
Quantum Logic Synthesis with Formal Verification
Kaitlin N. Smith and Mitchell A. Thornton

Department of Electrical and Computer Engineering
Southern Methodist University

Dallas, TX USA
{knsmith,mitch}@smu.edu

Abstract—Quantum computers capable of practical informa-
tion processing are emerging rapidly. As these devices become
more advanced, tools will be needed for converting generalized
quantum algorithms into formally-verified forms that are exe-
cutable on real quantum machines. In this work, a prototype
tool is presented that transforms quantum algorithms into
executable specifications where optimization procedures yield 9-
24 % cost improvement on a range of benchmarks. Additionally,
the tool incorporates formal verification internally with Quantum
Multiple-valued Decision Diagrams to confirm that the generated
technology-dependent executable is functionally equivalent to the
original, technology-independent algorithm. Experimental results
are provided that target the Rigetti family of quantum processing
units although the tool may also target other architectures.

Index Terms—quantum information processing, quantum com-
puting, quantum logic synthesis, technology mapping

I. INTRODUCTION AND BACKGROUND

Many quantum processing units (QPUs) have been devel-
oped, but these devices have differences in the types of quan-
tum circuits they can execute. Because of the variety between
QPUs, even between those of the same technology, methods
must be developed that allow arbitrary quantum circuits to
be mapped to technology-dependent models. When mapping
circuits into a technology-dependent form, restrictions with
respect to available operators and qubit topology must be
considered. In this work, a quantum logic synthesis tool that
compiles circuits to the Rigetti QPUs will be discussed. Output
circuits are optimized for the target architectures through the
minimization of a user-specified cost function. Although the
problem of transforming quantum circuits into primitive gate
sets required for QPU execution [1] as well as quantum
mapping algorithms [2], [3] have been explored in the past,
this work differs by performing compilation procedures for the
Rigetti devices along with implementing formal verification.
Accuracy of the output specifications is confirmed with equiv-
alence checking via the Quantum Multiple-valued Decision
Diagram.

A. Quantum Computation

Quantum units, qubits, are modeled as a combination of the
basis states |0〉 =

[
1 0

]T
and |1〉 =

[
0 1

]T
as

|ψ〉 = α |0〉+ β |1〉 . (1)

In Eqn. (1), α and β are complex-valued probability ampli-
tudes in the state vector. During measurement, the probability

that |ψ〉 = |0〉 is α∗α = |α|2 and the probability that
|ψ〉 = |1〉 after measurement is β∗β = |β|2 where ∗ indicates
the complex conjugate and |α|2 + |β|2 = 1. Qubits collapse
into a basis state after measurement, losing all superposition
and entanglement properties [4].

An operator for quantum information processing (QIP) is
represented by a unitary transformation matrix, U of di-
mension 2n × 2n where n is the number of transformed
qubits. To create a transfer function that describes an entire
circuit, parallel quantum operators are combined with a tensor
product while operators in series are combined with a matrix
product. A common set of single- and multi-qubit operations
are provided in Table I.

Some quantum computers (QCs), depending on the technol-
ogy platform, are more resilient to decoherence, or accidental
measurement, as compared to others. In QIP circuits and
QC design, there is a trade-off between average decoherence
times and qubit coupling. Multi-qubit interaction is necessary
to enable required operations for QIP such as the CX or
CZ. The ability for qubits to couple, however, implies that
qubits also have the undesirable capability to interact with the
environment thus increasing the probability of decoherence.
Determining qubit realizations that allow for easy interaction
with one another while also resisting environmental coupling
is currently an active area of research that accounts for, in part,
the lack of a wide consensus on the preferred implementation
of a qubit. Many current QIP realization efforts are focused
upon the class of superconducting solid-state qubits as they are
considered by many to offer the best trade off between qubit
interaction versus average time of decoherence. At the time of
this writing, the community considers that the we are in the era
of noisy intermediate-scale quantum (NISQ) computing [5].

B. The Rigetti Corporation Quantum Computers

Rigetti has developed three solid-state-circuit-based QCs
named Agave, Aspen, and Acorn [6]–[8]. The Python library
PyQuil as well as a software development kit (SDK) ForestTM

are used for writing quantum algorithms, interacting with
the quantum devices, and simulating quantum computing [9].
To specify an algorithm for the Rigetti QCs, quantum op-
erators must be specified in quantum instruction language,
or Quil [10]. Although Quil allows for the specification of
algorithms using many of the standard quantum gates, for
algorithm to be executable on a real QPU, a native gate set

TABLE I
COMMON SINGLE- AND MULTI-QUBIT QUANTUM OPERATORS

Operator Symbol Transfer Matrix

Pauli-X (X)
[
0 1
1 0

]
Pauli-Y (Y)

[
0 −i
i 0

]
Pauli-Z (Z)

[
1 0
0 −1

]
Hadamard (H) 1√

2

[
1 1
1 −1

]
Phase (S)

[
1 0
0 i

]
π/8 (T)

[
1 0

0 eiπ/4

]
CX

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

CZ

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]

SWAP

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]

Toffoli


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



must be used. This set includes RZ rotations, RX rotations
that are integer-multiples of π/2, and CZ [9].

Not every qubit pair can couple on a QPU, and this severely
limits the total number of executable multi-qubit operations.
The Rigetti devices demonstrate this operational constraint
because the only available two-qubit gate, CZ, may only be
implemented on adjacent qubits that are connected. Therefore,
the device topology prevents the execution of arbitrary CZ
operations in an algorithm. The device topology for the Rigetti
QPUs can be represented as dictionaries where device =
{a0 : [b0], a1 : [b1], . . . , an−1 : [bn−1]}. In these dictionaries,
the keywords, ai, are qubits that can act as CZ controls and
the paired list, bi, indicates which qubit(s) that the CZ control
can target [11]:

• Agave (8 qubits) = { 0:[1,7], 1:[0,2], 2:[1,3], 3:[2,4], 4:[3,5],
5:[4,6],6:[5,7], 7:[0,6] }

• Aspen (16 qubits) ={ 0:[1,7], 1:[0,2,16], 2:[1,3,15], 3:[2,4],
4:[3,5], 5:[4,6], 6:[5,7], 7:[0,6], 10:[11,17], 11:[10,12], 12:[11,13],
13:[12,14], 14:[13,15], 15:[2,14,16], 16:[1,15,17], 17:[10,16] }

• Acorn (19 qubits) = {0:[5,6], 1:[6,7], 2:[7,8], 4:[9], 5:[0,10],
6:[0,1,11], 7:[1,2,12], 8:[2,13], 9:[4,14], 10:[5,15,16], 11:[6,16,17],
12:[7,17,18], 13:[8,18,19], 14:[9,19], 15:[10], 16:[10,11], 17:[11,12],
18:[12,13], 19:[13,14] }

An interesting observation is that the CZ gate is bidirectional
in the sense that the transformation matrix is equivalent if the
control and target qubits are interchanged.

C. Quantum Cost

Since the likelihood of decoherence increases as a set of
qubits are continually transformed, when considering quantum
cost reduction, the most common method is usually centered
around reducing the total number of operations performed on
a set of qubits, especially when operations are multi-qubit.
Performance parameters for one- and two-qubit operators
for the Rigetti machines can be found in [11]. Based upon
this information we formulate the cost function used by our
synthesis tool for the Rigetti QPUs as

qcost = 5c+ 3h+ 2y + x+ z + s+ t. (2)

In Eqn. (2), c is the count of CZ gates, h is the count of H
gates, y is the count of Y gates, x is the count of X gates, s
is the count of S and S† gates, and t is the count of T and T†

gates for the technology-dependent circuit mapping generated
by the tool. X, Z, S, and T are given the lowest weights in
the cost function because these gates can be executed with
single RX or RZ gates native to the Rigetti library. H and
Y gates are given weights of 3 and 2, respectively because
H = RZ(π/2)RX(π/2)RZ(π/2) and Y = RZ(π)RX(π)
are the transformations used to decompose the single qubit
gates into the Rigetti gate set. Finally, CZ is given a weight
five times that of the gates that are purely X and Z rotations
function because as a two-qubit gate, it has on average longer
execution times with a lower fidelity.

D. Quantum Multiple-valued Decision Diagrams

The transfer matrix describing an quantum circuit grows
exponentially as the number of qubits in the function increases.
The Quantum Mulitple-valued Decision Diagram (QMDD)
allows these matrices to be represented in a compact form. The
QMDD represents quantum functions efficiently as a directed
acyclic graph. This structure was first introduced in [12].

QMDDs are a collection of vertices and directed edges.
Non-terminal vertices represent qubits and have four outgoing
edges that represent one of the four quadrants in a quantum
transformation matrix. From left to right, the four edges
leaving a non-terminal node represent the sub matrices of
U00, U01, U10, and U11 for the quantum transformation
matrix U. Redundancy in the QMDD is forbidden, and each
qubit variable may only appear once in a path. These rules
cause the QMDD to become very compact. An example of
the CX operation represented as a QMDD is shown in Fig. 1
(x0 represents the control and x1 represents the target). The
variable order is x0 → x1, so x0 acts as the initial vertex and
x1 vertices appear afterwards along the path for submatrices
that are not equal to the constant zero.

QMDD representations are canonical with respect to a
fixed variable order [12]. Even if two circuits with the same
transformation matrix are described using different operators,
their QMDDs will be equivalent as long as the variable order is
maintained. This concept is used to perform formal verification
within the quantum logic synthesis tool. An equivalence check
between the original technology-independent quantum circuit

Fig. 1. Representation of CX Operation as a QMDD.

and the resulting technology-dependent mapped circuit is
ensured by requiring the QMDDs to match. If the realizations
are equivalent, the reduction rules for the QMDDs allow the
specifications to share the same graph in memory. This is
important in the current era of NISQ devices since errors can
be attributed to decoherence since the executable has been
formally verified.

II. QUANTUM LOGIC SYNTHESIS METHODOLOGY

The prototype of this work transforms technology indepen-
dent quantum circuits into technology-dependent Quil speci-
fications. Initially, the original circuit is parsed in as source
code, and it contains a variety of operators that may or may
not be supported by the target architecture. The tool that is
the subject of this paper is considered a back-end portion
of a quantum compiler, and it performs transformations and
optimizations needed for technology mapping to a specific
QPU. Multi-qubit gate decomposition algorithms, such as
those given by Barenco et al. in [13], are representative
of some of the transformations implemented in this tool.
Additional optimizations and algorithms were also developed
to accommodate for QPU topological differences that limit
qubit connections for two-qubit operations.

A significant drawback of solid-state qubit QPUs is that the
stationary qubits are limited to certain multi-qubit operations
due to the layout and physical properties of the device. For this
reason, a generic reroute algorithm capable of implementing
multi-qubit operations over uncoupled qubits for any topology
is essential for technology-dependent quantum logic synthesis.
Tree data structures assist in finding the shortest SWAP route
for two-qubit gate execution while preserving the original
placement of the algorithm’s qubits on the device.

Fig. 2. SWAP implementation using CX.

The CX gate is commonly used in technology-independent
circuits, and as shown in Fig. 2, three of the operators in series
can form a SWAP operation among physically connected
qubits. Due to the simplicity of the SWAP implementation
with CX, the connectivity tree reroute algorithm (CTR) in
the quantum synthesis tool uses CX to automatically reroute
two-qubit operations that are not supported by a coupling map.
Of course, as CX is not a supported gate in the Rigetti QPU
library, these gates are eventually converted into CZ gates

using the transformation in Fig. 3 after reroute operations
have completed. In this method, a tree structure based on
the coupling map for the selected QC determines the shortest
SWAP path that the control qubit travels to reposition for
a two-qubit operation. SWAP operations move the qubit to
the desired location and after the required two-qubit operation
executes, the control qubit traverses the SWAP path in
reverse to return to its original position.

Fig. 3. CX to CZ transformation.

To find the SWAP path, CTR builds a tree data structure
where the root node is the control qubit, and edges leading
to other qubit nodes are generated according to the available
coupling map configurations. The tree describes all possible
paths that the qubit can take, until the shortest path to a
position coupled with the target qubit is found. If a node is
reached that is already represented in the tree, the branch is
discarded. Pseudocode describing the CTR algorithm has been
included in Fig. 4.

Fig. 4. Pseudocode CTR Algorithm.

Our synthesis approach generates technology-dependent
Quil specifications based upon two distinct objectives. The first
objective is to produce a quantum algorithm that conforms
to the user-specified target QPU’s architectural constraints.
The second objective is to determine a mapping that mini-
mizes quantum cost. The quantum cost function is defined in
Eqn. (2), and the quantum logic synthesis tool implements the
following mapping and optimization procedures:

1) Generalized Toffoli gates are decomposed into Toffoli cascades
using [13].

2) Toffoli operations are decomposed into one and two-qubit
operators using transforms from [4], unsupported two-qubit gate
placements are rerouted, and CX to CZ transformation occurs.

3) Local optimizations based on removing circuit partitions that
equal the identity function are implemented recursively until
the cost function cannot be further reduced.

4) One-qubit operators are decomposed into the gates that are
native to the Rigetti operator library.

After all synthesis and optimization procedures complete,
the optimized technology-dependent specification is formally
verified by performing an equivalence checking test using
QMDDs.

TABLE II
METRICS FOR (CZ COUNT/COST) AFTER SYNTHESIS USING
BENCHMARKS FROM [14] TARGETING THE RIGETTI QPUS

III. EXPERIMENTAL RESULTS

Quantum logic synthesis involving the mapping and opti-
mization of algorithms for the Rigetti QPUs was completed
with technology-independent benchmarks from a library ti-
tled “Optimal Single-target Gates,” from [14]. These circuits
were chosen as benchmarks because they act as essential
components for quantum logic synthesis based on other ap-
proaches. Complex reversible and quantum circuits decompose
into these functions, and in turn, the single-target gates can
be decomposed into one- and two-qubit operations. These
benchmarks were input into the synthesis tool as technology-
independent .qc files that contained single-qubit and CX
operations. Because of arbitrary single-qubit gates and two-
qubit gate placement within the benchmarks, transformation is
required before the algorithms can be executed on the Rigetti
QPUs. The benchmarks of [14] range from 3 to 6 qubits in
size, and in the interest of testing only the more complex and
non-trival designs, the 6 qubit “Optimal Single-target Gates”
were used in experimentation.

When the single-target gate benchmarks were mapped to
QPUs, unsupported gate placements were decomposed or
rerouted with swapping operations that cause the circuits to
expand. After mapping finishes, the resulting circuit may be
optimized using built-in local optimizers. Synthesis results of
the “Optimal Single-target Gates” mapped to the Rigetti QPUs
can be found in Table II. This table includes both pre- and
post-optimization metrics for CZ operation count and cost
calculated using Eqn. (2) for each of the generated designs.

Referring to Table II, the synthesis results for Agave
match those for Aspen. This occurs since these devices have a
similar style of ring topology. Acorn, characterized by a grid
topology, yields different synthesis results. Information about
cost improvement whenever synthesis includes optimization
processes is found in Table III. On average, when optimiza-
tion was performed on a technology-dependent circuit, cost

TABLE III
PERCENT DECREASE IN COST FROM UNOPTIMIZED TO OPTIMIZED

SYNTHESIS TARGETING THE RIGETTI QPUS

improved by approximately 17.7%. This improvement in cost
is significant because a lower cost indicates that a circuit uses
fewer operations and thus executes faster with a decreased
probability of decoherence. All outputs of the synthesis runs
were verified to be equivalent to their original technology-
independent specifications using QMDDs.

IV. CONCLUSION

We have developed a quantum compiler that is capable
of targeting the Rigetti family of quantum computers. Our
compiler includes formal verification as an inherent feature
and is shown to produce optimized results based on both
architectural and quantum cost criteria.

REFERENCES

[1] P. Niemann, R. Wille, and R. Drechsler, “Improved synthesis of Clif-
ford+T quantum functionality,” Design, Automation and Test in Europe,
2018.

[2] K. Smith and M. Thornton, “Automated Mapping Methods for the
IBM Transmon Devices,” International Workshop on Post-Binary ULSI
Systems (ULSI-WS), 2018.

[3] A. Cowtan et. al, “On the qubit routing problem,” arXiv:1902.08091,
March 2019.

[4] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge University Press, 2010.

[5] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quan-
tum, vol. 2, 2018.

[6] M. Reagor et. al., “Demonstration of Universal Parametric Entangling
Gates on a Multi-Qubit Lattice,” arXiv:1706.06570v3 , Feb. 2018.

[7] J. Otterbach et. al., “Unsupervised Machine Learning on a Hybrid
Quantum Computer,” arXiv:1712.05771v1, Dec. 2017.

[8] N. Dider et. al., “Analytical modeling of parametrically-modulated
transmon qubits,” arXiv:1706.06566v2, Jan. 2018.

[9] Rigetti Computing, “pyQuil Documentation Re-
lease 2.4.0,” 15 Feb. 2019. [Online]. Available:
https://media.readthedocs.org/pdf/pyquil/stable/pyquil.pdf.

[10] R. Smith, M. Curtis, W. Zeng, “A Practical Quantum Instruction Set
Architecture,” arXiv:1608.03355v2, Feb. 2017.

[11] Rigetti Computing, “QPU Specifications.” [Online]. Available:
https://rigetti.com/qpu.

[12] D. Miller and M. Thornton, “QMDD: A Decision Diagram Structure for
Reversible and Quantum Circuits, in IEEE International Symposium on
Multiple-Valued Logic, pp. 30-30, 2006.

[13] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Phys. Rev. A, vol. 52, no. 5, 1995.

[14] “Reversible Logic Synthesis and Quantum Computing Benchmarks,”
2017. [Online]. Available: http://quantumfpl.stationq.com/.

