
Simulation of Switching Circuits using Transfer
Functions

David Kebo Houngninou
Department of Computer Science and Engineering, SMU

Dallas, Texas, USA
Email: dhoungninou@mail.smu.edu

Mitchell A Thornton
Darwin Deason Institute for Cyber Security, SMU

Dallas, Texas, USA
Email: mitch@lyle.smu.edu

Abstract—Simulation of complex hardware circuits is the basis
for many EDA tasks and is commonly used at various phases of
the design flow. State-of-the-art simulation tools are based upon
discrete event simulation algorithms and are highly optimized
and mature. Symbolic simulation may also be implemented
using a discrete event approach, or other approaches based on
extracted functional models. The common foundation behind
modern simulation tools is that of a switching or Boolean
algebraic model that may be augmented with timing information.
Recently, an alternative foundational model for conventional
digital electronic circuits has been proposed, based upon lin-
ear algebra rather than Boolean switching algebra where the
circuits are modeled as transfer functions in the form of linear
transformation matrices. We demonstrate that this model can
be effectively used as the basis for a simulation methodology.
Our approach is motivated by the need to develop a truly
unified EDA tool for mixed signal circuit design. Currently,
industrial tools such as SPECTRE use two different internal
engines; a SPICE-like engine and a Verilog-like engine. Our
method will allow us to represent mixed signal circuit elements
as transfer functions. Spatial complexity is significantly reduced
through the use of binary decision diagrams (BDD) to represent
the transfer functions. A prototype implementation is used to
generate experimental results and to illustrate the viability of
the linear algebraic model as a basis for EDA applications.

Keywords: Switching Circuit Simulation, Symbolic Simu-
lation, Transfer Function, Binary Decision Diagram

I. INTRODUCTION

The concept of a transfer function model for digital circuits
is devised wherein the input stimulus and the output response
are represented by an element in a finite-dimensioned Hilbert
vector space. This work describes the use of our past results
to implement and evaluate a prototype simulation tool. The
prototype parses a structural netlist in Verilog and constructs
the transfer matrix for the netlist in the form of a BDD. Con-
structing the transfer function of a structural circuit description
can be accomplished by partitioning the netlist into a serial
cascade of parallel stages, constructing the transfer matrices
of each stage through a tensor matrix multiplication, and
combining the stages using direct matrix multiplication [5].
The advantage of our simulation approach is that it supports
symbolic simulation wherein any of the inputs, or subsets of
the inputs can be assigned both binary values simultaneously.
In one extreme, all possible input values can be symbolically
simulated with one vector-matrix computation. In the other

extreme, a single input assignment can be simulated with one
vector-matrix product.

This paper is organized as follows. A background section
briefly reviews the required theoretical concepts used to build
the prototype simulator. The next section describes how the
simulator is implemented including the relevant matrix-based
models with the BDD-based algorithms employed to perform
the computations. Following the implementation, we compare
the performance of two simulation methods in terms of com-
putation time and storage requirements.

II. RELATED WORK

The transfer function concept as described in [6] provided
the theoretical background for simulation and justification. The
corresponding transformation from the input stimulus vector
space to the output response vector space is given by a matrix.
In [7] these theoretical results are further extended to cover
non-binary switching circuits and to characterize the transfer
functions representing switching circuits in spectral domains.
To reduce the spatial complexity and improve the performance
of applications based on the linear algebraic approach, we
use binary decision diagrams (BDDs) to represent vectors and
matrices. The implementation of the theory using BDDs is
described in [5] where we provided algorithms for parsing a
structural netlist into a BDD transfer function, and included
required operations such as the inner product of vectors, the
direct vector-matrix product, and the outer product of matrices.
[5] also provided some experimental results for the generation
of transfer functions as Binary Decision Diagrams and made a
comparison of the compactness of the diagrams using variable
ordering techniques such as sifting.

III. BUILDING THE PROTOTYPE SIMULATOR

The first step involved in building our prototype consists
of parsing the netlist to be simulated. The parser extracts
information from a Verilog structural model in the form of
a multi-level combinational logic circuit. Next, it tokenizes
the netlist and extracts information such as the list of inputs,
outputs, internal wires, and logic gates. Each gate and wire
are assigned a unique ID number. After parsing, we identify
fanouts by searching for gates with identical input nets.
The parser splits the netlist into parallel stages or partitions
representing subsets of the circuit. We can split the netlist

into stages using levelization which consists of assigning level
numbers to each gate according to its order of simulation.
Each partition can count hundreds of logic gates and other
topological features. Each partition is modeled in the form
of a transfer function. In further steps, these functions are
combined into a single overall monolithic transfer function.

A. Simulation using a matrix transfer function

A transfer function matrix T is obtained using a collection
of transfer matrices for each structural element (Figure 2)
that are reused as building blocks to construct the overall
circuit transfer matrix. In this case, the gates are AND, OR,
XOR, BUF, NAND, NOR, XNOR, INV. In addition to
these gates, we also account for fanout and crossover features
in the netlist. We treat fanouts as network elements since they
also perform a transformation of the inputs. Crossovers are the
topological intersection of conducting wires. The permutation
of the order of wires affects the BDD variable ordering and
interchanges the order of row vectors during simulation. We
use a variable reordering transformation to align all variables
in the stages containing crossovers.

Fig. 1. Summary of six primitive operator matrices

We use the tensor product also called the outer or Kronecker
product to compute the transfer function for a partition. This
representation is suitable for systems composed of nets in a
parallel arrangement; each net represents a matrix [4]. We can
perform the Kronecker product u⌦v on each parallel element
which is equivalent to the matrix multiplication u · vT. Each
partition transfer matrix requires p � 1 Kronecker products
where p is the number of parallel elements. For example,
the logic circuit in Figure 2 is composed of one AND gate
and one inverter. This circuit is partitioned into a series of
cascades. In this example, we identify three partitions ✓1, ✓2,
✓3. Because each partition is composed of a set of parallel
elements, the signals on each parallel line must be combined
into a single element in Hw where log2 w is the number
of parallel network signals. We build each of the partition
matrices using the Kronecker product of each network element
and multiply the partition matrices using a direct product to
produce the monolithic transfer function matrix.

Fig. 2. Sample circuit with corresponding partition matrices

ha| and hb| represent the input vectors. The intermediate
matrices in partitions ✓1, ✓2, ✓3 perform a linear transformation

of ha| and hb| to produce output vectors hc| and hd|. Each
partition is a transfer function on its own. In Figure 2, only
cascade ✓3 has two network elements; therefore, we apply
the Kronecker product to the nets in that cascade. A transfer
function will require m � 1 direct product operations where
m is the number of partitions. We perform the direct products
by pair starting from the leftmost partition.

T✓3 = I⌦ Inv = [

1 0
0 1]⌦ [

0 1
1 0] =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

�

T✓1T✓2T✓3 =

1 0
1 0
1 0
0 1

�
[

1 0 0 0
0 0 0 1]

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

�
=

0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0

�

The output response of a logic network stimulated by
an input hxq| and modeled by a transfer matrix T is denoted
by hfq| and is computed using the equation: hfq| = hxq|T.
The inputs are denoted by an n-dimensional vector, hxi| 2 Hn

and the outputs by a vector hfi| 2 Hm. Figure 3 illustrates
the linear transformation of two input values h1| and h1| by
the same circuit.
h1|⌦ h1| = h112| = h310| = [

0 0 0 1
]

hfq| = hxq|T = [

0 0 1 0
] = h102| = h210| = h1|⌦ h0|

Fig. 3. Simulation using input vector h11|

B. Simulation using Binary Decision Diagrams

A better approach for representing vectors and matrices is
to use Binary decision diagrams [3]. Using the same approach
presented above for matrices, we build a transfer function
model using BDDs. In our implementation, we use a library
of BDDs for each net using the CUDD package: a library
for graphs manipulation. The table below shows the BDD
representation of common logic gates.

Fig. 4. BDDs of logic gates

To model a multi-output circuit, we use algebraic deci-
sion diagrams. An algebraic decision diagram (ADD) is a
decision diagram whose terminal nodes represent arbitrary
integers other than just 0 and 1 [1]. The partition of a
netlist is computed using the outer product (Kronecker) of
all its network elements. To perform the Kronecker product
of two ADDs, we use a polynomial. Let F be an ADD
representing a function of n1 variables and m1 outputs. Let
G be an ADD representing a function of n2 variables and

m2 outputs. The resulting Kronecker product Z = F ⌦ G
is an ADD of n1 + n2 variables. For each path in ADD
Z, we calculated the corresponding terminal node using the
expression: Zterminal = 2

m2 · Fterminal + Gterminal. Using
the APPLY procedure developed by Bryant [2] with the
above operator, we build the resultant graph Z. The procedure
APPLY requires two decision diagrams and an operator hopi
as input operands and generates a reduced graph F hopiG. The
advantage of this procedure is that it provides a canonical
and compressed tree as a result. The time complexity of the
Kronecker product is O(|F | · |G|) where |F | and |G| represent
the number of vertices in the graphs F and G respectively.

The direct product is also a necessary operation to obtain
the overall transfer function. In the same way as for matrices,
we multiply all partitions together starting from the leftmost
one. The multiplication of two decision diagrams is a row
transformation of the multiplier diagram by the multiplicand
diagram. Since we formulated our transformation over the
vector space, the values of the rows in the multiplicand ADD
are used as pointers to the rows in the multiplier ADD. The
following rules apply to the multiplication of two decision
diagrams:
• The number of variables in the resulting decision diagram is

equal to the number of variables in the multiplicand diagram
• The direct multiplication of two decision diagrams is non-

commutative
• The direct multiplication of decision diagrams is associative

Fig. 5. Decision diagrams multiplication (matrix-by-matrix)

Figure 5 shows the partition cuts of a circuit composed of
two AND logic gates. This circuit is parsed into two cascades.
The first cascade is composed of an AND gate and a wire. It
is represented by an ADD of three variables a, b, c and four
terminal constants 2, 3, 0, 1. The second cascade is composed
of an AND gate. It is represented by an ADD of two variables
c0 and c and two terminal constants 0 and 1. Both partitions
are multiplied together to produce an ADD of three variables
and two terminal constants 0 and 1. The result represents the
transfer function of the logic circuit and is isomorphic to the
truth table of a 3-input AND. Once we obtain the transfer
function, we can use it to perform simulation on any variable
assignment. For three input values a = 1, b = 1 and c = 0, we
get the following input vector: h1|⌦h1|⌦h0| = h1102| = h610|.

Figure 6 illustrates the multiplication of the input vector h6|
by the transfer function.

Fig. 6. Simulation using input vector h110| (vector-by-matrix)

The following algorithm includes two cases: the multipli-
cation of an ADD by an ADD (matrix-by-matrix), and the
multiplication of a constant by an ADD (vector-by-matrix).
n1 is the number of variables in the multiplicand F and n2 is
the number of variables in the multiplier G with the product
denoted as Z.

Algorithm 1: Multiplication of two decision diagrams
Input: Node F and Node G
Output: ADD Z representing the resultant graph F ⇥G

1 if n1 is equal to 0 then
. F is a constant node

2 Z terminal node of G for variable assignment F
3 else if n1 is greater than 0 then
4 foreach paths in F from root to terminal do
5 Zpaths[i] variable assignment F

Zterminals[i] terminal node of G for variable
assignment F

6 Build ADD Z
7 return Z;

In our prototype simulator, we experiment with two ap-
proaches for computing the output response. In the first
approach, we formulate the overall circuit transfer function in
the form of a single graph that we refer to as the “monolithic
ADD”. The second method omits the step of computing the
transfer function as a block and instead retains an array of
multiple ADDs where each represents the transfer function
for an individual serial stage of the partitioned netlist.

C. Simulation using a monolithic transfer function

The monolithic method consists of formulating the overall
circuit in the form of a single ADD. This method uses the
ADD-by-ADD multiplication algorithm to combine all the
partitions of the netlist into a single diagram, then multiplies
it with the input stimulus vector to obtain the output response.
The advantage of this method is that we can represent the
entire function as one diagram and simulate for all input
combinations in a single iteration. The downside of building
a monolithic transfer function is potentially higher memory
usage. The spatial complexity for multiplying two partitions
is O(|F | · |G|).

Fig. 7. A transfer function framework for F (Monolithic method)

D. Simulation using an array of transfer functions

Rather than building the entire transfer function, this method
performs the simulation incrementally starting from the pri-
mary inputs. The array method consists of performing multiple
vector-matrix multiplications over each partition to obtain
the output response. The benefit of this technique is that
we only build one ADD at a time for each cascade, and
we can free up the nodes of previously used cascades after
each iteration. Since we use only one partition at a time,
building the output response incrementally is beneficial for
reducing memory usage. Nodes from previous cascades are
gradually dereferenced. In contrast to the monolithic method,
a netlist represented by k partitions requires k vector-matrix
multiplications to obtain each output response.

Fig. 8. A transfer function framework for F (Array method)

IV. EXPERIMENTAL RESULTS

To evaluate the two approaches for the prototype simulator,
we use a set of benchmark circuits as input to the simulator
with a randomly generated set of test vectors. The results
consider both the peak memory usage and the simulation
computation time.

TABLE I
SIMULATION OUTPUT RESPONSE (MONOLITHIC METHOD)

Benchmark Inputs/
Outputs

of
partitions

of
nodes

Memory
(MB)

Time to
build

partitions (ms)

Time to
build

BDD (ms)

Time to
simulate

(ms)
xor5.v 5/1 6 11 8.77 0.44 2.67 0.01
c17.v 5/2 12 12 8.90 0.57 4.88 0.02
majority.v 5/1 12 9 8.98 1.09 5.10 0.01
test1.v 3/3 16 10 8.92 0.86 5.49 0.01
rd53.v 5/3 18 21 9.29 1.21 10.48 0.04
con1.v 7/2 14 15 19.07 2.14 175.67 0.01
radd.v 8/5 28 109 19.12 4.91 296.04 0.03
rd73.v 7/3 24 71 19.34 5.56 76.96 0.01
mux.v 21/1 26 145 33.77 7.61 43.47 0.01
c432.v 36/7 57 451 41.08 240.60 945.89 0.08
c499.v 41/32 16 442 43.14 246.50 850.11 0.09
c880.v 60/26 67 895 67.90 1412.62 6580.10 0.21
c5315.v 178/123 80 1286 83.47 3150.11 7783.62 0.37
c2670.v 233/140 99 1560 97.01 6521.43 8195.09 0.58

TABLE II
SIMULATION OUTPUT RESPONSE (ARRAY METHOD)

Benchmark Inputs
Outputs

of
partitions

Memory
(MB)

Time to build
partitions (ms)

Time to build
BDDs (ms)

Time to
simulate (ms)

xor5.v 5/1 6 8.70 0.44 0.17 0.01
c17.v 5/2 12 8.79 0.57 0.70 0.03
majority.v 5/1 12 8.84 1.09 1.01 0.04
test1.v 3/3 16 8.81 0.86 0.84 0.03
rd53.v 5/3 18 9.06 1.21 2.70 0.07
con1.v 7/2 14 18.82 2.14 65.11 0.44
radd.v 8/5 28 21.08 4.91 195.43 0.54
rd73.v 7/3 24 11.72 5.56 21.37 0.19
mux.v 21/1 26 16.19 7.61 429.69 1.90
c432.v 36/7 57 18.42 240.60 619.09 2.78
c499.v 41/32 16 17.22 246.50 1150.11 2.01
c880.v 60/26 67 25.42 1412.62 7100.60 5.21
c5315.v 178/123 80 37.17 3150.11 8752.80 9.75
c2670.v 233/140 99 49.01 6521.43 9450.20 12.87

The tables above contain timing data, the total number of
nodes in the transfer function and memory usage for both
the monolithic method and the array method. The motivation
for comparing these two approaches is that the monolithic
ADD is larger and requires more memory for representation
but only requires a single vector-matrix product computation
to obtain the output response. In contrast, the array of ADDs
method will result in less required storage but will require
k vector-matrix computations to compute an output response
vector. Using the array method, it is not necessary to compute
the entire array of ADDs since only a single we compute
one partition at a time. For both methods, crossovers between
partitions are handled by reordering variables accordingly
in the corresponding ADD. As observed in the results, the
monolithic approach generally required more memory but
resulted in faster simulation times whereas the partition array
method reduced memory usage at the expense of simulation
time.

V. CONCLUSION

We have described how we can use the theory in [6]
to implement a simulator. Two versions of the simulator
were implemented with one optimizing runtime and the other
optimizing memory usage. In order to make use of the
theoretical results of [6] in a practical manner, ADDs are
used to represent the matrices and vectors. A new tensor
multiplication algorithm was formulated as an operation over
matrices represented as ADDs and was shown to be very
efficient in that it required only the traversal of a single path
in each of the two operands ADDs. This tensor multiplication
algorithm enabled the two candidate simulation methods to
have reasonable and competitive runtimes and memory usage
statistics. These results indicate that the linear algebraic theory
can be used as a practical and reasonable alternative to
conventional switching algebra models for digital circuit EDA
tools.

REFERENCES

[1] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebric decision diagrams
and their applications. Formal methods in system design, 10(2-3):171–
206, 1997.

[2] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, C-35(8):677–691, Aug 1986.

[3] Edmund M Clarke, Masahiro Fujita, and Xudong Zhao. Multi-terminal
binary decision diagrams and hybrid decision diagrams. In Representa-

tions of discrete functions, pages 93–108. Springer, 1996.
[4] Luca De Alfaro, Marta Kwiatkowska, Gethin Norman, David Parker, and

Roberto Segala. Symbolic model checking of probabilistic processes using

MTBDDs and the Kronecker representation. Springer, 2000.
[5] D. K. Houngninou and M. A. Thornton. Implementation of switching cir-

cuit models as transfer functions. In 2016 IEEE International Symposium

on Circuits and Systems (ISCAS), pages 2162–2165, May 2016.
[6] Mitchell Thornton. Simulation and implication using a transfer function

model for switching logic. IEEE Transactions on Computers, PP,
February 2015.

[7] Mitchell A. Thornton. Modeling Digital Switching Circuits with Linear

Algebra. Morgan & Claypool Publishers, 2014.

