
Fixed Polarity Pascal Transforms
with Symbolic Computer Algebra Applications

Kaitlin N. Smith and Mitchell A. Thornton
Department of Electrical and Computer Engineering

Southern Methodist University
Dallas, Texas, U.S.A.

{KNSmith, Mitch}@SMU.edu

Abstract—The fixed polarity forms of the Reed-Muller (RM)
transform exist in 2n different polarities. The integer-valued
Pascal transform is related to the binary-valued RM transform
through the Sierpinski fractal, calculated by performing the
modulo-2 operation on Pascal’s triangle, as it appears in the
lower triangular portion of the positive-polarity RM transform.
We generalize the relationship between the fixed-polarity forms of
the RM transform and introduce associated forms of the Pascal
transform that are characterized by a polarity value allowing
for a family of fixed-polarity Pascal (FPP) transform matrices to
be defined. We observe and prove several properties of the FPP
transforms and their inverses. An application of FPP transforms
in the area of symbolic computer algebra that enables very fast
decomposition of real-valued polynomials as weighted sums of
different binomials raised to a power as compared to manual
symbolic manipulation is described. The decomposition weights
can be considered to be the inverse FPP spectrum with respect
to a real-valued polynomial since they are computed using one
of the linear orthogonal FPP transformation matrices.

I. INTRODUCTION

The Reed-Muller (RM) transform is used in the information
and switching theory communities for a variety of applications.
When the RM transform is used to analyze a switching
function that depends upon n variables, there are 2n different
versions of the transformation matrix that are collectively
known as the fixed-polarity transformation matrices of size
2n × 2n. The polarity number is an integer parameter p
where p ∈ [0, 2n − 1]. The value n represents the number
of dependent variables of a particular switching function and
p specifies the exact RM transformation matrix. One of the
common applications of the polarity-p, or fixed-polarity RM
(FPRM) transform is to find the value of p such that a
polarity-p transformation of a switching function results in
an Exclusive-OR Sum of Products (ESOP) expression with a
minimized number of product terms.

Sierpinski’s gasket is a fractal structure that is closely
related to Pascal’s triangle as each component of Sierpin-
ski’s structure is the modulo-2 form of the corresponding
integer value in Pascal’s triangle [1], [2]. Furthermore, the
positive-polarity RM transform (PPRM) is the form of the RM
transform when the polarity value is zero (p = 0), resulting
in a lower triangular transformation matrix where the lower
triangular portion of the PPRM transform matrix is equal
to Sierpinski’s gasket. Thus, there is a close and inherent
mathematical relationship between the PPRM transformation

matrix and Pascal’s triangle via the relationship both structures
have with Sierpinski’s gasket [3]. The Pascal transform is
described in [4], [5] and has been applied to image processing.
Additionally, the Pascal matrix has been found useful in filter
design for s to z domain conversion [6]. Pascal transforms
are of interest in the switching theory community as described
in [7] [3]. Fast algorithms for Pascal and other related trans-
forms have been considered recently [8] [9].

In this work, we describe a family of Pascal transforms
characterized by an integer value that is analogous to the
polarity number p of the fixed-polarity RM (FPRM) trans-
forms. We provide some background definitions, observations,
and mathematical results that are then used to justify and
formulate this family of Pascal-like transforms that we refer to
as “fixed-polarity Pascal” (FPP) transforms. We also describe
an application of FPP transforms in the field of symbolic
computer algebra for factoring polynomials into a weighted
sum of binomials raised to an integer power. Finally, we
consider a further generalization of the inverse FPP transforms
that results in a corresponding generalization of the binomial
decomposition problem that enables any arbitrary set of bino-
mials to be considered.

II. BACKGROUND, PROPERTIES, AND NOTATION

A. Pascal’s Triangle

Pascal’s triangle is a well-known structure that is infinite
in size, comprised of integer values, and displays many in-
teresting properties. Pascal’s triangle can be constructed with
the well-known recursive formula that yields values in the ith

row based on the sum of two values in the preceding (i−1)th

row. As an example, the first seven rows of Pascal’s triangle
are shown below.

1 n = 0
1 1 n = 1

1 2 1 n = 2
1 3 3 1 n = 3

1 4 6 4 1 n = 4
1 5 10 10 5 1 n = 5

1 6 15 20 15 6 1 n = 6

··
· ...

...
...

...
...

...
. . .

One of the properties that is of interest in this paper is
the relationship of each row in the triangle to the well-known
binomial theorem



(x + y)n =
n∑

i=0

(
n
i

)
xiyn−i. (1)

Pascal’s triangle is an explicit arrangement of the combi-
natorial coefficients in Eqn. 1. The nth row of the triangle
contains elements beginning with coefficient of the nth-degree
monomial on the left to the 0th-degree monomial (or constant)
on the right, or vice-versa.

We refer to the values in each row, the binomial coefficients,
as ak where k = 0, · · · , n. These values are also the coeffi-
cients of the simplified polynomial form of (x + 1)n. We use
the term “simplified polynomial” to denote that the polynomial
is comprised of only a single term for each degree value n.
That is, each instance of the monomial, akxk, for a specific k
appears only once in the simplified and expanded polynomial
of (x + 1)n as shown in Table I.

TABLE I
PASCAL’S TRIANGLE WITH CORRESPONDING BINOMIALS AND

SIMPLIFIED POLYNOMIALS

Binomial Power Binomial Polynomial
n = 0 (x + 1)0 (1)x0

n = 1 (x + 1)1 (1)x1 + (1)x0

n = 2 (x + 1)2 (1)x2 + (2)x1 + (1)x0

n = 3 (x + 1)3 (1)x3 + (3)x2 + (3)x1 + (1)x0

n = 4 (x + 1)4 (1)x4 + (4)x3 + (6)x2 + (4)x1 + (1)x0

A modified form of Pascal’s triangle exists that corresponds
to binomials of the form (x−1)n. This well-known alternative
of Pascal’s triangle is identical to that given previously with the
exception that each alternating value in the triangle is negated.
The implementation of the modified Pascal’s triangle is found
in in Table II.

TABLE II
MODIFIED PASCAL’S TRIANGLE IN TERMS OF SIMPLIFIED BINOMIALS

Binomial Power Binomial Polynomial
n = 0 (x− 1)0 (1)x0

n = 1 (x− 1)1 (1)x1 − (1)x0

n = 2 (x− 1)2 (1)x2 − (2)x1 + (1)x0

n = 3 (x− 1)3 (1)x3 − (3)x2 + (3)x1 − (1)x0

n = 4 (x− 1)4 (1)x4 − (4)x3 + (6)x2 − (4)x1 + (1)x0

B. The Pascal Transform

The Pascal transform refers to a linear transformation matrix
that contains components based upon the Pascal triangle [10],
[11]. The Pascal’s transform matrix can be expressed in a
lower triangular, PL, or a upper triangular, PU , form. Pascal’s
matrices are infinite in dimension, however, it is convenient
and common to utilize truncated versions of finite dimension
based upon the degree of the polynomial of interest. The rows
and columns of the Pascal matrices, and all matrices referred
to in this paper, have indices that begin at zero (0) so that the
index value values are equivalent to related to the binomial
exponent n in the triangle. In truncated form, the two different
forms of the Pascal transformation matrices are denoted as a

finite dimensioned k × k form as PLk and PUk where the
indices are i, j = 0, 1, . . . , k − 1. Eqn. 2 contains the 4 × 4
truncated versions of the Pascal transformation matrices.

PL4 =


1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1

 PU4 =


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

 (2)

The construction definitions for the lower and upper trian-
gular forms based on the binomial coefficients are provided in
Eqn. 3 and Eqn. 4.

PL = [pL;i,j ]
pL;i,i = pL;i,0 = 1∀i = 0, . . . , n− 1, pL;i,j = 0 if j > i

pL;i,j =

(
i
j

)
∀i, j = 0, . . . , n− 1 and i > j

(3)

PU = [pU;i,j ]
pU;i,i = pU;0,i = 1∀i = 0, . . . , n− 1, pU;i,j = 0 if j < i

pU;i,j =

(
j
i

)
∀i, j = 0, . . . , n− 1 and i < j

(4)

With respect to the binomial theorem, modified Pascal
matrices can be formed with respect to the modified Pascal
triangle that contain rows corresponding to simplified polyno-
mial forms of (x− 1)n. These are provided in Eqn. 5.

PML4 =


1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1

 PMU4 =


1 −1 1 −1
0 1 −2 3

0 0 1 −3
0 0 0 1

 (5)

The modified Pascal matrices may also be defined using the
binomial coefficients.

PML = [pML;i,j ]
pML;i,i = pML;i,0 = (−1)i+j∀i = 0, . . . , n− 1, pML;i,j = 0 if i < j

pML;i,j = (−1)i+j

(
i
j

)
∀i, j = 1, . . . , n− 1 and i > j

(6)

PMU = [pMU;i,j ]

pMU;i,i = pMU;0,i = (−1)i+j∀i = 0, . . . , n− 1, pMU;i,j = 0 if i > j

pMU;i,j = (−1)i+j

(
j
i

)
∀i, j = 1, . . . , n− 1 and i < j

(7)

C. Pascal Matrix Properties

The various Pascal and modified Pascal matrices have
properties that are useful for the analyses in this work. Proofs
have been omitted to keep this section concise. The proofs,
however, can be provided by the authors if requested.

Observation 1: The Pascal transformation matrices PL =
[pL; i, j] and PU = [pU ; i, j] are “unitriangular” meaning
they are triangular matrices with diagonal elements pL; i, i =
pU ; i, i = 1.

Lemma 1: The determinants of PL, PU , PML, and PMU ,
are unity, +1.

�
Lemma 2: The determinants of PS and PMS are unity, +1.

�
Lemma 3: The Pascal matrices PU and PL are orthogonal.



�
Observation 2: From the constructive definitions, we ob-

serve the following with respect to transposes of the Pascal
and modified Pascal transformation matrices.

PU = PT
L

PMU = PT
ML

�
Next, we address the issue of Pascal matrix inverses. We

Note that since PU = PT
L , it is only necessary to consider

one of the unitriangular forms of the matrices. We further
adopt the convention of Knuth et. al. whereby we consider
x0 = 1 for all x since this is a condition that must be true
if the binomial theorem is to be valid when it is stated using
variables x and y as (x + y)n for the cases where x = y = 0
and x = −y [12] [13] [10].

Theorem 1: The two matrices PU and PMU are inverses of
one another.

P−1U = PMU

P−1MU = PU

(8)

�
Corollary 1: The two matrices PL and PML are inverses

of one another.
�

D. The Fixed-polarity Reed-Muller Transforms

The RM transform was originally devised for use in error
detection and correction and is also used for transforming
binary switching functions in sum of products (SOP) form
into a type of ESOP form [14] [15]. Spectral methods allow
switching functions to be expressed as the sum of weighted
set of basis functions, and the RM transform in particular
produces the weighting coefficients ri ∈ {0, 1} resulting in a
representation of the switching function where product terms
in the basis set are combined with the XOR operation. The set
of basis functions comprise 2n product terms that are formed
from a set of n literals. Each literal may be in the form of a
complemented or an uncomplemented variable, but not both.
Thus, the choice of assignment of each variable appearing in
either complemented or uncomplemented form corresponds to
the RM transform polarity number.

The basis set includes all product terms that are each
comprised of

(
n
i

)
literals where i = 0, 1, . . . , n. Therefore,

the basis set contains Ntotal = 2n total product terms since
Ntotal =

∑n
i=0

(
n
i

)
= 2n.

The RM representation is comprised of 2n of product terms
weighted by the RM spectral coefficients, ri and combined
with the exclusive-OR operator to implement addition in
GF (2). In general form, the full RM expansion of a function
of three variables is given by

f(x1, x2, x3) = r0(1)⊕ r1(ẋ1)⊕ r2(ẋ2)⊕ r3(ẋ3)

⊕r12(ẋ1ẋ2)⊕ r13(ẋ1ẋ3)⊕ r23(ẋ2ẋ3)⊕ r123(ẋ1ẋ2ẋ3).

In the expression above, the notation ẋi indicates that every
time a variable appears in the general form of the RM expan-
sion, it will always be either positive polarity, xi, or negative
polarity, xi. The actual polarity assigned to each variable in the
expression depends on the type of RM transform implemented.
For example, switching functions can be transformed using a
positive-polarity RM (PPRM), negative-polarity RM (NPRM),
or more generally, a fixed-polarity RM (FPRM) matrix. The
spectrum or coefficients of the RM expansion, r, are found by
computing (Rf) = r using the RM transformation matrix, R,
and a vector, f , containing the switching function f valuations
present in the function truth table. The resulting spectrum is
the set of basis function weighting coefficients ri in the vector
r where each ri ∈ B = {0, 1}.

The PPRM transformation matrix for a function of one
variable is R1. Transformation matrices for functions of n
variables can be calculated as the outer product of n R1

matrices. This outer product expansion that yields higher-
ordered RM transformation matrices is given by

R1 =
[
1 0
1 1

]
,Rn =

n⊗
i=1

R1. (9)

With PPRM, all variables in the RM expansion are in an
uncomplemented form, ẋi = xi. Similarly, the NPRM trans-
formation matrix for one variable, R−1 and its outer product
expansion for higher-ordered, multi-variable functions is

R−1 =
[
1 1
0 1

]
,R−n =

n⊗
i=1

R−1. (10)

With NPRM, all variables in the RM expansion are in com-
plemented form, ẋi = x̄i.

There are 2n different and unique RM transformation
matrices for functions of n variables. These matrices are
conveniently specified by an n-bit unsigned integer value
referred to as the “polarity number.” The polarity number is
formed by choosing some consistent order of the variables
of a switching function and assigning a zero (0) to those
variables that are uncomplemented and a one (1) to those
variables that are to be complemented in the RM expansion.
With this convention, the PPRM is then the RM expansion
of a switching function where all literals are uncomplemented
and thus corresponds to the polarity-zero (zero) expansion.
Likewise, the NPRM expansion is one where all literals appear
in complemented form. Thus, the NPRM polarity value is
2n−1 since it corresponds to the value represented by a string
of n ones (1) in a binary string.

The general case, where some literals are complemented and
others are not can be obtained through use of the appropriate
fixed-polarity RM (FPRM) transformation matrix. To derive
the FPRM transform for a function of size n, a polarity
number p is specified that indicates which variables will be
complemented and which will not. The polarity number p is
formed by assigning the ith bit in the overall string p to one
(1) if the ith variable xi is to appear as a complemented literal
and to zero (0) otherwise. Next, R1 and R−1 transformation



matrices must be combined with the outer product and in the
appropriate order as used to define the polarity number, p.
For example, if a polarity-5 FPRM transform is desired for
a function of three variables, p = 1012 causes the variable
polarity to be fixed so that ẋ3 = x3, ẋ2 = x2, and ẋ1 = x1

in the final RM expansion. Using p, the FPRM transformation
matrix can be computed to be

R = R−1 ⊗R1 ⊗R−1 =
[
1 1
0 1

]
⊗
[
1 0
1 1

]
⊗
[
1 1
0 1

]
,

R5 =


1 1 0 0 1 1 0 0
0 1 0 0 0 1 0 0
1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1

 .

In general the expression for generating the FPRM trans-
form matrix with polarity p is given as

Rp =
n⊗

i=1

R(−1)pi . (11)

E. The Sierpinski Gasket Fractal

Sierpinski’s triangle can be formed by replacing each value
in Pascal’s triangle with its modulo-2 result thus containing a
one (1) for odd values in Pascal’s triangle and zero (0) for even
values. This fractal has been shown to have a relationship with
the Reed-Muller forms in a large body of past work [16]–[18].
Here, we only describe a subset of the relationships that are
relevant to the work described in this paper. Specifically, it is
noted that Sierpinski’s gasket is formed from the PPRM. The
size of the fractal, measured as the number of rows is related
to the dimension of the PPRM matrix. Since the dimension of
the PPRM matrix are 2n × 2n, the number of resultant rows
in the Sierpinski gasket as formed using the lower diagonals
of the PPRM matrix is 2n.

Example 1: Consider the 8× 8 PPRM matrix, R3, as

R3 =
3⊗

i=1

[
1 0
1 1

]
=


1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 . (12)

Extracting the rows of Sierpinski’s gasket fractal from R3

results in the rows corresponding to n = 0 through n = 7 and
is shown below.

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

�

III. COMPUTER ALGEBRA APPLICATIONS

Computer algebra refers to a collection of algorithms that
are useful for implementing automated symbolic mathematical
processing. Examples of such systems include the Mathemat-
ica, Wolfram Alpha, Maple, and GAP software.

A. Pascal’s Matrix for Polynomial Simplification

We observe that the process of selecting the polynomial
coefficients for n = 5 could be accomplished through use of
one of the triangular matrix forms of the Pascal matrix and
multiplying by a vector, b, that has a one (1) in the fifth index
to select the needed values. We will choose to use PU so that
column vectors can be used to select the appropriate row. The
following example illustrates this process using a calculation
of a = PUb.

Example 2: Consider finding the simplified polynomial form
of (x+1)5 using PU . In this case, any truncated matrix could
be used so long as the dimensions are at least 6× 6 or larger.
Thus, we will use the 7 × 7 matrix PU7 in this example. A
vector is formed that represents the expression of interest that
we denote as b. The b vector has components that represent
the binomial (x + 1) raised to various powers.

Using the representation of b, the selection of the appro-
priate row from Pascal’s triangle that corresponds to (x+ 1)5

when the triangle is represented by the matrix PU is shown
in Eqn. 13. The matrix multiplication is carried out resulting
in the vector a that contains the coefficients of the simplified
and expanded polynomial form of (x + 1)5 which are the
coefficients of x5 + 5x4 + 10x3 + 10x2 + 5x + 1.

PU7 =



1 1 1 1 1 1 1

0 1 2 3 4 5 6

0 0 1 3 6 10 15

0 0 0 1 4 10 20

0 0 0 0 1 5 15

0 0 0 0 0 1 6

0 0 0 0 0 0 1





0

0

0

0

0

1

0


=



1

5

10

10

5

1

0


(13)

The coefficients of the simplified vector are present in the
resultant product vector a. �

Example 2 provides the motivation for the first result of
this work. The b vector can be used to specify linear combi-
nations of various binomials of the form (x + 1)n and with
a single vector-matrix direct product operation, the expanded
and simplified polynomial form can be computed from a. The
polynomial is determined with significantly less effort than
required through manual calculations and is also suitable for
implementation in a computer algebra algorithm.

The modified Pascal’s triangle can be interpreted as provid-
ing the coefficients for the simplified and expanded polynomial
form of (x− 1)n for the integer n ≥ 0. Thus, we can use the
modified Pascal’s transformation matrices PML, PML, and
PML in the same manner that we used PU in the preceding
example.

Example 3: Consider finding the simplified polynomial form
of the expression 2(x − 1)5 + 3(x − 1)3 − 4(x − 1)2 − 7.
First, we note that the largest degree in the expression is five



(5) indicating that a truncated Pascal matrix of at least 6× 6
should be used. For consistency with the previous example,
we will use PMU7. The vector b is composed based upon the
coefficients of the expression. Note that the constant, 7, in the
expression is the coefficient of the binomial (x − 1)0. Eqn.
14 contains the calculation of the simplified and expanded
polynomial form of the given expression by calculating the
vector a = PMU7b.

a =



1 −1 1 −1 1 −1 1

0 1 −2 3 −4 5 −6
0 0 1 −3 6 −10 15

0 0 0 1 −4 10 −20
0 0 0 0 1 −5 15

0 0 0 0 0 1 −6
0 0 0 0 0 0 1





7

0

−4
3

0

2

0


=



−2
27

−33
23

−10
2

0


(14)

�

B. Fixed Polarity Pascal’s (FPP) Matrices

Observation 3: A family of the upper triangular version of
Pascal’s transformation matrix may be formulated by selecting
some column vectors from PU and the remaining column
vectors from PMU . The resulting matrix, denoted PpU is
characterized by an integer p referred to as the “polarity
number” of this form of Pascal’s matrix. The polarity number
is the decimal equivalent of the binary string formed by
assigning a zero (0) to those columns from PU and a one
(1) to those columns from PMU . The string is read from
left to right with the most significant bit corresponding to the
binomial exponent n = 0. We refer to these forms of Pascal’s
transformation matrices as the fixed-polarity form since each
polarity number refers to a specific matrix structure. �

The fixed-polarity Pascal matrix can be used to find the
simplified polynomial expansion of a linear combination of
binomials raised to a power wherein those binomials may be
either (x + 1)n or (x− 1)n. For those values of n where the
binomial (x + 1) is present, the corresponding column vector
is obtained from the PU matrix and where (x−1) is used, the
column vector corresponds to that from the PMU matrix. If no
binomial is specified for a particular values of n, any arbitrary
column vector may be used for this particular application as
it is considered a don’t care.

Example 4: Consider the linear combination of binomials,
2(x − 1)5 + 3(x + 1)3 − 4(x − 1)2 + 7. If it is desired to
find the simplified polynomial expansion of this expression,
a fixed-polarity Pascal’s matrix can be formulated wherein
columns 0 and 3 are assigned from the PU matrix since these
columns correspond to the terms 7(x + 1)0 and 3(x + 1)3

respectively. Likewise columns 2 and 5 are assigned from the
PMU matrix since they correspond to the terms −4(x − 1)2

and 2(x−1)5 respectively. In terms of polarity number, the bit
string is 0X10X1X where “X” is a don’t care. For simplicity,
we will assign the don’t cares be to zero, although this is
an arbitrary assignment. After assigning the don’t care values
to zero, the polarity number becomes 00100102 or 1810 in
decimal. Likewise, the vector bT = [7, 0,−4, 3, 0, 2, 0] as

obtained from the given linear combination of binomials raised
to various powers. Eqn. 15 show the calculation, a = P18U7b.

a =



1 1 1 1 1 −1 1

0 1 −2 3 4 5 6

0 0 1 3 6 −10 15

0 0 0 1 4 10 20

0 0 0 0 1 −5 15

0 0 0 0 0 1 6

0 0 0 0 0 0 1





7

0

−4
3

0

2

0


=



4

27

−15
23

−10
2

0


(15)

The result aT = [4, 27,−15, 23,−10, 2, 0] indicates that the
simplified and expanded polynomial is 2x5 − 10x4 + 23x3 −
15x2 + 27x + 4. �

Definition 1: In considering a fixed-polarity and truncated
Pascal’s transformation matrix, each column vector is asso-
ciated with a binomial an(x ± 1)n for n = 0, 1, . . . , k.
Furthermore, when the matrix is being formed for the purpose
of calculating the coefficients of a simplified polynomial
expansion that corresponds to a weighted linear combination
of binomials where the weights are denoted by ai ∈ R.
When there is not a binomial present in the corresponding
weighted linear combination of binomials, this is equivalent to
the binomial being present in the expression with a weighting
coefficient that is zero valued, ai = 0. The column vector
in the truncated fixed-polarity Pascal transformation matrix is
said to be a “don’t care column vector.” �

Lemma 4: The maximum number of different fixed-polarity
Pascal’s transformation matrices is 2k+1 when considering the
family of fixed-polarity matrices that are truncated to (k+1)×
(k + 1) and when don’t care column vectors are all set to the
same vector that is arbitrarily chosen.

�
Corollary 2: The matrix PU is the positive polarity Pascal’s

transformation matrix with a polarity number of p = 00 . . . 02.
�

Corollary 3: The matrix PMU is the negative polarity
Pascal’s transformation matrix with a polarity number of
p = 11 . . . 12.

�

C. Decomposition of Polynomials into Linear Combinations
of Binomials

We have previously considered the application of fixed
polarity Pascal transformation matrices for the purpose of
determining the simplified polynomial expansions of weighted
linear combinations of powers of binomials of the form
(x+ 1)n and (x− 1)n. While this method offers a convenient
method and one that potentially requires less effort than man-
ual symbolic polynomial multiplication, the inverse problem of
finding a decomposition of a polynomial into a weighted sum
of binomials is more difficult to calculate symbolically since
it requires the computation of polynomial division operations.

Theorem 2: A polynomial in simplified and expanded form
can be factored into a linear combination of binomials in the
(x + 1)n by calculating a single direct matrix-vector product.

�



Example 5: Consider the polynomial 3x5 − 7x4 − 7x3 +
10x − 1. It is desired to decompose this polynomial into a
linear combination of binomials of the form (x+ 1)n for n =
0, 1, . . . , 5. For this example, we will use a transformation
matrix of size 7 × 7. The corresponding coefficient vector is
aT = [−1, 10, 0,−7,−7, 3, 0]. Since we are finding binomial
coefficients from polynomial coefficients, we are performing
the calculation of b = (PU7)−1a = PMU7a using the identity
found in Eqn. 8. This calculation is shown below in Eqn. 16.

b = PMU7a =


1 −1 1 −1 1 −1 1

0 1 −2 3 −4 5 −6

0 0 1 −3 6 −10 15

0 0 0 1 −4 10 −20

0 0 0 0 1 −5 15

0 0 0 0 0 1 −6

0 0 0 0 0 0 1




−1

10

0

−7

−7

3

0

 =


−14

32

−51

51

−22

3

0

 (16)

Therefore, the decomposition vector is bT =
[−14, 32,−51, 51,−22, 3, 0] indicating the decomposition is
that shown in Eqn. 17.

3x5 − 7x4 − 7x3 + 10x− 1
= 3(x + 1)5 − 22(x + 1)4 + 51(x + 1)3

−51(x + 1)2 + 32(x + 1)− 14
(17)

�
The dual relationship also holds in that a polynomial may be

decomposed into a weighted linear combination of binomials
of the form (x−1)n. In this case, the PU matrix is used to find
the decomposition of a simplified polynomial expansion in the
form of a linear combination of weighted (x− 1)n binomials
raised to various integer powers n as it is the inverse of PMU .

D. Polynomial Decomposition for General Polarity Values

We have shown how FPP transformation matrices can be
computed for all polarity values p = 0, · · · , 2n−1−1 allowing
for weighted sums of a mixture of binomials of the form
(x + 1)n and (x − 1)n to be easily simplified into the form
of an nth-degree polynomial. In the case of p = 0 and
p = 2n−1 − 1, the FPP matrices are PU and PMU . For all
other polarity values, the FPP matrix is easily composed using
column vectors from PU and PMU in accordance with the
binary form of the polarity number.

We have also shown how the PU and PMU matrices can
be used to decompose a polynomial into a weighted sum of
binomials. This is a more difficult task to achieve symbolically
and is sometimes referred to as “factoring a polynomial.” In
these cases, we utilized P−1U = PMU and P−1MU = PU thus
enabling the inverse computations yielding the b vector bino-
mial weights to be achieved given the polynomial coefficients
in the a vector. The remaining case is that of decomposing
a polynomial into a weighted sum of mixed binomials that
utilize (x + 1)n for some values of n and (x − 1)n for
the other values of n. In this case, the determination of the
inverse of the FPP matrix for polarity values other than 0
and 2n−1 − 1 requires a computation and is not achievable
through simply composing a matrix of various column vectors
from either PU or PMU . Fortunately, due to the structure
and properties of the FPP matrices, efficient algorithms are

available for constructing the inverse matrix. These methods
have a polynomial complexity for finding the FPP inverse
matrix, making the decomposition of a polynomial into the the
more general case of mixed (x+ 1)n and (x− 1)n binomials
a practical and viable decomposition technique.

The process for decomposing a polynomial into a weighted
sum of (x + 1)n and (x− 1)n can be stated as follows.

1) Choose values of n that correspond to (x+1) and (x−1)
and form the polarity number.

2) Given the polarity number and the degree of the poly-
nomial to be decomposed, construct the truncated FPP
transformation matrix using column vectors from PU and
PMU .

3) Determine the inverse of the truncated FPP matrix using
an efficient algorithm that takes advantage of FPP matrix
properties.

4) Form the a vector from the coefficients of the polynomial
to be decomposed.

5) Multiply the FPP matrix inverse with the a vector to
obtain the b vector that contains the weights of the
(x + 1)n and (x− 1)n binomials.

E. Inverse of FPP Matrix

From Observation 1, the FPP matrices are unitriangular
matrices. The unitriangular structure allows the FPP matrix
inverse to be efficiently computed.

Definition 2: The general notation for a k×k truncated FPP
matrix with polarity value p is PpUk. The polarity value p
indicates whether the ith column vector of PpUk is equivalent
to that of PUk or PMUk. The dimension of the matrix k is
related to the largest integer power n of the polynomial or
binomial that can be processed by PpUk matrix as k = n+ 1.
�

Lemma 5: The eigenvalues of the k × k truncated FPP
matrices, PpUk, are unity with a multiplicity of k.

�
Theorem 3: We express PpUk = I + TpUk where TpUk is

an upper triangular matrix with all diagonal values equal to
zero. The inverse of a truncated FPP matrix can be expressed
in closed form as given in Eqn. 18.

P−1pUk = I−TpUk+T2
pUk−T3

pUk+· · ·+(−1)k−1Tk−1
pUk (18)

�
Although we can use the result of Theorem 3 to compute the

inverse matrix PpUk, it is often the case that linear equations
can be used for a = PpUkb when a and PpUk are known.
It is further the case that PpUk is triangular allowing for the
linear equations to be solved iteratively beginning with the
row of PpUk containing a single non-zero element and back
substituting into the next row that has two non-zero elements,
etc. This iterative process allows for the components of a k-
dimensional b vector to be obtained with k back substitutions
and is very efficient. In this way it is not required to compute
the various powers of the matrix TkUp as required when using
Eqn. 18.



Example 6: Consider the polynomial 3x5 − 7x4 − 7x3 +
10x−1. It is desired to decompose this polynomial into a linear
combination of binomials of the form (x+1)n for n ∈ {3, 4, 5}
and for (x− 1)n for n ∈ {0, 1, 2}.

First the appropriate FPP transform matrix is constructed.
Since the largest binomial degree is five (5), it is necessary to
use a truncated Pascal’s matrix of at least dimension 6×6. The
truncated 6 × 6 matrices corresponding to the decomposition
into (x + 1) and into (x − 1) are shown below in Eqns. 19
and 20.

PMU6 =


1 −1 1 −1 1 −1
0 1 −2 3 −4 5

0 0 1 −3 6 −10
0 0 0 1 −4 10

0 0 0 0 1 −5
0 0 0 0 0 1

 (19)

PU6 =


1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

 (20)

We formulate the polarity number by composing a bit string
beginning with the most significant bit first that has a zero (0)
in the kth position for instances of (x + 1)k and a one (1) in
the kth position for instances of (x − 1)k. In the case of this
example where we wish to have a decomposition with (x+1)k

for k ∈ {3, 4, 5} and (x − 1)k for k ∈ {0, 1, 2}. Thus, the
polarity number is 0001112 = 710. Next, we determine the
transformation matrix for the decomposition, P7U6 by using
the kth column vector in PMU6 when the kth bit in the polarity
number is one (1) and the kth column vector in PU6 when the
kth bit in the polarity number is zero (0) as shown in Eqn. 21.

P7U6 =


1 1 1 −1 1 −1
0 1 2 3 −4 5

0 0 1 −3 6 −10
0 0 0 1 −4 10

0 0 0 0 1 −5
0 0 0 0 0 1

 (21)

For this example, we will use a transformation matrix of
size 6 × 6. The corresponding coefficient vector is aT =
[−1, 10, 0,−7,−7, 3]. The calculation is shown below in Eqn.
22.

a = P7U6b =


−1
10

0

−7
−7
3

 =


1 1 1 −1 1 −1
0 1 2 3 −4 5

0 0 1 −3 6 −10
0 0 0 1 −4 10

0 0 0 0 1 −5
0 0 0 0 0 1




b0

b1

b2

b3

b4

b5

 (22)

Eqn. 22 can be solved by first computing the closed form
of P−17U6 using the result of Theorem 3 or it can be solved

through iterative back substitution. Through back substitution,
we observe that

(1)b5 = 3→ b5 = 3,

(1)b4 + (−5)b5 = −7→ b4 = −7 + 15 = 8,

(1)b3 + (−4)b4 + (10)b5 = −7,
→ b3 = −7 + 32− 30 = −5,

(1)b2 + (−3)b3 + (6)b4 + (−10)b5 = 0,

→ b2 = −15− 48 + 30 = −33,

(1)b1 + (2)b2 + (3)b3 + (−4)b4 + (5)b5 = 10,

→ b1 = 10 + 66 + 15 + 32− 15 = 108,

(1)b0 + (1)b1 + (1)b2 + (−1)b3 + (1)b4 + (−1)b5 = −1,
→ b0 = −1− 108 + 33− 5− 8 + 3 = −86.

Therefore, the decomposition vector is bT =
[−86, 108,−33,−5, 8, 3] indicating the decomposition is
that shown in Eqn. 23.

3x5 − 7x4 − 7x3 + 10x− 1
= 3(x− 1)5 + 8(x− 1)4 − 5(x− 1)3

−33(x + 1)2 + 108(x + 1)− 86
(23)

The decomposition holds and the polynomial coefficient vector
aT = [−1, 10, 0,−7,−7, 3] decomposes into the binomial
coefficient vector bT = [−86, 108,−33,−5, 8, 3] for the fixed
polarity value p = 7. �

F. Generalization of Methods for (x± a)n

In the previous sections, methods for efficiently deriving the
simplified and expanded polynomial from a binomial form and
vice-versa were discussed for the homogeneous and mixed
polarity cases when binomial forms are (x ± 1)n. These
techniques may be generalized for the case when (x ± a)n

since it is simple to modify Pascal’s triangle as described
by the Binomial Theorem. Accommodation for a is made by
multiplying the diagonals of Pascal’s triangle by a raised to
some power, ad, as seen below.

1a0

1a0 1a1

1a0 2a1 1a2

1a0 3a1 3a2 1a3

1a0 4a1 6a2 4a3 1a4

1a0 5a1 10a2 10a3 5a4 1a5

Using this version of Pascal’s triangle, standard and modi-
fied versions of the PU and PL transformation matrices can be
defined. With these, polynomial simplification or decomposi-
tion using the aforementioned techniques can be implemented.

IV. CONCLUSION

We have introduced the concept of a fixed polarity Pascal
(FPP) transformation matrix that is analogous to the fixed-
polarity Reed-Muller (FPRM) transformation matrices. This
concept resulted in the definition of a family of linear trans-
formations based upon the Pascal transformation that are
characterized by an integer value referred to as the “polarity
number.” We introduced and proved several characteristics of
this family of transformation matrices and showed how the
inverse FPP transforms can be calculated efficiently in closed



form. We applied these results to a computer algebra applica-
tion resulting in methods that are suitable for implementation
as efficient algorithms to both simplify polynomials and to
decompose polynomials into weighted sums of binomials
raised to a power.

In future work, we will investigate methods that attempt
to find the FPP polarity number, and hence the specific FPP
transformation matrix that results in a binomial decomposition
that has as few binomial terms as possible. This problem is a
direct analogy to the well-known and well-studied problem of
finding the polarity number for a FPRM transform that results
in a switching function expressed in a RM expansion that has
as few product terms as possible. We also believe that the FPP
transforms can be used as the core operation in many other
computer algebra applications and we intend to investigate
those as well.

REFERENCES

[1] W. Sierpiński, “Sur une courbe cantorienne dont tout point est un point
de ramification,” C.R. Acad. Sci. Paris, vol. 160, p. 302, 1915.

[2] B. Pascal, “Traité du triangle arithmetique” in Œuvres de Blaise Pascal
(Reprint) volume 3, 445–503. Hachette, 1904–1914, 1665.

[3] C. Moraga, R. Stanković, and M. Stanković, “The Pascal triangle
(1654), the Reed-Muller-Foutier transform (1992), and the discrete
Pascal transform (2005),” in 46th Int. Symp. on Multiple-valued Logic.
IEEE Computer Press, 2016, pp. 229–234.

[4] M. F. Aburdene and J. E. Dorband, “Unification of Legendre, Laguerre,
Hermite, and binomial discrete transforms using Pascal’s matrix,” Multi-
dimensional Systems and Signal Processing, vol. 5, no. 3, pp. 301–305,
1994.

[5] M. F. Aburdene and T. J. Goodman, “The discrete Pascal transform and
its applications,” IEEE Signal Processing Letters, vol. 12, no. 7, pp.
493–495, 2005.

[6] T.-B. Deng, S. Chivapreecha, and K. Dejhan, “Unified pascal matrix for
first-order s− z domain transformations,” IEEE Transactions on Signal
Processing, vol. 57, no. 6, pp. 2130–2139, 2009.

[7] R. S. Stanković, J. Astola, and C. Moraga, “Pascal matrices, Reed-Muller
expressions and Reed-Muller error correcting codes,” Zbornik Radova,
vol. 18, no. 26, pp. 145–172, 2015.

[8] A. N. Skodras, “Fast discrete Pascal transform,” Electronics Letters,
vol. 42, no. 23, 2006.

[9] D. B. Gajić and R. S. Stanković, “Fast computation of the discrete
Pascal transform,” in 47th Int. Symp. on Multiple-valued Logic. IEEE
Computer Press, 2017, pp. 149–154.

[10] G. S. Call and D. J. Velleman, “Pascal’s matrices,” The American
Mathematical Monthly, vol. 100, no. 4, pp. 372–376, 1993.

[11] A. Edelman and G. Strang, “Pascal matrices,”
http://web.mit.edu/18.06/www/Essays/pascal-work.pdf, MIT,
Cambridge, MA, Tech. Rep., 2003.

[12] D. E. Knuth, “Two notes on notation,” American Mathematical Monthly,
vol. 97, pp. 403–422, 1992.

[13] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science, 2nd ed. Addison & Wesley, 1994.

[14] I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information
Theory, vol. 4, pp. 38–49, 1954.

[15] D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,” IRE Transactions on Electronic Computers,
vol. 3, pp. 6–12, 1954.

[16] G. W. Dueck, V. P. Shmerko, J. T. Butler, and S. N. Yanushkevich,
“On the number of generators for transeunt triangles,” Discrete Applied
Mathematics, vol. 108, no. 3, pp. 309–316, 1999.

[17] D. Maslov, “A method to find the best mixed polarity Reed-Muller
expansion,” Master’s thesis, The Faculty of Computer Science, The
University of New Brunswick, Fredericton, New Brunswick, Canada,
2001.

[18] G. W. Dueck, D. Maslov, V. P. Shmerko, J. T. Butler, and S. N.
Yanushkevich, “A method to find the best mixed polarity Reed-Muller
expression using transeunt triangle,” in 5th Int. Reed-Muller Workshop.
unpublished workshop proceedings, 2001, pp. 82–92.


