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Abstract

A method based on eigenvalue computations is formulated for computing the

Chrestenson spectrum of a discrete p-valued function. This technique is de-
veloped by �rst considering an extension to the conventional approach to com-
puting the Walsh spectrum for a binary-valued function which is then general-

ized to the p-valued case (where p > 2). Algebraic groups are formulated that

correspond to Cayley color graphs based on the function of interest. These

graphs have spectra equivalent to the Walsh or Chrestenson spectrum of the
function under consideration. Because the transformation matrix is not used

in any of these computations, the method provides an alternative approach for

spectral computations. This work also illustrates the correspondence between
algebraic group theory and discrete logic function spectral methods.
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1 Introduction

In [2] a method for computing the Walsh spectrum in R-encoding of a com-

pletely speci�ed binary-valued function was presented based on the formation

of an algebraic group dependent on the binary-valued function yielding a cor-

responding Cayley graph [6, 7, 28]. It is proven in [2] that the spectrum of

the Cayley graph is in fact equivalent to the Walsh spectrum of the Boolean

function using algebraic group character theory [12]. Some extensions and

applications of this approach are provided in [3, 4, 27].

A generalization of the set of orthogonal Walsh functions over the binary

�eld leads to the set of Chrestenson functions [8]. These functions may

be used as basis functions for a discrete transform of a p-valued function.

Several researchers have investigated the computation and application of the

Chrestenson spectrum for p-valued discrete functions and in particular, the

ternary case [21, 22, 25]. Applications that have been considered in the past

are synthesis [11, 16], decomposition [23, 26] and testing [10, 20].

In the following it is shown that the spectrum of a Cayley color graph

formulated from an algebraic group similar to that used in [2] yields the

Walsh spectrum in S-encoding for a fully speci�ed binary-valued function.

These results are then generalized and it is shown that the Chrestenson

spectrum of a fully speci�ed p-valued function may likewise be computed as

the spectrum of a Cayley color graph. A speci�c example is given for the

case of a ternary-valued function.

The remainder of this paper is organized as follows. Section 2 will provide

a brief overview of the method described in [2] and extensions are given

and proven for binary-valued functions. In Section 3 the computation of

the Chrestenson spectrum of a ternary-valued function is reviewed and it is

shown how the techniques for the binary-valued case can be extended to the

multiple-valued case. In Section 4, an example computation is given showing

how the method described here can be used. Conclusions are provided in

Section 5.

2 Extensions for Binary-valued Functions

In this Section notation and de�nitions are provided that will be used through-

out the paper followed by extensions to the spectral computation technique



described in [2]. The method described and proven in [2] produces the Walsh

spectrum of a binary-valued function and extensions to this technique are

also given. An alternative proof is also provided based on linear algebra

arguments.

2.1 Eigenvalue Technique - Binary Case

De�nition 1 A Cayley graph can be considered a graphical representation

of a �nite algebraic group. As an example, consider a group (M; �) and a

set N which is a subset of M . The Cayley graph of M with respect to N

can be denoted as Cay(M;N). The vertex set of Cay(M;N) consists of the

elements of M and the edge set consists of pairs of elements from M , (x; y)

such that y = x � n for some n 2 N . Note that the group product operation

� and the generator operation � are not necessarily the same.

In [2] a group is formulated and described by (M;�) where M = fmig

is the set of all possible 2n minterms for a Boolean function f and � is the

exclusive-OR operation applied bit by bit over a pair (mi; mj). This group

can be used with the function of interest f to form a Cayley graph. The

2n � 2n adjacency matrix A = [aij] of the Cayley graph is formed using the

relationship given in Equation 1.

aij = f(mi �mj) (1)

Since Equation 1 evaluates to the Boolean constants 0 or 1 the resulting

undirected graph contains non-weighted edges and yields a Cayley graph. As

proven in [2], the spectrum of the graph, de�ned as the set of eigenvalues

of A [5, 9], is also the R-encoded Walsh spectrum. R-encoding refers to

mapping function values of Boolean 0 to the integer 0 and Boolean 1 to the

integer +1.

Remark 1 The adjacency matrix A has the special property that the sum

of each row and each column has the same value q. The A matrix is a
block-circulant matrix since it describes the group M .

Lemma 1 The Cayley graph formed using the group M and equation 1 con-

sists of vertices that either all have self-loops or where none have self-loops.

The diagonal elements of A are equivalent to f(0).



Proof: The diagonal elements aii 2 A are equivalent to f(0) since, from

Equation 1, aii = f(mi �mi) = f(0). When f(0) = 1 self-loops are present

and the diagonal of A is all ones, otherwise no self-loops are present. 2

De�nition 2 A Hadamard matrix is composed of elements that are all +1

or -1 and has row and column vectors that are orthogonal [14]. A Hadamard

matrix whose row vectors are discretized Walsh functions and has order 2n�
2n is denoted by H. The naturally ordered Hadamard matrix H may be

de�ned as shown in Equations 2 and 3 where 
 represents the Kronecker

product.

H0 = [1] (2)

Hn =

"
Hn�1 Hn�1

Hn�1 �Hn�1

#
=

nO
i=1

"
1 1

1 �1

#
(3)

The H matrix has several useful properties such as symmetry about the

diagonal, H = HT. Because H is orthogonal it follows that H�1 = 1
2n
H.

De�nition 3 The Walsh spectrum of a binary-valued function is de�ned as

the vector s composed of elements si where each si is termed a spectral coeÆ-
cient. The Walsh spectral vector can be calculated as a linear transformation

of the function vector f using the matrix H as s = Hf .

De�nition 4 A matrix D = [dij] is de�ned as a diagonal matrix such that
each dij = 08i 6= j and dii = si. Another de�ntion is D = sTI.

De�nition 5 If a similarity matrix S exists such that S�1PS = Q where
P is an arbitrary matrix and Q is a diagonal matrix, then P is said to be a
diagonalizable matrix.

De�nition 6 If two arbitrary matrices P and T are both diagonalizable us-
ing an identical similarity matrix S, then P and T are said to be simultane-

ously diagonalizable.

Lemma 2 The matrices A and D are similar matrices [18].



Lemma 3 Since A and D are similar they have the same set of eigenvalues

with corresponding multiplicities. Stated in alternative terminology, A and

D have identical spectra.

Theorem 1 The eigenvalues of A are the Walsh spectral coeÆcients of the

binary valued function f .

Proof: Since D is a diagonal matrix it is obvious that the set of eigen-

values for D are fdiig. By de�nition dii = si, thus the eigenvalues of D are

the spectral coeÆcients of f .

From Lemma 2 it is shown that A and D are simultaneously diagonaliz-

able and from Lemma 3 it is shown that A and D necessarily have identical

eigenvalues with corresponding multiplicities and it is concluded that the

eigenvalues of A are the set fsig. 2

It is noted that a similar proof of this result based on group character

theory with respect to general Cayley graph spectra is given in [1] and later

with respect to binary-valued functions using the speci�c group M in [2].

The following theorem appeared in [18]. It is included here for complete-

ness.

Theorem 2 The similarity matrix S satisfying S�1AS = D is in fact the
Hadamard matrix H.

Theorem 2 leads to the useful relationship given in Equation 4.

1

2n
HAH = D (4)

Additionally, due to Remark 1 and Theorem 2 it is seen that the eigen-

values of the adjacency matrix A must be the Walsh spectral coeÆcients

of the binary-valued function f since the eigenvectors of circulant matrices

correspond to row vectors in a Hadamard matrix.

In [27] an extension of this method is presented where it is shown that the

Walsh spectrum of the complement of f , f , results when the group (M;�)

is used where � is the bitwise equivalence operator (the exclusive-NOR). It

is easy to see this is the case since the equivalence operator produces the

complement of f .

In contrast to R-encoding as is used in [2], it is also possible to generate

the Walsh coeÆcients of a binary-valued function as a computation of the



eigenvalues of an S-encoded adjacency matrix as described in [27]. An S-

encoded spectrum results when the elements of A are mapped to the integer

values +1 and -1. The mapping of the A elements to the two roots of unity

e
j0 = +1 and ej� = �1 result in a Cayley color graph. The Cayley color graph

is a completely connected graph with edge weights (i.e. colors) corresponding

to +1 for a Boolean-0 constant and -1 for a Boolean-1 constant. As described

in [17, 24] conversion from R to S encoded spectra can be accomplished as

given in Equation 5.

si =

(
2n � 2r

0
; i = 0

�2ri; i > 0
(5)

R-encoding represents a mapping of function range values such that the

Boolean constant 0 is mapped to the integer 0 and the Boolean constant 1 is

mapped to the integer +1. S-encoding represents the mapping of the binary

Boolean constants to the complex plane as two roots of unity. This mapping

is illustrated in Figure 1 for binary valued functions.

Figure 1: Complex Plane with Encoded Binary Function Values

Lemma 4 Let J denote the k � k matrix of all 1's. Then the eigenvalues of
J are k (with multiplicity one) and 0 (with multiplicity k-1).



Proof: Since all rows are equal and nonzero, rank(J)=1. Since a k � k

matrix of rank(k � h) has at least h eigenvalues equal to 0, it is concluded

that J has at least k � 1 eigenvalues equal to 0. Since trace(J) = k and the

trace is the sum of the eigenvalues, it follows that the remaining eigenvalue

of J is equal to k. 2

Lemma 5 The all 1's k � k matrix J and the adjacency matrix A de�ned

by Equation 1 are simultaneously diagonalizable.

Proof: From [15] it is proven that J and A are simultaneously diago-

nalizable if, and only if, they commute under matrix multiplication. Due to

the de�nition of A in Equation 1, it is seen that A = AT. It follows that

AJ = ATJ = ATJT = (JA)T. From Remark 1 it is noted that the sum of

all rows and columns of A is q, Thus, AJ = qJ = (qJ)T = (AJ)T. Equating

the previous two expressions yields (JA)T = (AJ)T. Therefore, AJ = JA

thus A and J are simultaneously diagonalizable. 2

De�nition 7 The matrix B is the S-encoded adjacency matrix A where all

0-valued components of A are replaced by +1 and all 1-valued components
are replaced by -1.

Theorem 3 The eigenvalues of B are the S-encoded Walsh spectral coeÆ-

cients of the binary function used to formulate the A matrix corresponding
to B.

Proof: The 2n � 2n B matrix is related to A as shown in Equation 6

where the 2n � 2n J matrix is one with all elements equal to +1.

B = J� 2A (6)

From Lemma 5, J and A are simultaneously diagonalizable and a non-

singular similarity matrix Sm exists that diagonalizes each. The diagonal

matrices DJ and DA corresponding to the similarity transform matrix Sm
are given in Equations 7 and 8.

DJ = S�1m JSm (7)

DA = S�1m ASm (8)



From Equations 7 and 8, it is observed that another diagonal matrix, DB

results as follows.

DB = DJ � 2DA = S�1m (J� 2A)Sm = S�1m JSm � 2S�1m ASm
The eigenvalues of B and DB are the same due to the existence of the

similarity transform Sm. Thus, the eigenvalues of B = J�2A are of the form

�i � 2�j where f�ig and f�ig are the eigenvalues of J and A respectively.

From Lemma 4 it is seen that the eigenvalues of J are �
0
= 2n with all

remaining �i = 0 for all i 6= 0.

Since e = (1; 1; : : : ; 1)T is an eigenvector of J corresponding to the eigen-

value �
0
= 2n and �

0
is equal to the number of 1's in a row of A is an

eigenvalue of A, one eigenvalue of B = J � 2A is 2n � 2�
0
which is of the

form of s
0
as given in Equation 5. All other eigenvalues must be of the form

0� 2�j where j 6= 0 yielding the remaining Walsh spectral coeÆcients, si, as

given in Equation 5. 2

3 Spectra of p-valued Functions Using Cayley

Color Graphs

The computation of the Chrestenson spectrum of a fully speci�ed ternary-

valued discrete function using the mathematically de�ned methods such as

those described in [19] is brie
y reviewed. Following the review extensions

of the techniques described in Section 2 are applied to the computation of

p-valued functions. Although ternary-valued functions are used as examples,

these techniques are generalizable to any p-valued function.

3.1 Chrestenson Spectrum of Ternary Function

By representing all discrete function values as roots of unity in the complex

plane as shown in Figure 2 for ternary valued functions, a direct mapping to

spectral representations results. In this mapping, the ternary logic values of

f0; 1; 2g are mapped to values in the complex plane fa
0
; a

1
; a

2
g respectively

where a
0
= e

j0 = 1, a
1
= e

j 2��
3 and a

2
= e

j 4��
3 .

To compute the Chrestenson spectrum of a ternary-valued function, all

logic-0 values are mapped to a
0
, logic-1 values to a

�

1
= a

2
and logic-2 val-

ues to a
�

2
= a

1
. The superscript � denotes the complex conjugate of the



Figure 2: Complex Plane with Encoded Ternary Function Values

values that correspond to the original function values. This is necessary for

the inverse transform to yield the proper values. The resulting vector of

complex values is then linearly transformed as a matrix-vector product. The

Chrestenson transformation matrix may be formulated in natural order using

the Kronecker product de�nition [13] as shown in Equations 9 and 10.

C0 = [1] (9)

Cn =
nO
i=1

2
64 1 1 1

1 a
1

a
2

1 a
2

a
1

3
75 (10)

As an example, the function f de�ned by the truth table shown in Table

1 is transformed using the transformation matrix in Equation 11. In Table

1 the fourth column, fENC , contains the function values after encoding into

the complex conjugates of the roots of unity shown in Figure 2.



Table 1: Truth Table of Example Ternary Function

x
1

x
2

f fENC

0 0 0 a
0

0 1 2 a
1

0 2 0 a
0

1 0 1 a
2

1 1 0 a
0

1 2 2 a
1

2 0 2 a
1

2 1 1 a
2

2 2 0 a
0

2
6666666666664

1 1 1 1 1 1 1 1 1

1 a1 a2 1 a1 a2 1 a1 a2

1 a2 a1 1 a2 a1 1 a2 a1

1 1 1 a1 a1 a1 a2 a2 a2

1 a1 a2 a1 a2 1 a2 1 a1

1 a2 a1 a1 1 a2 a2 a1 1

1 1 1 a2 a2 a2 a1 a1 a1

1 a1 a2 a2 1 a1 a1 a2 1

1 a2 a1 a2 a1 1 a1 1 a2

3
7777777777775

2
6666666666664

a0

a1

a0

a2

a0

a1

a1

a2

a0

3
7777777777775
=

2
6666666666664

4a0 + 3a1 + 2a2
3a0 + 2a1 + 4a2
2a0 + 4a1 + 3a2
4a0 + 3a1 + 2a2
3a0 + 2a1 + 4a2
8a0 + a1

4a0 + 3a1 + 2a2
3a0 + 2a1 + 4a2
2a0 + 4a1 + 3a2

3
7777777777775

(11)

3.2 Cayley Color Graph Spectrum for p-valued Func-

tions

To extend the Cayley color graph spectrum computation method for Chresten-

son spectrum calculations for fully speci�ed p-valued functions, it is necessary

to formulate an appropriate algebraic group. The � operator used for the

case of binary valued functions can be viewed as an arithmetic operation in

GF (2). With this point of view � can be considered as addition or subtrac-

tion modulo-2 over the set of elements in M . While the use of the addition

operation modulo-p as a generator operation does indeed result in a Cayley

color graph [28], the spectrum of the graph does not result in the corre-

sponding Chrestenson spectrum for the function of interest. This is easy to



see since the diagonal of the resulting adjacency matrix A does not contain

same valued elements as is the case for binary-valued functions; however, if

the generator operator 	p is used where 	p represents the di�erence modulo-

p, this characteristic is preserved. Hence, as is analogous to the technique

for binary-valued functions, the elementary Abelian p-adic addition group

(M;�p) may be used where �p represents addition modulo-p. The Cayley

graph is formed using the 	p generator operation and the corresponding

adjacency matrix for the discrete p-valued function is likewise formed with

each component de�ned by the relationship in Equation 12 where each aij is

colored by the mapping de�ned above.

aij = f(mi 	p mj) (12)

3.3 Theoretical Basis for the Spectrum Computation

of p-valued Functions

Finite algebraic groups may be characterized using character theory [12].

A character table of a group can be formulated such that the columns are

labeled by conjugacy classes and the rows are labeled by the irreducible

characters �i. The conjugacy classes represent the various p roots of unity

where the 0th power of the root is the real value 1. These values are members

of the set of complex values. As an example, consider the character table for

the cyclic group of order 2 as shown in Table 2.

Table 2: Character Table for p = 2

classes e
j0

e
j�

�
1

1 1

�
2

1 -1

It is noted that the character table shown in Table 2 is a representation of

a Hadamard matrix as described in [14]. From the results of Babai's work in

[1] the spectral coeÆcients of the corresponding Cayley graph representing

the group as described in Equation 12 is the vector scalar product of the



rows of the character table in 2 with the function represented by the group

relationship. It is noted that this is the de�nition of the S-encoded Walsh

spectrum of a binary-valued function as described in [17, 24]. These results

are generalized in [1] and apply to values of p > 2.

In keeping with the ternary-valued example described in this paper, the

following character table as shown in Table 3 is given.

Table 3: Character Table for p = 3

classes e
j0 = a

0
e
j 2�

3 = a
1

e
j 4�

3 = a
2

�
1

a
0

a
0

a
0

�
2

a
0

a
1

a
2

�
3

a
0

a
2

a
1

As is proven in [1], a spectral coeÆcient of the representative Cayley graph

of the discrete function under consideration is the dot product of the colors

represented in the character table with the discrete function truth vector. It

is apparent that the character table as shown in Table 3 is the same as the

transformation matrix given in Equation 9. Thus, the relationship between

the linear Chrestenson transform, the corresponding Cayley color graph and

the group character table is illustrated.

In [16] the concept of a ternary-quadrature Chrestenson spectrum is intro-

duced where the values (-1,j,+1) are used in the formulation of the transfor-

mation matrix rows instead of (a
0
, a

1
, a

2
). The eigenvalue method described

here will not work for this case since (-1,j,+1) are not roots of unity. How-

ever, the concept of an R-encoded Chrestenson spectrum as also described in

[16] can be used with this technique. The R-encoded Chrestenson spectrum

is one where the function values are not encoded, only the transformation

matrix.

4 Example Calculation

As an example of the extension of the Cayley color graph method for comput-

ing the Chrestenson spectrum of a fully speci�ed p-valued function, consider



the ternary-valued function (i.e. p = 3) de�ned by the truth table given in

Table 1. Using the group and corresponding A matrix de�ned in Equation

12 the adjacency matrix given in Equation 13 results. Note that the entries

of the adjacency matrix are in fact the complex conjugates of the function

values when mapped to the roots of unity as shown in Figure 2. If complex

conjugates are not used in the formation of A, then the resulting eigenvalues

of A are the complex conjugates of the spectrum [15].

A=

2
6666666666664

1 1 a1 a1 1 a2 a2 a1 1

a1 1 1 a2 a1 1 1 a2 a1

1 a1 1 1 a2 a1 a1 1 a2

a2 a1 1 1 1 a1 a1 1 a2

1 a2 a1 a1 1 1 a2 a1 1

a1 1 a2 1 a1 1 1 a2 a1

a1 1 a2 a2 a1 1 1 1 a1

a2 a1 1 1 a2 a1 a1 1 1

1 a2 a1 a1 1 a2 1 a1 1

3
7777777777775

(13)

The adjacency matrix given in Equation 13 has several structural prop-

erties typical of Cayley color graphs. A is a matrix with all values along

the diagonal equivalent to the value of the function at the all-zero minterm

m
0
= 00 : : : 0. Also, the �rst column of A corresponds to the complex con-

jugate values of the function when mapped to the complex plane. When A

is considered in terms of all p� p submatrix blocks (in this case p = 3), it is

seen that A is a block circulant matrix with each submatrix being circulant.

It is also noted that the matrix AT can likewise be used to compute the

Chrestenson spectrum since the eigenvalues of A are equivalent to those of

AT [15]. Obtaining A or AT corresponds to taking the di�erence modulo-p

of minterm values labeling the rows of A with those of the column or vice

versa.

Computing the eigenvalues ofA in Equation 13 results in the set of values

�i = (4a
0
+3a

1
+ 2a

2
; 3a

0
+2a

1
+4a

2
; 2a

0
+4a

1
+3a

2
; 4a

0
+ 3a

1
+2a

2
; 3a

0
+

2a
1
+4a

2
; 8a

0
+a

1
; 4a

0
+3a

1
+2a

2
; 3a

0
+2a

1
+4a

2
; 2a

0
+4a

1
+3a

2
) which are

also the Chrestenson spectral coeÆcients as can be veri�ed by comparison to

Equation 11 where the spectrum is computed according to the de�nition.



5 Conclusions

The computation of the Chrestenson spectrum of a p-valued discrete func-

tion is shown to be accomplished by computing the spectrum of an adjacency

matrix representing a Cayley color graph. The matrix is formed as a collec-

tion of column (or row) vectors each of which is a permutation of the ternary

function truth vector when encoded in the complex plane. These results

are of theoretical interest since they illustrate the relationship between the

spectra of a multi-valued discrete functions and the eigenvalue computation

problem.
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