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Abstract— In this paper, we present a comprehensive survey of 
digital logic simulators from the past twenty years to present. 
First, we summarize the digital logic simulation characteristics. 
Next, we analyze a comprehensive set of simulators for their 
timing model, simulation mode, logic values, and fault 
simulation capabilities. 

I. LOGIC SIMULATION CHARACTERISTICS 
Several fundamental issues describe the functionality and 

flexibility of a digital logic circuit simulator. Primary among 
these considerations is the implementation of the basic 
simulation mechanism. There are two basic methods for 
digital logic simulation, compiled and event-driven 
simulations [23]. 

A. Compiled simulation 
A compiled simulator converts the circuit netlist into a 

sequence of machine language instructions that reflect the 
functions and interconnections of every element in the 
circuit. A circuit value table contains an entry that stores the 
current value of each logic element or net. The instructions 
obtain input values from this table and store results back into 
the table.  Output values are computed using machine 
language instructions that reflect the function of the element. 
Compiled simulation is mainly oriented toward functional 
verification particularly since it is not concerned with the 
timing of the circuit. Since compiled simulators do not 
provide the accurate timing estimates, we will focus on 
event-driven simulators in the remainder of this paper. 

B. Event-driven simulation 
An event-driven simulator can be implemented to operate 

on a set of tables that model the circuit. For each circuit node 
(net), the table has an entry of the logic state and the strength 
of the source or sources driving the node. An event is said to 
have occurred when a signal changes state on an input or the 
output of a circuit element, and is stored in an event queue to 
be scheduled. The simulator keeps track of the current time 
and the event queue that holds future events. An evaluation 
list keeps track of circuit elements whose inputs have 
changed. The evaluation list is processed after the event 
queue is processed for that time point. This chain of event-

queue processing followed by the evaluation-list processing 
is a simulation cycle. 

One efficient method to increase simulator performance 
is that of selective trace which greatly reduces the number of 
events to be triggered. It is based on the fact that some of the 
events may not alter the output of an element, so fan-out of 
this element is unaltered by the excitation that caused the 
evaluation. Thus, when an element’s output does not change 
after computing with updated inputs, following its fan-out is 
unnecessary. 

C. Timing model 
The circuits being modeled rely both on correct logical 

operation of the components in the circuit and on correct 
relative timing of signals passing through the circuit. In an 
event-driven simulation, wires are usually assumed to be 
without any delay and logic elements are typically assumed 
to have lumped delay. The timing model of a simulator can 
vary from zero delay to min/max delay. A zero-delay 
simulator simply calculates the logic function performed by a 
logic element ignoring delay values within the element. With 
unit-delay simulation each logic element is assigned a fixed 
delay. A nominal-delay simulator assigns distinct delay 
values to logic elements based on the manufacturer 
specifications of each element. Finally, the min/max-delay 
model defines the range where the transition may occur by 
accurate characterization of the bounds on gate and wire 
delays. Computation of the exact timing with a min/max-
delay model is, however, computationally intractable. 

The identification of timing characteristics such as races, 
hazards, and spikes is valuable as these are problematic 
conditions. A race is a situation in which two or more signals 
are changing simultaneously in a circuit. A critical race 
occurs when an incorrect state is assumed to be stable due to 
the race. A hazard is the possible occurrence of a momentary 
value opposite to what is expected, and may cause 
unanticipated events in circuits. A spike is produced when a 
module’s inputs change earlier than the propagation delay of 
the module. 

Races and hazards can present problems in zero-delay 
simulators since they do not indicate when the event occurs. 
The nominal-delay simulator gives more precise timing 
results and may catch spikes, but with computational 
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overhead. The unit-delay simulator requires more 
computations than a zero-delay simulator, and its event 
scheduling mechanism is simpler than the nominal-delay 
simulator. The min/max-delay simulator is the most precise, 
but also the most computationally intense. 

D. Simulation modes 
Simulation modes vary from abstract high-level to 

precise low-level, as the simulation gradually becomes more 
accurate but also complex and time consuming [29].  

A behavioral simulation models large pieces of a system 
as black boxes with inputs and outputs. The purpose of a 
behavioral simulator is to give the designer a general 
overview of the design to experiment with high-level 
alternatives. 

A functional simulation ignores timing and includes unit-
delay simulation. A functional simulator processes the input 
just like the corresponding hardware component, but more 
flexibility is permitted with respect to how the input is 
presented to the unit and how it is processed to produce 
output. 

A gate-level simulation treats each logic element as a 
black box modeled by a function where input signals to the 
element are variables. The function may model the delay 
through the element as well. Setting all the delays to unit 
value would result in a functional simulation. 

 A switch-level simulation models transistors as switches 
being on or off. In switch-level simulators, very little 
attention is given to the details of other transistor attributes. 
A switch-level simulator keeps track of voltage levels as well 
as logic levels. It can provide more precise timing than gate-
level simulation, but lacks the ability to use logic element 
delays as a parameter. 

Transistor-level or circuit-level simulation requires 
models of transistors that describe their nonlinear voltage 
and current characteristics. It is the most accurate, but also 
the most complex and time-consuming simulation. 

Mixed-mode simulation uses different simulation modes 
for different parts of a circuit to provide more accuracy at 
critical parts of a circuit and efficiency at the rest.  Table I 
shows some primitives at each abstraction level, and some 
simulators that work in the specified abstraction level. 

E. Simulation Values 
Binary simulation uses logic values 0 and 1, and they 

perform pure binary simulation. Ternary simulation adds a 
third value X to represent unknown or un-initialized.  

TABLE I.  ABSTRACTION LEVELS 

Abstraction Primitives Simulator 
Behavioral Register, Counter, MUX HDL 
Functional Functional Units, ALU, CPU GRAFCET 
Gate Gate, Flip-Flop, Memory Cell MTV, Halotis 
Switch Switch COSMOS, RSIM 
Transistor Transistor, Resistor, Capacitor SirSim, STEED 
Circuit Resistor, Capacitor, Current, Voltage SPICE 

The meaning of the fourth value added depends on the 
simulator. Abstraction Levels  For example, Z is often used 
as a fourth value to represent high impedance, whereas T is 
used to indicate an over-constrained quantity in Voss and its 
successors.  Rising and falling transitions are taken into 
consideration in five-valued simulation {0, 1, X, R, F} where 
R is upward transition and F is downward transition. 
Common simulation values have increased up to 13 values. 
MVL9, which uses values {0, 1, U, X, Z, W, L, H, ‘-‘}, is 
notable as it has been standardized by IEEE (IEEE Standard 
1164) [14] and is supported by most commercial HDL 
simulators. 

F. Symbolic simulation 
Symbolic simulation employs a built-in model of 

hardware behavior and a simulation engine that evaluates the 
behavior of a design for some given input. A symbolic 
simulator can simulate the response to a set of values with a 
single simulation run using symbols instead of actual values. 
The symbolic values encode a range of circuit operating 
conditions and thus yield more coverage per simulation. For 
example, in Symbolic Simulation, using a and b variables 
along with binary values at inputs of a gate-level model, the 
simulator finds a• b’ as an output result. 

Symbolic simulators can also utilize accurate electrical 
and timing models to compute circuit behavior as logic 
simulators. These models may include a detailed switch-
level model containing charge sharing and subtle strengths 
phenomena and timing models containing bounded delay 
assumptions. 

G. Symbolic trajectory evaluation 
Symbolic trajectory evaluation is different from 

conventional symbolic simulation as it verifies the validity of 
formulas expressed in a limited, but accurately defined 
temporal logic. Using temporal logic, properties of a circuit 
are expressed over trajectories that are bounded-length 
sequences of circuit states [12]. Symbolic trajectory 
evaluation uses partially ordered four-valued logic. 

H. Fault Simulation 
Fault simulation analyzes the behavior of a circuit when 

faults exist in the circuit. Fault simulation is used to create 
fault dictionaries and in evaluating proposed test sets [23].  

I. Fault models and fault insertion 
The system may simulate behavior of faulty logic design 

by injecting faults into logic circuit and running logic 
simulation to determine the faulty behavior. A fault 
simulation system becomes more powerful as it provides 
more fault models to be analyzed. The system should be 
capable of inserting various faults such as the stuck-at fault 
into the model. One such technique is to insert a stuck-at one 
or zero on the output signal from a logical element. 



II. LOGIC SIMULATORS 
In this section we survey various timing simulators that 

are used for design verification. We outline their simulation 
level, logic values, delay mode and fault simulation 
capabilities. The list is not a complete set of logic simulators, 
but is meant to be a representative set. 

A. TEGAS2 
TEGAS2 is a multi-modal, five-valued simulator [13,29]. 

It performs gate-level and functional-level simulation. 
Nominal and critical timing (min/max) delays are used in 
simulation. Simulation values are {0, 1, U, D, E}. 

TEGAS2 has a fault simulation ability by fault 
generation and injection into the simulated circuit. Provided 
fault models are stuck-at, shorts, transient fault models, and 
multiple faults. Performance is improved by parallel 
simulation of faults where a specified number of faults are 
simulated in one pass. The number of faults per simulation is 
determined from indistinguishable fault classes, fault 
blocking characteristics, and the desired diagnostic 
resolution. 

B. MOSSIM 
MOSSIM is a unit-delay, ternary, switch-level simulator 

[5]. In addition to ternary node values, each transistor has 
three states, open, closed and unknown. In each pass, 
MOSSIM performs repeated iterations of signal flow model 
to simulate the behavior of the system with applied inputs. 
During an iteration, transistors are marked as closed, open or 
unknown based on the logic levels of their gate nodes. Next, 
signal flow between interconnected nodes is computed to 
form new logic levels, and the affected nodes are updated. 
These iterations are repeated until all nodes have a consistent 
steady state. 

C. FMOSSIM 
FMOSSIM is the extension of MOSSIM with concurrent 

fault simulation capability [7]. Similarly, FMOSSIM is a unit 
delay, ternary, switch-level simulator. FMOSSIM can inject 
node stuck-at and transistor stuck-open or stuck-closed faults 
into the model for fault simulation. The simulator also 
utilizes concurrent fault simulation using isolated lists for 
each node. Separate lists are used to keep track of the state 
for every faulty circuit. 

D. Abramovici et al. 
Abromovici et al. proposed a logic simulation machine 

utilizing distributed and parallel processing [1]. The 
proposed architecture can perform simulation at both the 
functional and gate level. The system is re-configurable and 
expandable to handle different logic values, delay models, 
and types of timing analysis. It utilizes a distributed 
processing architecture operating on a pipeline type data 
flow. Each task of the system is assigned to a dedicated 
processing unit. The processors are micro-programmable so 
that all the tasks are implemented in micro-code. Functional 
evaluation at a functional-level is realized by using parallel 
processors called functional evaluators.  

E. RSIM  
RSIM is a ternary switch-level simulator where 

transistors are modeled as switches with series resistors 
[17,18,30].  Using the model, a network of transistors and 
nodes is simulated as a network of resistors and capacitors. 
The network is a collection of small stages whose operation 
can be predicted. 

RSIM uses a linear model as an approximation, and 
considers the effects of the input waveform timings on gate 
propagation delay. It combines logic-level simulation with 
automatic estimation of transition times from electrical 
properties of the circuit components. Node voltages and 
transition times are determined using three resistances that 
are determined by experiments. Node values are determined 
by the voltages calculated. 

F. IRSIM  
IRSIM is an extension of RSIM with an incremental 

simulation capability [25]. IRSIM performs ternary, switch-
level simulation. Incremental simulation is achieved by 
maintaining a history of circuit activity during simulation 
and selectively simulating the portions of the circuit that 
deviated from their history. IRSIM uses a restructured 
evaluation routine to improve timing and charge-sharing. 

G. Mokkarala et al. 
In [24], Mokkarala et al. analyzed an integrated tool for 

timing verification and logic simulation. The timing verifier 
uses nominal delay values for input ports, output ports, and 
paths for each block. The logic values are classified as {0, 1, 
X, Z, R, S, C} for verification and {0, 1, X, U} for 
simulation. 

The system works in a mixed-mode of functional, gate 
and switch levels. Functional verification utilizes functional 
description of the component blocks of the design. 

H. Lsim  
Lsim is a mixed mode simulator that combines 

functional, gate, switch and circuit level simulators [9]. 
Simulation is handled using three delay modes; zero, unit, 
nominal and min/max. It uses seven logic states that are 
divided into the two categories of “stable” using {High, 
Low, z, x} and “transient” using {r, f, t} logic values. 

Stable states are used in all timing modes whereas 
transient states are used in variable (min/max) delay mode to 
represent intermediate states during a transition. For better 
modeling, strength is associated with each signal besides its 
logical state. There are two strength levels, strong and weak, 
corresponding to a high and low current drive capability.  

After its commercial development by Mentor Graphics, 
Lsim went through some changes. The signals are 
represented by three components: logic state, signal strength 
and weight. Logic states are reduced to low, high and 
unknown. Signal strength uses five different values to 
represent the mechanism used to drive the signal line. 

Signal weight represents how strongly the signal is 
driven using a value in the 00-31 range. For charged 



strength, the weight represents charge storing capacity, 
whereas it represents conductance for driven strength. Valid 
combinations of signal state, strength, and weight are given 
in Table II. 

TABLE II.  SIGNAL STRENGTH AND STATES IN LSIM 

Graphics State 
Strength Low (L) High (H) Unknown (U) 
Initial (I) IL00 IH00 IX00 
Charged (C) CL00-CL31 CH00-CH31 CX00-CX31 
Driven (D) DL00-DL31 DH00-DH31 DX00-DX31 
Supply (S) SL31 SH31 SX31 

 
I. SIMMOS 

SIMMOS, an extension of MOSSIM, is a mixed mode 
simulator that operates at behavioral, gate and switch levels 
[2]. It utilizes a nominal delay mode for timing analysis. It 
performs ternary logic simulation with 32 strength levels.  

SIMMOS performs statistical fault analysis for fault 
verification and test grading to detect single stuck-at faults 
based on STAFAN [15]. The method uses probability theory 
to construct equations for observability, controllability and 
input sensitization probabilities. These equations are used to 
produce probability of each signal being stuck-at-1 and 
stuck-at-0. 

J. COSMOS  
COSMOS is a unit-delay, ternary, switch-level simulator 

[6]. COSMOS consists of three modules, namely ANAMOS, 
LGCC, and a C compiler. ANAMOS partitions switch-level 
circuits into channel-connected sub-networks, and derives 
Boolean models for each sub-network’s behavior. LGCC 
translates this representation into the C language. Finally, the 
C compiler simulates the code produced by LGCC with a 
simulation kernel. 

The ANAMOS symbolic analyzer [3] captures bi-
directional transistor, stored charge, different signal 
strengths, and indeterminate logic features of the switch-
level network. Transistor strength varies from 3 to 6 for 
typical circuits. A system of Boolean equations is used to 
analyze the network using Gaussian elimination. 

K. TRANALYZE 
TRANALYZE transforms transistor-level networks to 

the gate-level which gives a combination of switch-level 
generality with gate-level compatibility and performance [4]. 
It generates the gate model using methods derived from 
switch-level simulation. Similar to ANAMOS, 
TRANALYZE performs a symbolic, switch-level analysis to 
extract a logic representation of the circuit behavior. Instead 
of binary encoding of signals, TRANALYZE uses a four-
valued algebra for the generated gate model using values {0, 
1, X, Z}. 

In terms of timing support, TRANALYZE has two 
modes of operation, zero delay with Boolean optimization 
and unit delay with conservative X modeling. 

L. Voss 
Voss is a formal verification system that supports 

symbolic trajectory evaluation (STE) with built in OBDD 
support [26]. Voss operates at switch, gate and behavioral 
levels. The switch-level model is the same as COSMOS. The 
system handles various timing models, i.e. unit, nominal, 
min/max and bounded delay. Four logic values are used in 
the system {0, 1, X, T} are encoded using a dual rail (H, L). 

M. FORTE 
FORTE is Intel’s FORmal Tools Environment and is 

built on the Voss system that uses BDDs with symbolic 
variables at circuit inputs [10]. In addition to STE for simple 
logic, it supports bSTE for Boolean expression graphs and 
iSTE for scalar simulation. 

N. SirSim 
SirSim [21] is a transistor-level symbolic timing 

simulator based on the delay calculation procedures in 
IRSIM. Symbolic timing simulation is an extension to 
symbolic simulation that was developed for functional 
verification. Symbolic simulation performs input pattern 
independent simulation using Boolean variables instead of 
constant 0 or 1. The simulator handles data-dependent delay 
in addition to zero, unit and nominal delay models. Delay 
values are computed using MTBDDs to represent data-
dependent delay values, and masks indicate the logic 
conditions under which events happen. 

O. STEED 
STEED [22] is a transistor-level symbolic timing 

simulator extending SirSim. Mainly, STEED solves the 
event multiplication problem of SirSim. In the data-
dependent delay mode of SirSim, the effect of a single event 
multiplies at each level because new node values are 
scheduled for each potential delay. STEED uses node value 
and delay-calculation engines from SirSim with an event 
management methodology based on event clusters. An event 
cluster is defined as a set of events on a single node with 
additional parameters  

P. Krishnaswamy et al. 
Krishnaswamy et al. presented a ternary, switch-level 

simulator with fault simulation capabilities [19]. The 
simulator extracts a circuit model similar to the COSMOS 
system.  

Q. HALOTIS 
HALOTIS [31] is a gate-level logic timing simulator 

with results comparable to electrical simulators using Inertial 
and Degradation Delay Model (IDDM). IDDM combines the 
degradation effect of glitches with inertial effect handling 
[16]. In order to improve accuracy, transition from 0-to-1 or 
1-to-0 is approximated by a linear curve determined by the 
rise or fall time and transition start time. Transitions may 
trigger an event at the gate’s threshold voltage, which is a 
predefined value associated to the gate input. Gate outputs 
may be stable at logic 1 or logic 0, or at a transition from 0-



to1 or 1-to-0. Thus, four simulation values {0, 1, R, F} are 
used. 

R. Silos 
Silos is a logic simulator operating at behavioral, gate 

and switch levels [27]. Silos supports the IEEE standard 
delay format in addition to zero, unit and nominal delays. 
Silos is four valued {0, 1, X, Z} simulation, but also defines 
signal strength.  Signal strengths are Supply, Driving, 
Resistive, High-Z, and additional three internal states 
Uncertain, Decaying and Spike. Strength-Value pairs are 
shown in Table III. 

TABLE III.  SIGNAL STRENGTHS IN SILOS 

Strength Low Unknown High High Voltage 
Supply 0 X 1 1 
Driven 0 X 1 1 
Resistive 0 X 1 1 
High-Z Z Z Z Z 
Uncertain X X X X 
Decaying D D D D 

 

S. ModelSim 
ModelSim is a functional verification and debugging 

system that simulates designs at the gate and RTL levels 
[23]. The simulator uses MVL9, IEEE Standard 1164. 

III. COMPARISON OF SIMULATORS 
Table IV outlines analyzed simulators. For each 

simulator, simulation level, simulation values and timing 
modes are indicated. If fault simulation is available, utilized 
fault models are indicated. Finally, any other significant 
feature of the simulator is pointed out as a comment. 

IV. CURRENT NEEDS IN SIMULATION 
Many of the analyzed simulators perform static timing 

analysis, but lack critical timing simulation. A logic 
simulator that takes the dynamic effects with SPICE-level 
accuracy would be beneficial in analyzing high-density 
circuits.  

Some of the simulators are capable of fault simulation; 
the faults modeled are primitive ones. Efficient fault 
simulators capable of handling other faults such as IDDQ, 
path-delay, or crosstalk fault models are needed as well. 

More timing accuracy requires more computation during 
simulation. Thus, simulators should benefit from concurrent 
and distributed simulation to meet the computational needs 
of accurate simulators. Abromovici et al. mentions 
distributed and parallel processing, but they propose a 
machine particularly designed for logic simulation. 
However, a system that uses any grid of concurrent 
computers is desirable. 
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TABLE IV.  SUMMARY OF DIGITAL LOGIC SIMULATORS 

NAME Year Simulation 
Level 

Simulation 
Values 

Timing 
Modes Fault Model Comments 

TEGAS2 1972 Functional,  
Gate 0,1,U,D,E 

Unit, 
Nominal, 
Min/Max 

Stuck-at, Shorts, 
Transient faults  

MOSSIM 1981 Switch 0,1,X Unit   

FMOSSIM 1985 Switch 0,1,X Unit Stuck-at, Stuck-
open, Stuck-closed  

Abramovici et.al. 1982 Functional,  
Gate Any Any  Dedicated logic simulation machine 

Mokkarala et.al. 1985 Functional,  
Gate, Switch 0,1,X, {U} | {Z,R,F,S,T} Nominal  Integrates 

Simulator and Verifier 
RSIM 1983 Switch 0,1,X Unit   
IRSIM 1989 Switch 0,1,X    

LSim 1986 
Functional, 
Gate, Switch, 
Circuit 

0,1,X,Z,R,F,T 
Zero, Unit, 
Nominal, 
Min/Max 

 Signal strength level  

SIMMOS 1986 Behavioral,  
Gate, Switch 0,1,X Nominal Stuck-at  

COSMOS 1987 Switch 0,1,X Unit  Signal strength level 
TRANALYZE 1991 Switch 0,1,X,Z Zero, Unit   

Voss 1993 Behavioral, 
Gate, Switch 0,1,X,T 

Unit, 
Nominal, 
Min/Max, 
Bounded 

  

FORTE  Behavioral, 
Gate, Switch 0,1,X,T 

Unit, 
Nominal, 
Min/Max, 
Bounded 

 Symbolic variables 

SirSim 1999 Transistor 0,1 

Zero, Unit, 
Nominal, 
Data-
dependent 

 Symbolic variables 

STEED 2000 Transistor 0,1 

Zero, Unit, 
Nominal, 
Data-
dependent 

 Symbolic variables 

Krishnaswamy et.al. 2000 Switch 0,1,X Zero, Unit Stuck-at,  Bridging, 
Transition  

HALOTIS 2001 Gate 0,1,R,F IDDM  Inertial and degradation delay model 

Silos  Behavioral, 
Gate, Switch 0,1,X,Z Zero, Unit, 

Nominal  Seven signal strengths 

ModelSim  RTL, Gate 0,1,X,Z,U,W,L,H,’-‘    

 

 


