
A Survey and Comparison of Digital Logic Simulators*

M. Gunes
Department of Computer Science

University of Texas at Dallas
Dallas, Texas U.S.A.

M. A. Thornton, F. Kocan, S. A. Szygenda
Department of Computer Science and Engineering

Southern Methodist University
Dallas, Texas U.S.A.

Abstract— In this paper, we present a comprehensive survey of
digital logic simulators from the past twenty years to present.
First, we summarize the digital logic simulation characteristics.
Next, we analyze a comprehensive set of simulators for their
timing model, simulation mode, logic values, and fault
simulation capabilities.

I. LOGIC SIMULATION CHARACTERISTICS
Several fundamental issues describe the functionality and

flexibility of a digital logic circuit simulator. Primary among
these considerations is the implementation of the basic
simulation mechanism. There are two basic methods for
digital logic simulation, compiled and event-driven
simulations [23].

A. Compiled simulation
A compiled simulator converts the circuit netlist into a

sequence of machine language instructions that reflect the
functions and interconnections of every element in the
circuit. A circuit value table contains an entry that stores the
current value of each logic element or net. The instructions
obtain input values from this table and store results back into
the table. Output values are computed using machine
language instructions that reflect the function of the element.
Compiled simulation is mainly oriented toward functional
verification particularly since it is not concerned with the
timing of the circuit. Since compiled simulators do not
provide the accurate timing estimates, we will focus on
event-driven simulators in the remainder of this paper.

B. Event-driven simulation
An event-driven simulator can be implemented to operate

on a set of tables that model the circuit. For each circuit node
(net), the table has an entry of the logic state and the strength
of the source or sources driving the node. An event is said to
have occurred when a signal changes state on an input or the
output of a circuit element, and is stored in an event queue to
be scheduled. The simulator keeps track of the current time
and the event queue that holds future events. An evaluation
list keeps track of circuit elements whose inputs have
changed. The evaluation list is processed after the event
queue is processed for that time point. This chain of event-

queue processing followed by the evaluation-list processing
is a simulation cycle.

One efficient method to increase simulator performance
is that of selective trace which greatly reduces the number of
events to be triggered. It is based on the fact that some of the
events may not alter the output of an element, so fan-out of
this element is unaltered by the excitation that caused the
evaluation. Thus, when an element’s output does not change
after computing with updated inputs, following its fan-out is
unnecessary.

C. Timing model
The circuits being modeled rely both on correct logical

operation of the components in the circuit and on correct
relative timing of signals passing through the circuit. In an
event-driven simulation, wires are usually assumed to be
without any delay and logic elements are typically assumed
to have lumped delay. The timing model of a simulator can
vary from zero delay to min/max delay. A zero-delay
simulator simply calculates the logic function performed by a
logic element ignoring delay values within the element. With
unit-delay simulation each logic element is assigned a fixed
delay. A nominal-delay simulator assigns distinct delay
values to logic elements based on the manufacturer
specifications of each element. Finally, the min/max-delay
model defines the range where the transition may occur by
accurate characterization of the bounds on gate and wire
delays. Computation of the exact timing with a min/max-
delay model is, however, computationally intractable.

The identification of timing characteristics such as races,
hazards, and spikes is valuable as these are problematic
conditions. A race is a situation in which two or more signals
are changing simultaneously in a circuit. A critical race
occurs when an incorrect state is assumed to be stable due to
the race. A hazard is the possible occurrence of a momentary
value opposite to what is expected, and may cause
unanticipated events in circuits. A spike is produced when a
module’s inputs change earlier than the propagation delay of
the module.

Races and hazards can present problems in zero-delay
simulators since they do not indicate when the event occurs.
The nominal-delay simulator gives more precise timing
results and may catch spikes, but with computational

*This work was supported by the Texas Advanced Technology
Program (ATP) grant 003613-0029-2003.

overhead. The unit-delay simulator requires more
computations than a zero-delay simulator, and its event
scheduling mechanism is simpler than the nominal-delay
simulator. The min/max-delay simulator is the most precise,
but also the most computationally intense.

D. Simulation modes
Simulation modes vary from abstract high-level to

precise low-level, as the simulation gradually becomes more
accurate but also complex and time consuming [29].

A behavioral simulation models large pieces of a system
as black boxes with inputs and outputs. The purpose of a
behavioral simulator is to give the designer a general
overview of the design to experiment with high-level
alternatives.

A functional simulation ignores timing and includes unit-
delay simulation. A functional simulator processes the input
just like the corresponding hardware component, but more
flexibility is permitted with respect to how the input is
presented to the unit and how it is processed to produce
output.

A gate-level simulation treats each logic element as a
black box modeled by a function where input signals to the
element are variables. The function may model the delay
through the element as well. Setting all the delays to unit
value would result in a functional simulation.

 A switch-level simulation models transistors as switches
being on or off. In switch-level simulators, very little
attention is given to the details of other transistor attributes.
A switch-level simulator keeps track of voltage levels as well
as logic levels. It can provide more precise timing than gate-
level simulation, but lacks the ability to use logic element
delays as a parameter.

Transistor-level or circuit-level simulation requires
models of transistors that describe their nonlinear voltage
and current characteristics. It is the most accurate, but also
the most complex and time-consuming simulation.

Mixed-mode simulation uses different simulation modes
for different parts of a circuit to provide more accuracy at
critical parts of a circuit and efficiency at the rest. Table I
shows some primitives at each abstraction level, and some
simulators that work in the specified abstraction level.

E. Simulation Values
Binary simulation uses logic values 0 and 1, and they

perform pure binary simulation. Ternary simulation adds a
third value X to represent unknown or un-initialized.

TABLE I. ABSTRACTION LEVELS

Abstraction Primitives Simulator
Behavioral Register, Counter, MUX HDL
Functional Functional Units, ALU, CPU GRAFCET
Gate Gate, Flip-Flop, Memory Cell MTV, Halotis
Switch Switch COSMOS, RSIM
Transistor Transistor, Resistor, Capacitor SirSim, STEED
Circuit Resistor, Capacitor, Current, Voltage SPICE

The meaning of the fourth value added depends on the
simulator. Abstraction Levels For example, Z is often used
as a fourth value to represent high impedance, whereas T is
used to indicate an over-constrained quantity in Voss and its
successors. Rising and falling transitions are taken into
consideration in five-valued simulation {0, 1, X, R, F} where
R is upward transition and F is downward transition.
Common simulation values have increased up to 13 values.
MVL9, which uses values {0, 1, U, X, Z, W, L, H, ‘-‘}, is
notable as it has been standardized by IEEE (IEEE Standard
1164) [14] and is supported by most commercial HDL
simulators.

F. Symbolic simulation
Symbolic simulation employs a built-in model of

hardware behavior and a simulation engine that evaluates the
behavior of a design for some given input. A symbolic
simulator can simulate the response to a set of values with a
single simulation run using symbols instead of actual values.
The symbolic values encode a range of circuit operating
conditions and thus yield more coverage per simulation. For
example, in Symbolic Simulation, using a and b variables
along with binary values at inputs of a gate-level model, the
simulator finds a• b’ as an output result.

Symbolic simulators can also utilize accurate electrical
and timing models to compute circuit behavior as logic
simulators. These models may include a detailed switch-
level model containing charge sharing and subtle strengths
phenomena and timing models containing bounded delay
assumptions.

G. Symbolic trajectory evaluation
Symbolic trajectory evaluation is different from

conventional symbolic simulation as it verifies the validity of
formulas expressed in a limited, but accurately defined
temporal logic. Using temporal logic, properties of a circuit
are expressed over trajectories that are bounded-length
sequences of circuit states [12]. Symbolic trajectory
evaluation uses partially ordered four-valued logic.

H. Fault Simulation
Fault simulation analyzes the behavior of a circuit when

faults exist in the circuit. Fault simulation is used to create
fault dictionaries and in evaluating proposed test sets [23].

I. Fault models and fault insertion
The system may simulate behavior of faulty logic design

by injecting faults into logic circuit and running logic
simulation to determine the faulty behavior. A fault
simulation system becomes more powerful as it provides
more fault models to be analyzed. The system should be
capable of inserting various faults such as the stuck-at fault
into the model. One such technique is to insert a stuck-at one
or zero on the output signal from a logical element.

II. LOGIC SIMULATORS
In this section we survey various timing simulators that

are used for design verification. We outline their simulation
level, logic values, delay mode and fault simulation
capabilities. The list is not a complete set of logic simulators,
but is meant to be a representative set.

A. TEGAS2
TEGAS2 is a multi-modal, five-valued simulator [13,29].

It performs gate-level and functional-level simulation.
Nominal and critical timing (min/max) delays are used in
simulation. Simulation values are {0, 1, U, D, E}.

TEGAS2 has a fault simulation ability by fault
generation and injection into the simulated circuit. Provided
fault models are stuck-at, shorts, transient fault models, and
multiple faults. Performance is improved by parallel
simulation of faults where a specified number of faults are
simulated in one pass. The number of faults per simulation is
determined from indistinguishable fault classes, fault
blocking characteristics, and the desired diagnostic
resolution.

B. MOSSIM
MOSSIM is a unit-delay, ternary, switch-level simulator

[5]. In addition to ternary node values, each transistor has
three states, open, closed and unknown. In each pass,
MOSSIM performs repeated iterations of signal flow model
to simulate the behavior of the system with applied inputs.
During an iteration, transistors are marked as closed, open or
unknown based on the logic levels of their gate nodes. Next,
signal flow between interconnected nodes is computed to
form new logic levels, and the affected nodes are updated.
These iterations are repeated until all nodes have a consistent
steady state.

C. FMOSSIM
FMOSSIM is the extension of MOSSIM with concurrent

fault simulation capability [7]. Similarly, FMOSSIM is a unit
delay, ternary, switch-level simulator. FMOSSIM can inject
node stuck-at and transistor stuck-open or stuck-closed faults
into the model for fault simulation. The simulator also
utilizes concurrent fault simulation using isolated lists for
each node. Separate lists are used to keep track of the state
for every faulty circuit.

D. Abramovici et al.
Abromovici et al. proposed a logic simulation machine

utilizing distributed and parallel processing [1]. The
proposed architecture can perform simulation at both the
functional and gate level. The system is re-configurable and
expandable to handle different logic values, delay models,
and types of timing analysis. It utilizes a distributed
processing architecture operating on a pipeline type data
flow. Each task of the system is assigned to a dedicated
processing unit. The processors are micro-programmable so
that all the tasks are implemented in micro-code. Functional
evaluation at a functional-level is realized by using parallel
processors called functional evaluators.

E. RSIM
RSIM is a ternary switch-level simulator where

transistors are modeled as switches with series resistors
[17,18,30]. Using the model, a network of transistors and
nodes is simulated as a network of resistors and capacitors.
The network is a collection of small stages whose operation
can be predicted.

RSIM uses a linear model as an approximation, and
considers the effects of the input waveform timings on gate
propagation delay. It combines logic-level simulation with
automatic estimation of transition times from electrical
properties of the circuit components. Node voltages and
transition times are determined using three resistances that
are determined by experiments. Node values are determined
by the voltages calculated.

F. IRSIM
IRSIM is an extension of RSIM with an incremental

simulation capability [25]. IRSIM performs ternary, switch-
level simulation. Incremental simulation is achieved by
maintaining a history of circuit activity during simulation
and selectively simulating the portions of the circuit that
deviated from their history. IRSIM uses a restructured
evaluation routine to improve timing and charge-sharing.

G. Mokkarala et al.
In [24], Mokkarala et al. analyzed an integrated tool for

timing verification and logic simulation. The timing verifier
uses nominal delay values for input ports, output ports, and
paths for each block. The logic values are classified as {0, 1,
X, Z, R, S, C} for verification and {0, 1, X, U} for
simulation.

The system works in a mixed-mode of functional, gate
and switch levels. Functional verification utilizes functional
description of the component blocks of the design.

H. Lsim
Lsim is a mixed mode simulator that combines

functional, gate, switch and circuit level simulators [9].
Simulation is handled using three delay modes; zero, unit,
nominal and min/max. It uses seven logic states that are
divided into the two categories of “stable” using {High,
Low, z, x} and “transient” using {r, f, t} logic values.

Stable states are used in all timing modes whereas
transient states are used in variable (min/max) delay mode to
represent intermediate states during a transition. For better
modeling, strength is associated with each signal besides its
logical state. There are two strength levels, strong and weak,
corresponding to a high and low current drive capability.

After its commercial development by Mentor Graphics,
Lsim went through some changes. The signals are
represented by three components: logic state, signal strength
and weight. Logic states are reduced to low, high and
unknown. Signal strength uses five different values to
represent the mechanism used to drive the signal line.

Signal weight represents how strongly the signal is
driven using a value in the 00-31 range. For charged

strength, the weight represents charge storing capacity,
whereas it represents conductance for driven strength. Valid
combinations of signal state, strength, and weight are given
in Table II.

TABLE II. SIGNAL STRENGTH AND STATES IN LSIM

Graphics State
Strength Low (L) High (H) Unknown (U)
Initial (I) IL00 IH00 IX00
Charged (C) CL00-CL31 CH00-CH31 CX00-CX31
Driven (D) DL00-DL31 DH00-DH31 DX00-DX31
Supply (S) SL31 SH31 SX31

I. SIMMOS

SIMMOS, an extension of MOSSIM, is a mixed mode
simulator that operates at behavioral, gate and switch levels
[2]. It utilizes a nominal delay mode for timing analysis. It
performs ternary logic simulation with 32 strength levels.

SIMMOS performs statistical fault analysis for fault
verification and test grading to detect single stuck-at faults
based on STAFAN [15]. The method uses probability theory
to construct equations for observability, controllability and
input sensitization probabilities. These equations are used to
produce probability of each signal being stuck-at-1 and
stuck-at-0.

J. COSMOS
COSMOS is a unit-delay, ternary, switch-level simulator

[6]. COSMOS consists of three modules, namely ANAMOS,
LGCC, and a C compiler. ANAMOS partitions switch-level
circuits into channel-connected sub-networks, and derives
Boolean models for each sub-network’s behavior. LGCC
translates this representation into the C language. Finally, the
C compiler simulates the code produced by LGCC with a
simulation kernel.

The ANAMOS symbolic analyzer [3] captures bi-
directional transistor, stored charge, different signal
strengths, and indeterminate logic features of the switch-
level network. Transistor strength varies from 3 to 6 for
typical circuits. A system of Boolean equations is used to
analyze the network using Gaussian elimination.

K. TRANALYZE
TRANALYZE transforms transistor-level networks to

the gate-level which gives a combination of switch-level
generality with gate-level compatibility and performance [4].
It generates the gate model using methods derived from
switch-level simulation. Similar to ANAMOS,
TRANALYZE performs a symbolic, switch-level analysis to
extract a logic representation of the circuit behavior. Instead
of binary encoding of signals, TRANALYZE uses a four-
valued algebra for the generated gate model using values {0,
1, X, Z}.

In terms of timing support, TRANALYZE has two
modes of operation, zero delay with Boolean optimization
and unit delay with conservative X modeling.

L. Voss
Voss is a formal verification system that supports

symbolic trajectory evaluation (STE) with built in OBDD
support [26]. Voss operates at switch, gate and behavioral
levels. The switch-level model is the same as COSMOS. The
system handles various timing models, i.e. unit, nominal,
min/max and bounded delay. Four logic values are used in
the system {0, 1, X, T} are encoded using a dual rail (H, L).

M. FORTE
FORTE is Intel’s FORmal Tools Environment and is

built on the Voss system that uses BDDs with symbolic
variables at circuit inputs [10]. In addition to STE for simple
logic, it supports bSTE for Boolean expression graphs and
iSTE for scalar simulation.

N. SirSim
SirSim [21] is a transistor-level symbolic timing

simulator based on the delay calculation procedures in
IRSIM. Symbolic timing simulation is an extension to
symbolic simulation that was developed for functional
verification. Symbolic simulation performs input pattern
independent simulation using Boolean variables instead of
constant 0 or 1. The simulator handles data-dependent delay
in addition to zero, unit and nominal delay models. Delay
values are computed using MTBDDs to represent data-
dependent delay values, and masks indicate the logic
conditions under which events happen.

O. STEED
STEED [22] is a transistor-level symbolic timing

simulator extending SirSim. Mainly, STEED solves the
event multiplication problem of SirSim. In the data-
dependent delay mode of SirSim, the effect of a single event
multiplies at each level because new node values are
scheduled for each potential delay. STEED uses node value
and delay-calculation engines from SirSim with an event
management methodology based on event clusters. An event
cluster is defined as a set of events on a single node with
additional parameters

P. Krishnaswamy et al.
Krishnaswamy et al. presented a ternary, switch-level

simulator with fault simulation capabilities [19]. The
simulator extracts a circuit model similar to the COSMOS
system.

Q. HALOTIS
HALOTIS [31] is a gate-level logic timing simulator

with results comparable to electrical simulators using Inertial
and Degradation Delay Model (IDDM). IDDM combines the
degradation effect of glitches with inertial effect handling
[16]. In order to improve accuracy, transition from 0-to-1 or
1-to-0 is approximated by a linear curve determined by the
rise or fall time and transition start time. Transitions may
trigger an event at the gate’s threshold voltage, which is a
predefined value associated to the gate input. Gate outputs
may be stable at logic 1 or logic 0, or at a transition from 0-

to1 or 1-to-0. Thus, four simulation values {0, 1, R, F} are
used.

R. Silos
Silos is a logic simulator operating at behavioral, gate

and switch levels [27]. Silos supports the IEEE standard
delay format in addition to zero, unit and nominal delays.
Silos is four valued {0, 1, X, Z} simulation, but also defines
signal strength. Signal strengths are Supply, Driving,
Resistive, High-Z, and additional three internal states
Uncertain, Decaying and Spike. Strength-Value pairs are
shown in Table III.

TABLE III. SIGNAL STRENGTHS IN SILOS

Strength Low Unknown High High Voltage
Supply 0 X 1 1
Driven 0 X 1 1
Resistive 0 X 1 1
High-Z Z Z Z Z
Uncertain X X X X
Decaying D D D D

S. ModelSim
ModelSim is a functional verification and debugging

system that simulates designs at the gate and RTL levels
[23]. The simulator uses MVL9, IEEE Standard 1164.

III. COMPARISON OF SIMULATORS
Table IV outlines analyzed simulators. For each

simulator, simulation level, simulation values and timing
modes are indicated. If fault simulation is available, utilized
fault models are indicated. Finally, any other significant
feature of the simulator is pointed out as a comment.

IV. CURRENT NEEDS IN SIMULATION
Many of the analyzed simulators perform static timing

analysis, but lack critical timing simulation. A logic
simulator that takes the dynamic effects with SPICE-level
accuracy would be beneficial in analyzing high-density
circuits.

Some of the simulators are capable of fault simulation;
the faults modeled are primitive ones. Efficient fault
simulators capable of handling other faults such as IDDQ,
path-delay, or crosstalk fault models are needed as well.

More timing accuracy requires more computation during
simulation. Thus, simulators should benefit from concurrent
and distributed simulation to meet the computational needs
of accurate simulators. Abromovici et al. mentions
distributed and parallel processing, but they propose a
machine particularly designed for logic simulation.
However, a system that uses any grid of concurrent
computers is desirable.

[1] M. Abramovici and Y. H. Levendel and P. R. Menon. A logic
simulation machine. In Proceedings of the 19th conference on Design
automation, 1982, pages 65-73.

[2] D. Adler. SIMMOS: a multiple-delay switch-level simulator. In
Proceedings of the 23rd ACM / IEEE conference on Design
automation, 1986, pp.159-163.

[3] R.E. Bryant. Boolean analysis of MOS circuits. In IEEE Transactions
on Computer Aided Design of Integrated Circuits, February 1987, pp.
634-649.

[4] R.E. Bryant. Extraction of Gate Level Models from Transistor
Circuits by Four Valued Symbolic Analysis. In International
Conference on Computer Aided Design, November 1991, pp. 350-
353.

[5] Randal E. Bryant. MOSSIM: A switch-level simulator for MOS LSI.
In Proceedings of the 18th conference on Design automation, 1981,
pp. 786-790.

[6] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler.
COSMOS: a compiled simulator for MOS circuits. In Proceedings of
the 24th ACM/IEEE conference on Design automation, 1987, pp. 9-16.

[7] R.E. Bryant and M.D. Schuster. Performance evaluation of
FMOSSIM, a concurrent switch-level fault simulator. In Proceedings
of the 22nd ACM/IEEE conference on Design automation, 1985, pp.
715-719.

[8] S. Chakraborty and D.L. Dill. More accurate polynomial-time min-
max timing simulation. In Proceedings of 3rd International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, April 1997, pp.112-123.

[9] R.D. Chamberlain and M.A. Franklin. Collecting fata about logic
simulation. In IEEE Transactions on Computer-Aided Design, July
1986, pp. 405-411.

[10] Forte/FL User Guide, Version 1.0. By Technical Publications and
Training, Intel Corporation, Jan 2003.

[11] S. Hazelhurst and C-J. Seger. A Simple Theorem Prover Based on
Symbolic Trajectory Evaluation and BDDs. In IEEE Transactions on
Computer-Aided Design, April 1995, pp. 413-422.

[12] S. Hazelhurst, C-J. Seger. Symbolic Trajectory Evaluation. In Formal
Hardware Verification - Methods and Systems in Comparison, 1997,
pp. 3-78.

[13] C. W. Hemming and S. A. Szygenda. Modular requirements for
digital logic simulation at a predefined functional level. In
Proceedings of the ACM annual conference, 1972, pp. 380-389.

[14] IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for
VHDL Model Interoperability (Std_logic_l 164). IEEE Computer
Society. 1993

[15] S.K. Jain and V.D. Agrawal. STAFAN: An alternative to fault
simulation. In Proceedings of the 21st conference on Design
automation, 1984 pp. 18-23.

[16] J. Juan-Chico, P. Ruiz-de-Clavijo, M.J. Bellido, A.J. Acosta, M.
Valencia. Inertial and degradation delay model for CMOS logic gates.
In Proceedings of IEEE International Symposium on Circuits and
Systems. May 2000, pp. 459-462.

[17] R. Kao and M. Horowitz. Piecewise linear models for Rsim. In
Proceedings of the 1993 IEEE/ACM international conference on
Computer-aided design, 1993 pp. 753-758.

[18] R. Kao and M. Horowitz. Timing analysis for piecewise linear Rsim.
In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 1994, pp. 1498-1512.

[19] V. Krishnaswamy and J. Casas and T. Tetzlaff. A switch level fault
simulation environment. In Proceedings of the 37th conference on
Design automation, 2000, pp. 780-785.

[20] C.B. McDonald and R.E. Bryant. Symbolic functional and timing
verification of transistor-level circuits. In Proceedings of the 1999
IEEE/ACM international conference on Computer-aided design,
1999, pp. 526-530.

[21] C. B. McDonald and R.E. Bryant. Symbolic timing simulation using
cluster scheduling. In Proceedings of the 37th conference on Design
automation, 2000, pp. 254-259.

[22] A. Miczo. Digital Logic Testing and Simulation, Second Edition. By
John Wiley & Sons, Inc. New Jersey. 2003.

[23] ModelSim SE, PSL Assertions Guide. Version 5. 8 Beta. By Model
Technology, August 2003.

[24] V.R. Mokkarala, A. Fan, and R. Apte. A unified approach to
simulation and timing verification at the functional level. In
Proceedings of the 22nd ACM/IEEE conference on Design
automation, 1985, pp. 757-761.

[25] A. Salz and M. Horowitz. IRSIM: an incremental MOS switch-level
simulator. In Proceedings of the 26th ACM/IEEE conference on
Design automation, 1989, pp. 173-178.

[26] C. Seger, VOSS - A Formal Hardware Verification System User's
Guide. Technical Report 93-45, Department of Computer Science,
University of British Columbia, 1993.

[27] Silos User’s Manual Version 2002.1. By Simucad Inc., 2002.
[28] M.J.S. Smith. Application-specific integrated circuits. Addison-

Wesley Longman Publishing Co., Inc. Boston. 1997.
[29] S. A. Szygenda. TEGAS2—Anatomy of a General Purpose Test

Generation and Simulation system for Digital Logic. In Proceedings
of the 9th workshop on Design automation, 1972, pp. 116-127.

[30] C.J. Terman. Simulation tools for digital LSI design. PhD Thesis,
Massachusetts Institute of Technology, 1983.

[31] R. Vazquez, J. Juan-Chico, M. Bellido, A. Acosta, and M. Valencia.
HALOTIS: High Accuracy LOgic TIming Simulator with inertial and
degradation delay model. In Proceedings of the conference on
Design, automation and test in Europe, 2001, pp. 467-471.

TABLE IV. SUMMARY OF DIGITAL LOGIC SIMULATORS

NAME Year Simulation
Level

Simulation
Values

Timing
Modes Fault Model Comments

TEGAS2 1972 Functional,
Gate 0,1,U,D,E

Unit,
Nominal,
Min/Max

Stuck-at, Shorts,
Transient faults

MOSSIM 1981 Switch 0,1,X Unit

FMOSSIM 1985 Switch 0,1,X Unit Stuck-at, Stuck-
open, Stuck-closed

Abramovici et.al. 1982 Functional,
Gate Any Any Dedicated logic simulation machine

Mokkarala et.al. 1985 Functional,
Gate, Switch 0,1,X, {U} | {Z,R,F,S,T} Nominal Integrates

Simulator and Verifier
RSIM 1983 Switch 0,1,X Unit
IRSIM 1989 Switch 0,1,X

LSim 1986
Functional,
Gate, Switch,
Circuit

0,1,X,Z,R,F,T
Zero, Unit,
Nominal,
Min/Max

 Signal strength level

SIMMOS 1986 Behavioral,
Gate, Switch 0,1,X Nominal Stuck-at

COSMOS 1987 Switch 0,1,X Unit Signal strength level
TRANALYZE 1991 Switch 0,1,X,Z Zero, Unit

Voss 1993 Behavioral,
Gate, Switch 0,1,X,T

Unit,
Nominal,
Min/Max,
Bounded

FORTE Behavioral,
Gate, Switch 0,1,X,T

Unit,
Nominal,
Min/Max,
Bounded

 Symbolic variables

SirSim 1999 Transistor 0,1

Zero, Unit,
Nominal,
Data-
dependent

 Symbolic variables

STEED 2000 Transistor 0,1

Zero, Unit,
Nominal,
Data-
dependent

 Symbolic variables

Krishnaswamy et.al. 2000 Switch 0,1,X Zero, Unit Stuck-at, Bridging,
Transition

HALOTIS 2001 Gate 0,1,R,F IDDM Inertial and degradation delay model

Silos Behavioral,
Gate, Switch 0,1,X,Z Zero, Unit,

Nominal Seven signal strengths

ModelSim RTL, Gate 0,1,X,Z,U,W,L,H,’-‘

