

[5] A spectre proof of concept for web, Blog March, 2021
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-
for-spectre.html

[6] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, Toon
Verwaest, Spectre is here to stay An analysis of side-channels and
speculative execution, Feb 2019,

[7] Agarwal, A., O’Connell, S., Kim, J., Yehezkel, S., Genkin, D., Ronen,
E., and Yarom, Y., “Spook.js: Attacking Chrome strict site isolation via
speculative execution”

[8] Reddy G., et al “Analysis of dimensionality deduction techniques on
big data”, IEEE Xplore, March 16, 2020

[9] Han, X., Xu, L., and Ren, M., “A naive bayesian network intrusion
detection algorithm based on principal component analysis”, 2015 7th
International Conference on Information Technology in Medicine and
Education

