

Simulating Resource Consumption in Three Blockchain
Consensus Algorithms

John M. Medellin*, Ph.D., C.P.A. and Mitchell A. Thornton, Ph.D., P.E.
Research Associate Professor and C.E. Green Chair in Engineering

Darwin Deason Institute for Cyber Security, Southern Methodist University
Dallas, Texas 75275, USA

johnmedellin@verizon.net, mitch@lyle.smu.edu

Abstract— The Blockchain design pattern has become a
very useful tool since it was first made famous by the
Nakamoto paper in 2007/2008. This technology has many
uses in private trust situations that go beyond support of
crypto-currency exchanges.
 A key part of Blockchain is the ability for
participants to come together in consensus and approve a
particular block to be added to the chain. Our focus in this
document is to present the results of resource consumption
for the Byzantine Generals Problem, the RAFT Algorithm
(proposed by researchers at Stanford University) and our
own variation of RAFT; D-RAFT.

This paper executes simulations on the above
algorithms and scales them to determine the resource
consumption characteristics of each. In addition, we also
scale the specific trust-election algorithm of RAFT and
our own D-RAFT by varying the length of time before
another election has to occur. Our results are presented
and discussed in relation to each test case.

We believe the contribution of this work is to
demonstrate the resource consumption of each under very
controlled situations and to provide a potential
enhancement to RAFT which may reduce even further the
consumption of resources in that algorithm.

Keywords— Blockchain Scalability, Consensus
Algorithms, Byzantine Generals Problem, RAFT, D-
RAFT.

I. INTRODUCTION
Scarcely a decade has passed since the famous Nakamoto

article [10] that gave exposure to Blockchain as a
commercial design pattern; the high potential for
disintermediating financial institutions from monetary
transactions. This particular paper has inspired incalculable
number of business models has created value.

Blockchain patterns rely heavily on two key factors, a) a
Consensus algorithm which dictates when a particular block
of data is officially committed to posterity (usually because
most agreed it does [9]) and b) Encryption of the data block
by taking parts of the previous Blockchain and executing a
particular hashing algorithm usually based on discrete
mathematics and number theory [5]. With this approach, we

mathematically guarantee that the transaction remains
without tamper via cumulative cryptography.

A first decision in implementation is whether the focus is
to provide a vehicle for anyone who is legitimate to join and
transact without disclosing specific identity credentials (a
public blockchain). A private blockchain in contrast
provides the ability for a known group of individuals to
store transactions in the ledger and be assured of their
sequence and tamper-proof capabilities at a higher degree of
personal trust [13]. In a bitcoin public blockchain example,
a person can purchase an entitlement of crypto-currency (a
“bitcoin” or more) to join that particular network and begin
gaining or transferring value with actors they may not even
know or trust as long as the transaction is valid under certain
rules. The way of achieving consensus in that case is
through a “proof of work”. In that case, the block data
(value exchange transaction) is deemed complete and
committed to posterity through encryption when over 51%
of the computational resource in the network has used it to
encrypt their downstream transactions [10]. This consensus
method guarantees that most of the network has agreed and
used the transaction in its own encryption and also has
accounted for the computational resource (thus negating the
potential cyber-attack by a rogue actor; in theory, they
would not have the computational ability to invalidate it
since they have less resource at their disposal to attack).

As mentioned above, the objectives of a private
blockchain are to guarantee the identity and encryption of a
transaction (or event) in a closed network of actors who are
known to each other. The encryption algorithm can be fairly
similar to the public blockchain (in our experimental code
we have modeled a SHA-256 workload according to the
model in Stallings [12]). The consensus algorithms can vary
and most of these tend to be certain variations of the
Byzantine Generals Problem described by Lamport, Shostak
and Pease [7]. One particular variation of this algorithm is
“RAFT” proposed by Ongaro and Ousterhout [11]. This
concept seems to deliver most of the benefits in the
Byzantine Generals Problem but under greater
understandability and significant reduction in
computational/time resources. We will explore the details of
those two models later in this document.

In our analysis, we first present the related work of the
two algorithms mentioned above in greater detail and

provide one potential variation to RAFT (we call it “D-
RAFT”). Next, we create a series of experiments which
simulate the impact on resources (CPU and time-duration)
of each algorithm by increasing the volume of blocks that
are being processed. In a second set of experiments we vary
the time period a trust-election is valid for between RAFT
and D-RAFT in order to test the impact of that parameter.

This is an initial exploratory study into the nature of
resource consumption of the above but under very
controlled conditions. Further details on the limitations of
this research are discussed towards the end of the document.

II. RELATED WORK
As mentioned above, a significant amount of literature

and time has been spent on consensus algorithms for
blockchain [9][13]. Most of them have been modeled as
efficiency improvements to the Byzantine Generals Problem
while preserving the basic assumptions of majority vote to
commit a transaction to a final tamper-proof ledger. Next,
we will review Byzantine and RAFT.

A. The Byzantine Generals Problem.
The Byzantine Generals Problem is a challenge that is

explained as follows.

1. There are a number of Generals that are leading the
Byzantine Empire’s army in a siege of a particular city.

2. They must all attack together at a given time in order to
conquer the city.

3. They communicate through messengers that delivery
information through verbal channels only.

4. A minority of them are traitors that will try to
undermine the others by providing false information.

5. At some point in time, all the loyal Generals will agree
on a time and when the majority of them agree the time
for attack is set.

There are many potential ways to model the above
sequence and many scientists have done so in the past. Our
particular model is explained later in the experiment design
section of this document.

B. The RAFT Consensus Model.
RAFT is the creation of Ongaro and Ousterhout [11] of

Stanford University and has been designed with most of the
benefits afforded by the majority-vote concept in the
Byzantine Generals Problem. The consensus model can be
explained as follows.

1. There are a number of nodes in the network that can

carry out computations and will participate in placing
their blocks on the blockchain.

2. Time is partitioned into epochs (our term; meaning
intervals of time) and each epoch’s duration is chosen
at random.

3. Before an epoch begins, each of the nodes votes for a
node (presumably through a mathematically sound way
of selecting who to vote for), the one node with
majority of votes wins.

4. If there is a tie then another election begins
immediately (please note that the original document has
5 nodes participating to minimize chances of a tied-
vote).

5. The winner issues the epoch’s duration and a secret that
is used by all nodes in encryption of transactions during
the epoch.

6. As an epoch ends, another trust-election begins and so
the process continues.

Researchers in this area have built models around this
algorithm and provided initial results of the efficiency over
the Byzantine Generals Problem with the differences in
resource usage being higher than a 50% reduction (the
results can be different in between runs since there is a
randomization aspect to the model).

C. Nakamoto Proof-of-Work.
As mentioned above, the Nakamoto Proof-of-Work

model for consensus relies on knowledge of the network
computational resources and deems a block as finalized and
committed when 51% of these resources have used the
block in their encryption (note that the encryption of each
transaction contains elements from previous blocks in that
computation). This algorithm can be explained as follows.

1. Participants purchase for value an entitlement that

allows them to transact with others in the network.
2. When a transaction is needing to be appended to the

other blocks, that transaction’s node re-computes the
cryptography of previous transactions that are not yet
committed and derives an encryption of its own.

3. If the assumptions of the blockchain encryption are still
valid (e.g. another node has not placed their transaction
while the encryption computations were being
executed) then the node reports the transaction to the
rest of the nodes as a valid addition and reports the
computation power it has spent doing work. This
number accounts for a percentage of the total
computation power (which is known by all).

4. More nodes add their encrypted transaction blocks and
when a transaction block yields an accumulated load of
51% or more since the original transaction block was
appended this will cause the original one to be deemed
finalized and it will be committed to permanency.

The above sequence is what is deployed by the bitcoin
crypto-currency. Other algorithms exist as well that rely on

other assumptions (such as Proof-of-Stake [13] which uses
the amount of value that the particular node is entitled
instead of the computation power, once the accumulated
stake percentages exceed 51% it will get committed).

III. EXPERIMENT DESIGN
We designed our experiments to simulate the execution

of consensus and encryption of the algorithms referenced
above. We also created a variation on RAFT (“D-RAFT”)
which can be explained as follows.

1. Before an epoch begins, the prior elected node executes

a randomization algorithm to select one primary node
and one backup node from the known nodes.

2. Another randomization algorithm designates the
amount of time the new epoch’s duration will be.

3. The out-going node notifies the primary and backup
nodes of their status and broadcasts to the network the
new epoch’s duration.

4. The primary (or backup if down) node issues the secret
for encryption to the network and it is used for the
duration of that epoch.

5. When the epoch is over, the out-going node executes
the first step again (it will designate lead nodes again,
which is where the “D” in D-RAFT comes from, it is
for “Designated” by the out-going node).

Next, we will describe the infrastructure setting for our
experiments and the Model Code Architecture for each one
of the three algorithms.

A. Experiment Infrastructure
The hardware and system software infrastructures for the

experiments is described below.

Hardware Infrastructure
The hardware infrastructure used consisted of:
• Apple MacBook Pro
• 3.1 GHz Intel Core i7
• 8 GB 1867 MHz DDR3

System Software
• OS: Mac OSX Sierra v. 10.12.6
• GCC Compiler (bundled in OS)
• POSIX Threads

B. Experiment Model Architecture
Versions of each model were coded in the C language

using two POSIX Multi-Threaded design paradigms [2]:

• Mutexes were used to isolate critical regions where
votes, epoch duration and block appending operations
were involved (interrupts generated under this design).

• Thread-specific data was employed for encryption of
potential transactions (no interrupt generated).

• Time duration was considered in cycles rather than

actual internal time clock for synchronization in all
models. See [3] for discussion on clock synchronization
issues.

We next describe the application architecture of each

model using diagrams similar to those proposed by Booch
in RUP [1] and Larman in UML [6]. In addition, we further
advise that the code is available through Github [4].

Byzantine Generals Problem Architecture

 The Byzantine pseudocode is as follows (please refer to
the Activity diagram immediatelly after):

--

<begin>

<receive transaction and encrypt>

<if transaction ok for next, append & increment vote count>

<else recompute>

<if votes=majority, commit transaction>

<loop to begin>

--

Figure 1: Byzantine Activity Diagram

encrypt

valid?

append

votes?

commit

y

y

n

nwhile()
more=‘y’

fork()

join()

RAFT Architecture

 The RAFT pseudocode is as follows (please refer to the
Activity diagram immediatelly after):

--

<begin>

<vote>

<if majority; designate node, issue secret & epoch duration>

<encrypt>

<if transaction ok for next, append >

<else recompute>

<if epoch over, loop to begin>

--

Figure 2: RAFT Activity Diagram

D-RAFT Architecture

 The D-RAFT pseudocode is as follows (please refer to
the Activity diagram immediatelly after):
--

<begin>

<randomize, designate primary and backup nodes, notify>

<primary: issue secret & epoch duration>

<encrypt>

<if transaction ok for next, append >

<else recompute>

<if epoch over, loop to begin>

Figure 3: D-RAFT Activity Diagram

IV. EXPERIMENT RESULTS

Table 1 reports the CPU % and Mac OSX time used by
each of the three algorithms described above for processing
100K, 200K and 300K blocks. Table 2 reports the CPU and
Mac OSX time used by RAFT and D-RAFT for varying the
epoch from 50, 500 and 5,000 cycles.

Table 1: Resource Consumption; Volume Scaled

vote

elect?

encrypt

valid?

commit

n

y

y

n

while()
more=‘y’

fork()

join()

while()
epoch=‘y’

designate

epoch?

encrypt

valid?

commit

y

y

n

n

while()
more=‘y’

fork()

join()

while()
epoch=‘y’

Volume CPU% Time
100K Blocks
Byzantine 48% 0:00.91
RAFT 12% 0:00.27
D-RAFT 1% 0:00.02
200K Blocks
Byzantine 53% 0:02.23
RAFT 27% 0:00.53
D-RAFT 3% 0:00.08
300K Blocks
Byzantine 79% 0:03.51
RAFT 30% 0:00.78
D-RAFT 4% 0:00.09

The above results report the efficiency differences
between the three algorithms. When using the Byzantine as
a base, there is a significant incremental efficiency in RAFT
and again more efficiency in D-RAFT.

Figure 4: Resource Consumption; Epoch Variations

(All Intances at 200K Blocks to be Added)

The table above was produced from varying the election
time period (cycles) until 200,000 blocks are added to the
chain. The RAFT algorithm will become more efficient both
in CPU and time of execution as the election becomes less
frequent. This is normal since the additional load of the
election is executed less frequently. A key strategy of
protection is to vary parameters frequently and using hard to
predict frequencies. Infrequent elections could constitute a
vulnerability since it is easier for an attacker to predict
values if more stability is provided in most systems under
attack.

V. RESULTS DISCUSSION & FUTURE PLANS
This is an initial discussion on resource usage

characteristics of the three algorithms presented. Additional
work is needed on the D-RAFT algorithm in the quality
attributes and potential attack vectors of this model.

A. Results Discussion
Our volume scaling experiment indicates that the RAFT

and D-RAFT algorithms are significantly more efficient in
CPU and execution time. This is perhaps because of the
removal of the majority vote from each transaction and
replacement with the trust election component. This feature
is the creation of Ongaro and Ousterhout [11] and they have
obtained similar results. The D-RAFT algorithm replaces
the election algorithm with a designation algorithm that
requires tasks of the prior leader (executed through discrete
mathematics/probability analysis) but removes the dialogue
with other members of the network. We believe this
removal is what makes this algorithm more efficient on both
components (CPU and execution time).

The epoch duration component experiment reflects the
efficiencies/inefficiencies by holding elections less/more
frequently. We again believe that the mathematics
component in the D-RAFT designation rather than voting is
what might make this algorithm more efficient.

As expressed in various sections of this document, this is
an initial variation on the RAFT algorithm and it has not
been vetted for potential attacks. For example, what happens
if two nodes are down in the network? or what if an
impostor executes a man-in-the-middle (MITM) attack?
These attack vectors (or others) have not yet been vetted for
quality protection characteristics at this time.

B. Future Plans
 The D-RAFT algorithm will continue to be evolved
through additional experimentation and field trials to
determine the validity and resillience of attack. The authors
invite additional commentary be sent to us at the email
addresses mentioned above.

REFERENCES
[1] G. Booch; “Object-Oriented Analysis and Design with

Applications” c. Addison Wesley Longman, Inc. 1994,
Reading, Massachusets.

[2] D. Butenhof; “Programming with POSIX® Threads, The
Addison-Wesley Professional Computing Series” c. Addison-
Wesley 1997, Boston, Massachusets.

[3] N. Ferguson, B. Schneier, T. Kohno; “Cryptography
Enginering, Design Principles and Practical Applications” c.
Wiley Publishing, Inc 2010, Indianapolis, Indiana.

[4] www.github.com
[5] R. Johnsonbaugh; “Discrete Mathematics 8th edition” c. 2018

Pearson Education, Inc., New York, New York.
[6] C. Larman; “Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative
Development (3rd Edition)” c. Pearson Education, Inc. 2005,
Upper River, New Jersey.

[7] L. Lamport, R. Shostak, M. Pease; “The Byzantine Generals
Problem” ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 3, July 1982, p. 382-401.

[8] X. Liang, T. Wu; “Exploration and Practice of Inter-bank
Application Based on Blockchain” The 12th International
Conference on Computer Science & Education (ICCSE 2017)
p. 219-224.

[9] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, C. Qinjun;
“A Review on Consensus Algorithm of Blockchain” 2017
IEEE International Conference on Systems, Man, and
Cybernetics (SMC) p. 2567 - 2572

[10] S. Nakamoto; “Bitcoin: A Peer-to-Peer Electronic Cash
System” www.bitcoin.org.

[11] D. Ongaro and J. Ousterhout; “In Search of an
Understandable Consensus Algorithm” Proceedings ATC’14
USENIX Annual Technical Conference (2014), USENIX.

[12] W. Stallings; “Cryptography and Network Security, Principles
and Practice 7th edition”c. Pearson Education Limited 2018,
London, United Kingdom.

[13] X. Xu, I. Weber, M. Staples, L. Zhu et. al.; “A Taxonomy of
Blockchain-Based Systems for Architecture Design”
Proceedings 2017 IEEE International Conference on Software
Architecture, p. 243-252.

Epoch CPU% Time
50 Cycles
RAFT 30% 0:00.58
D-RAFT 3% 0:00.08
500 Cycles
RAFT 27% 0:00.53
D-RAFT 3% 0:00.08
5000 Cycles
RAFT 25% 0:00.50
D-RAFT 3% 0:00.08

