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Abstract— The Blockchain design pattern has become a 
very useful tool since it was first made famous by the 
Nakamoto paper in 2007/2008. This technology has many 
uses in private trust situations that go beyond support of 
crypto-currency exchanges.    
 A key part of Blockchain is the ability for 
participants to come together in consensus and approve a 
particular block to be added to the chain. Our focus in this 
document is to present the results of resource consumption 
for the Byzantine Generals Problem, the RAFT Algorithm 
(proposed by researchers at Stanford University) and our 
own variation of RAFT; D-RAFT. 

This paper executes simulations on the above 
algorithms and scales them to determine the resource 
consumption characteristics of each. In addition, we also 
scale the specific trust-election algorithm of RAFT and 
our own D-RAFT by varying the length of time before 
another election has to occur. Our results are presented 
and discussed in relation to each test case. 

We believe the contribution of this work is to 
demonstrate the resource consumption of each under very 
controlled situations and to provide a potential 
enhancement to RAFT which may reduce even further the 
consumption of resources in that algorithm. 

Keywords— Blockchain Scalability, Consensus 
Algorithms, Byzantine Generals Problem, RAFT, D-
RAFT.  

I. INTRODUCTION  
Scarcely a decade has passed since the famous Nakamoto 

article [10] that gave exposure to Blockchain as a 
commercial design pattern; the high potential for 
disintermediating financial institutions from monetary 
transactions. This particular paper has inspired incalculable 
number of business models has created value. 

Blockchain patterns rely heavily on two key factors, a) a 
Consensus algorithm which dictates when a particular block 
of data is officially committed to posterity (usually because 
most agreed it does [9] ) and b) Encryption of the data block 
by taking parts of the previous Blockchain and executing a 
particular hashing algorithm usually based on discrete 
mathematics and number theory [5]. With this approach, we 

mathematically guarantee that the transaction remains 
without tamper via cumulative cryptography.  

A first decision in implementation is whether the focus is 
to provide a vehicle for anyone who is legitimate to join and 
transact without disclosing specific identity credentials (a 
public blockchain). A private blockchain in contrast 
provides the ability for a known group of individuals to 
store transactions in the ledger and be assured of their 
sequence and tamper-proof capabilities at a higher degree of 
personal trust [13]. In a bitcoin public blockchain example, 
a person can purchase an entitlement of crypto-currency (a 
“bitcoin” or more) to join that particular network and begin 
gaining or transferring value with actors they may not even 
know or trust as long as the transaction is valid under certain 
rules. The way of achieving consensus in that case is 
through a “proof of work”. In that case, the block data 
(value exchange transaction) is deemed complete and 
committed to posterity through encryption when over 51% 
of the computational resource in the network has used it to 
encrypt their downstream transactions [10].  This consensus 
method guarantees that most of the network has agreed and 
used the transaction in its own encryption and also has 
accounted for the computational resource (thus negating the 
potential cyber-attack by a rogue actor; in theory, they 
would not have the computational ability to invalidate it 
since they have less resource at their disposal to attack). 

As mentioned above, the objectives of a private 
blockchain are to guarantee the identity and encryption of a 
transaction (or event) in a closed network of actors who are 
known to each other. The encryption algorithm can be fairly 
similar to the public blockchain (in our experimental code 
we have modeled a SHA-256 workload according to the 
model in Stallings [12]). The consensus algorithms can vary 
and most of these tend to be certain variations of the 
Byzantine Generals Problem described by Lamport, Shostak 
and Pease [7]. One particular variation of this algorithm is 
“RAFT” proposed by Ongaro and Ousterhout [11].  This 
concept seems to deliver most of the benefits in the 
Byzantine Generals Problem but under greater 
understandability and significant reduction in 
computational/time resources. We will explore the details of 
those two models later in this document. 

In our analysis, we first present the related work of the 
two algorithms mentioned above in greater detail and 



 

 

provide one potential variation to RAFT (we call it “D-
RAFT”). Next, we create a series of experiments which 
simulate the impact on resources (CPU and time-duration) 
of each algorithm by increasing the volume of blocks that 
are being processed. In a second set of experiments we vary 
the time period a trust-election is valid for between RAFT 
and D-RAFT in order to test the impact of that parameter. 

This is an initial exploratory study into the nature of 
resource consumption of the above but under very 
controlled conditions. Further details on the limitations of 
this research are discussed towards the end of the document. 

 

II. RELATED WORK 
As mentioned above, a significant amount of literature 

and time has been spent on consensus algorithms for 
blockchain [9][13]. Most of them have been modeled as 
efficiency improvements to the Byzantine Generals Problem 
while preserving the basic assumptions of majority vote to 
commit a transaction to a final tamper-proof ledger. Next, 
we will review Byzantine and RAFT.  

A. The Byzantine Generals Problem. 
The Byzantine Generals Problem is a challenge that is 

explained as follows. 
 

1. There are a number of Generals that are leading the 
Byzantine Empire’s army in a siege of a particular city. 

2. They must all attack together at a given time in order to 
conquer the city. 

3. They communicate through messengers that delivery 
information through verbal channels only. 

4. A minority of them are traitors that will try to 
undermine the others by providing false information. 

5. At some point in time, all the loyal Generals will agree 
on a time and when the majority of them agree the time 
for attack is set.  
 

There are many potential ways to model the above 
sequence and many scientists have done so in the past. Our 
particular model is explained later in the experiment design 
section of this document. 

 

B. The RAFT Consensus Model. 
RAFT is the creation of Ongaro and Ousterhout [11] of 

Stanford University and has been designed with most of the 
benefits afforded by the majority-vote concept in the 
Byzantine Generals Problem. The consensus model can be 
explained as follows. 

 
1. There are a number of nodes in the network that can 

carry out computations and will participate in placing 
their blocks on the blockchain. 

2. Time is partitioned into epochs (our term; meaning 
intervals of time) and each epoch’s duration is chosen 
at random. 

3. Before an epoch begins, each of the nodes votes for a 
node (presumably through a mathematically sound way 
of selecting who to vote for), the one node with 
majority of votes wins. 

4. If there is a tie then another election begins 
immediately (please note that the original document has 
5 nodes participating to minimize chances of a tied-
vote). 

5. The winner issues the epoch’s duration and a secret that 
is used by all nodes in encryption of transactions during 
the epoch. 

6. As an epoch ends, another trust-election begins and so 
the process continues. 
 

Researchers in this area have built models around this 
algorithm and provided initial results of the efficiency over 
the Byzantine Generals Problem with the differences in 
resource usage being higher than a 50% reduction (the 
results can be different in between runs since there is a 
randomization aspect to the model). 

  

C.  Nakamoto Proof-of-Work. 
As mentioned above, the Nakamoto Proof-of-Work 

model for consensus relies on knowledge of the network 
computational resources and deems a block as finalized and 
committed when 51% of these resources have used the 
block in their encryption (note that the encryption of each 
transaction contains elements from previous blocks in that 
computation). This algorithm can be explained as follows. 

 
1. Participants purchase for value an entitlement that 

allows them to transact with others in the network. 
2. When a transaction is needing to be appended to the 

other blocks, that transaction’s node re-computes the 
cryptography of previous transactions that are not yet 
committed and derives an encryption of its own. 

3. If the assumptions of the blockchain encryption are still 
valid (e.g. another node has not placed their transaction 
while the encryption computations were being 
executed) then the node reports the transaction to the 
rest of the nodes as a valid addition and reports the 
computation power it has spent doing work. This 
number accounts for a percentage of the total 
computation power (which is known by all). 

4. More nodes add their encrypted transaction blocks and 
when a transaction block yields an accumulated load of 
51% or more since the original transaction block was 
appended this will cause the original one to be deemed 
finalized and it will be committed to permanency. 
   

The above sequence is what is deployed by the bitcoin 
crypto-currency. Other algorithms exist as well that rely on 



 

 

other assumptions (such as Proof-of-Stake [13] which uses 
the amount of value that the particular node is entitled 
instead of the computation power, once the accumulated 
stake percentages exceed 51% it will get committed). 

III. EXPERIMENT DESIGN 
We designed our experiments to simulate the execution 

of consensus and encryption of the algorithms referenced 
above. We also created a variation on RAFT (“D-RAFT”) 
which can be explained as follows. 

 
1. Before an epoch begins, the prior elected node executes 

a randomization algorithm to select one primary node 
and one backup node from the known nodes.  

2. Another randomization algorithm designates the 
amount of time the new epoch’s duration will be. 

3. The out-going node notifies the primary and backup 
nodes of their status and broadcasts to the network the 
new epoch’s duration. 

4. The primary (or backup if down) node issues the secret 
for encryption to the network and it is used for the 
duration of that epoch. 

5. When the epoch is over, the out-going node executes 
the first step again (it will designate lead nodes again, 
which is where the “D” in D-RAFT comes from, it is 
for “Designated” by the out-going node). 
 

Next, we will describe the infrastructure setting for our 
experiments and the Model Code Architecture for each one 
of the three algorithms.  

A. Experiment Infrastructure 
The hardware and system software infrastructures for the 

experiments is described below. 
  
Hardware Infrastructure 
The hardware infrastructure used consisted of: 
• Apple MacBook Pro 
• 3.1 GHz Intel Core i7 
• 8 GB 1867 MHz DDR3 
 
System Software  
• OS: Mac OSX Sierra v. 10.12.6 
• GCC Compiler (bundled in OS) 
• POSIX Threads 

 

B. Experiment Model Architecture 
Versions of each model were coded in the C language 

using two POSIX Multi-Threaded design paradigms [2]: 
 

• Mutexes were used to isolate critical regions where 
votes, epoch duration and block appending operations 
were involved (interrupts generated under this design). 
 

• Thread-specific data was employed for encryption of 
potential transactions (no interrupt generated). 

 
• Time duration was considered in cycles rather than 

actual internal time clock for synchronization in all 
models. See [3] for discussion on clock synchronization 
issues. 
 
We next describe the application architecture of each 

model using diagrams similar to those proposed by Booch 
in RUP [1] and Larman in UML [6]. In addition, we further 
advise that the code is available through Github [4]. 
 
 

Byzantine Generals Problem Architecture 
  

 The Byzantine pseudocode is as follows (please refer to 
the Activity diagram immediatelly after): 

-------------------------------------------------------------------------- 

<begin> 

<receive transaction and encrypt> 

<if transaction ok for next, append & increment vote count> 

<else recompute> 

<if votes=majority, commit transaction> 

<loop to begin> 

---------------------------------------------------------------------------------- 

Figure 1: Byzantine Activity Diagram 
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RAFT Architecture 
 

 The RAFT pseudocode is as follows (please refer to the 
Activity diagram immediatelly after): 

-------------------------------------------------------------------------- 

<begin> 

<vote> 

<if majority; designate node, issue secret & epoch duration> 

<encrypt> 

<if transaction ok for next, append > 

<else recompute> 

<if epoch over, loop to begin> 

---------------------------------------------------------------------------------- 

Figure 2: RAFT Activity Diagram  
 

 
 

D-RAFT Architecture 
 

 The D-RAFT pseudocode is as follows (please refer to 
the Activity diagram immediatelly after): 
---------------------------------------------------------------------------------- 

<begin> 

<randomize, designate primary and backup nodes, notify> 

<primary: issue secret & epoch duration> 

<encrypt> 

<if transaction ok for next, append > 

<else recompute> 

<if epoch over, loop to begin> 

Figure 3: D-RAFT Activity Diagram 

  

 

IV. EXPERIMENT RESULTS 
 

Table 1 reports the CPU % and Mac OSX time used by 
each of the three algorithms described above for processing 
100K, 200K and 300K blocks. Table 2 reports the CPU and 
Mac OSX time used by RAFT and D-RAFT for varying the 
epoch from 50, 500 and 5,000 cycles. 

Table 1: Resource Consumption; Volume Scaled 
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Volume CPU% Time
100K Blocks
Byzantine 48% 0:00.91
RAFT 12% 0:00.27
D-RAFT 1% 0:00.02
200K Blocks
Byzantine 53% 0:02.23
RAFT 27% 0:00.53
D-RAFT 3% 0:00.08
300K Blocks
Byzantine 79% 0:03.51
RAFT 30% 0:00.78
D-RAFT 4% 0:00.09



 

 

The above results report the efficiency differences 
between the three algorithms. When using the Byzantine as 
a base, there is a significant incremental efficiency in RAFT 
and again more efficiency in D-RAFT. 

 
Figure 4: Resource Consumption; Epoch Variations 

(All Intances at 200K Blocks to be Added)  

 
 

The table above was produced from varying the election 
time period (cycles) until 200,000 blocks are added to the 
chain. The RAFT algorithm will become more efficient both 
in CPU and time of execution as the election becomes less 
frequent. This is normal since the additional load of the 
election is executed less frequently. A key strategy of 
protection is to vary parameters frequently and using hard to 
predict frequencies. Infrequent elections could constitute a 
vulnerability since it is easier for an attacker to predict 
values if more stability is provided in most systems under 
attack. 

V. RESULTS DISCUSSION & FUTURE PLANS 
This is an initial discussion on resource usage 

characteristics of the three algorithms presented. Additional 
work is needed on the D-RAFT algorithm in the quality 
attributes and potential attack vectors of this model.  

 

A. Results Discussion 
Our volume scaling experiment indicates that the RAFT 

and D-RAFT algorithms are significantly more efficient in 
CPU and execution time. This is perhaps because of the 
removal of the majority vote from each transaction and 
replacement with the trust election component. This feature 
is the creation of Ongaro and Ousterhout [11] and they have 
obtained similar results. The D-RAFT algorithm replaces 
the election algorithm with a designation algorithm that 
requires tasks of the prior leader (executed through discrete 
mathematics/probability analysis) but removes the dialogue 
with other members of the network. We believe this 
removal is what makes this algorithm more efficient on both 
components (CPU and execution time). 

The epoch duration component experiment reflects the 
efficiencies/inefficiencies by holding elections less/more 
frequently. We again believe that the mathematics 
component in the D-RAFT designation rather than voting is 
what might make this algorithm more efficient. 

As expressed in various sections of this document, this is 
an initial variation on the RAFT algorithm and it has not 
been vetted for potential attacks. For example, what happens 
if two nodes are down in the network? or what if an 
impostor executes a man-in-the-middle (MITM) attack? 
These attack vectors (or others) have not yet been vetted for 
quality protection characteristics at this time.  

B. Future Plans 
 The D-RAFT algorithm will continue to be evolved 
through additional experimentation and field trials to 
determine the validity and resillience of attack. The authors 
invite additional commentary be sent to us at the email 
addresses mentioned above. 
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Epoch CPU% Time
50 Cycles
RAFT 30% 0:00.58
D-RAFT 3% 0:00.08
500 Cycles
RAFT 27% 0:00.53
D-RAFT 3% 0:00.08
5000 Cycles
RAFT 25% 0:00.50
D-RAFT 3% 0:00.08


