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Abstract—Quantum information technologies are reshaping
communication systems, but reliable integration of classical
data, particularly images, into quantum frameworks remains
a challenge. Circuit-based quantum image encoding methods
are susceptible to noise-induced degradation, which undermines
reproducibility and reliability. Here, we investigate the impact of
quantum noise channels across the encoding and measurement
stages within a hybrid quantum-classical distributed system. We
also introduce noise into selected gate operations and measure-
ments to demonstrate its distinct effects on the quantum circuit.
To quantify the results, we compute the mean squared error
(MSE), the structural similarity index measure (SSIM), and the
peak signal-to-noise ratio (PSNR), and benchmark the results
across various settings of the noise parameter. Finally, we present
experimental results highlighting how image complexity affects
encoding robustness using the Linnaeus and MNIST datasets.
We anticipate that the presented results will contribute to
the development of dependable quantum-classical orchestration
strategies for resilient image processing.

Index Terms—quantum noise channel, quantum data embed-
ding, quantum image representation, quantum distributed system

I. INTRODUCTION

Encoding classical images into quantum states has emerged
as a significant research direction in quantum computing and
quantum communication, aiming to leverage the advantages
of quantum parallelism and entanglement. However, inherent
noise in quantum systems, such as decoherence, operational
errors, and environmental interactions, poses substantial chal-
lenges to preserve the fidelity of quantum encoded and de-
coded images.

Numerous studies have investigated the effects of noise
on various quantum algorithms. At the beginning of the
1970s, Hellwig and Kraus [1, 2] formalized general quantum
noise channels and modeled noise as quantum operations
arising from environmental interactions. In 1997, Barenco
et al. [3] examined the relationship between environmental
noise and quantum error correction algorithms, highlighting
that simulating noise in encoded states can aid in the design
of appropriate correction mechanisms. They also introduced
models that involve dephasing and arbitrary noise as part of
their framework. Also in 2010, Quek et al. [4] analyzed how
phase noise, defined as the combined effects of phase noise
and other noise channels, contributes to the phenomenon of

entanglement sudden death in Bell states. Additionally, in
our previous work [5], we showed a connection of classical
noise to quantum image processing based on the general angle
encoding scheme.

However, traditional quantum encoding schemes, such as
basis encoding and angle encoding, often demand more qubits
than current quantum simulators can support. For example, the
Qiskit QASM simulator is limited to 30 qubits, yet encoding
a 32×32 image using basis encoding would require 32×32×8
qubits to represent every pixel. Furthermore, encodings such
as amplitude encoding exhibit a massive circuit depth as data
scales, severely undermining execution efficiency due to the
decomposition of high-dimensional matrices. To address this
bottleneck and facilitate a classical–quantum hybrid frame-
work, we develop a distributed architecture, illustrated in
Fig. 1. Our method consists of a multistage hybrid classical-
quantum processing: First, we resize the images and send them
to a classical management system, which partitions the data
stream and distributes them across available quantum nodes
(Qnodes). Second, each Qnode encodes its image partition and
transmits the encoded quantum state through noisy quantum
channels. After that, we obtain expectation values by taking
enough measurements to achieve statistical confidence. In the
final step, the measurements data are collected in a classical
memory and subsequently reassembled to reconstruct the
encoded image.

Building on the concept outlined in the preceding paragraph,
our contribution advances channel noise analysis in two dis-
tinct dimensions. First, we shift the focus from conventional
quantum state fidelity [6, 7] to examining the direct impact
of noise models on quantum image encoding schemes. Sec-
ond, our integration of a hybrid distributed quantum–classical
architecture offers a promising foundation for developing next-
generation noise-resilient quantum strategies.

The remainder of this paper is organized as follows. Section
II presents our proposed approach and experimental setup,
including a description of the dataset used. Section III presents
the experimental results, supported by both visual and quan-
titative analysis. Finally, Section IV concludes the paper and
outlines directions for future research.



Fig. 1: Multistage hybrid classical–quantum distributed image processing framework. Noise is introduced during pixel encoding
at Qnodes and during quantum channel transmission prior to measurement.

II. APPROACH

A. Image encoding under channel noise

We use the amplitude encoding method as a major encod-
ing scheme throughout the paper. This scheme encodes data
into amplitude coefficients based on their coordinates. In the
context of image representation, the encoding is defined by
the following density matrix form:

ρf =
∑
i,j

cic
∗
j |i⟩ ⟨j| , ci,j =

Fi,j∑
(Fi,j)2

, (1)

where Fi,j denotes the pixel value at the position of (i, j).
Based on the encoding scheme, the embedded channel noise
could be expressed as

ε(ρ) = trE(
∑

UEρU
†
E). (2)

Here, UE represents the unitary operators that characterize the
transformation of the density matrix under noise. The specific
forms of UE corresponding to the noise channels that we
explore in the paper are given as,
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where p, p1, λ, γ denote the noise parameters associated with
their respective channels.

As illustrated in Fig. 1, the scheme introduces noise at both
the Qnode and measurement junctions. Noise arising at the
Qnode is associated with gate operations (gate stage) used
during the encoding of data into quantum states. Subsequently,
as the encoded image propagates through the quantum channel
toward the measurement stage, it is further subjected to

channel-induced noise. In the final stage, we perform measure-
ments using the Pauli-Z basis and calculate the expectation
values for each qubit based on their coordinates. These values
are then normalized to reconstruct the corresponding pixel
intensities.

B. Evaluating Noise Effects

In order to statistically analyze how the distributed circuit
mitigates channel noise in embedded images, we use the
structural similarity index measure (SSIM). The SSIM is
defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (4)

where µ denotes the mean value of pixels. The terms σ2
x

and σ2
y , respectively, represent the sample variances calculated

from individual windows of x and y. The sample covariance
between these windows is denoted by σxy . To ensure numer-
ical stability when the denominator is small, the constants c1
and c2 are introduced. These constants are functions of the
dynamic range L of the pixel values. Specifically, c1 and c2
are defined as

c1 = (k1L)
2, c2 = (k2L)

2, (5)

where k1 = 0.01 and k2 = 0.03 are two default constant
coefficients.

To assess the impact of noise across a broad dynamic range,
we compute the peak signal-to-noise ratio (PSNR), which
quantifies the ratio between signal power and noise power as
follows:

PSNR(x, y) = 10 log10
max(xi,j)

2

MSE
(6)

where max(xi,j) represents the maximum pixel value of the
quantized image.

III. RESULTS

A. Noise behavior on various noise channels

For the test image (Psyduck) shown in Fig. 3 (a), we apply
amplitude damping to the gate and measurement stages. We



find uniform image-space noise at the thermal excitation pop-
ulation p1 = 0.5 in amplitude damping experiments, so this
setting is used throughout the paper. We begin by employing a
single-partition encoding scheme in which the entire flattened
image is embedded into the quantum state space. Additionally,
we compare performance across other quantum noise chan-
nels, including phase damping, depolarization, and bit-flip.
To analyze the influence of varying parameters, we increase
the noise value from 0.05 to 0.35 in increments of 0.05. In
addition, to decode high-resolution images, we assign 20,000
shots to the simulator to calculate the expectation values. Due
to inherent randomness introduced by quantum noise channels,
each experiment is repeated 50 times to calculate the mean
SSIM and standard deviation σ , as shown in Fig. 2 (a). Based
on the results, we observe the following behaviors: (1) Higher
noise parameters degrade image quality; (2) Qnodes and gate
operations are more sensitive to noise than the measurement
stage; (3) Depolarization exhibits similar characteristics to
amplitude damping; (4) The encoding scheme shows relative
resilience to both amplitude damping and depolarization.

In a similar manner, we now vary the number of image parti-
tions, each corresponding to an individual quantum processor,
Qnode, to facilitate parallel execution, while maintaining a
fixed amplitude damping parameter of 0.2. As the number of
distributed Qnodes increases, the noise artifacts in the encoded
images progressively diminish, as evidenced by the rising
SSIM values shown in Fig. 2 (b).

Fig. 2: Evaluation Results. (a) SSIM at various noise param-
eters. The error bar shows one standard deviation from the
mean. (b) Distributed system: SSIM at various Qnodes when
noise amplitude parameter is fixed at 0.2.

We present sample output images affected by various quan-
tum noise channels in Fig. 3. From these results, we find sev-
eral noteworthy patterns: (1) The noise introduced during data
encoding into quantum states exhibits a spatial distribution that
resembles an approximating behavior from classical Poisson
noise; (2) As shown in Fig. 3 (b), (c), and (e), from a direct
observation in images, certain patterns resemble Gaussian
noise, with a key distinction—Gaussian components tend to be
uniformly distributed across the image space, whereas quan-
tum channel noise emanates from localized image regions;
(3) Noise applied during gate operations and phase damping
manifests itself as highly destructive, effectively erasing key
image features within the quantum encoded space.

Fig. 3: Output Example Images. (a) Left to right: original
image, quantum-encoded image, original image with Poisson
noise, original image with Gaussian noise. (b) Amplitude
damping in the measurement stage. (c) Amplitude damping
in the gates stage. (d) Phase damping. (e) Depolarization. (f)
Bit flip.

B. Datasets

To investigate general noise behavior across diverse image
types, we evaluate the system using two distinct datasets. In
addition to the test image (Psyduck), we employ the Linnaeus-
5 dataset [8], which comprises 1600 images of size 256×256×3
per category and is originally curated for classification tasks.
Its conformity to the 2n × 2n dimensional structure aligns
well with common quantum encoding requirements. To fur-
ther examine differences in noise impact between multiple-
intensity images and simple-intensity images, we examine a
parallel experiment using the MNIST dataset [9] under the
same conditions. MNIST includes 60,000 training images and
10,000 testing images of handwritten digits, with a simplified
grayscale format of 32×32×1. Notably, its frequency area
distribution mirrors that of our primary test image that we
used on the circuit and noise model.

C. Experimental Results on Dataset

TABLE I: Dataset experiment result

Subset AvgMSE AvgSSIM AvgPSNR
Linnaeus-berry 1194.950 0.491 17.316
Linnaeus-bird 1225.396 0.435 17.366
Linnaeus-dog 1453.287 0.463 16.958

Linnaeus-flower 1338.535 0.475 16.961
Linnaeus-other 1311.213 0.465 17.147
MNIST-train 2655.868 0.394 14.547
MNIST-test 2870.531 0.395 14.242

To ensure a controlled experimental setting, we preprocess
the Linnaeus dataset by converting all images to a single
channel and resizing them to 32×32. For the MNIST dataset,
rather than utilizing the full set of 60,000 training and 10,000
testing images, we randomly select 1600 images from each



subset to match the size of the Linnaeus experiment. To
strengthen the reliability of our findings, we incorporate two
additional evaluation metrics, MSE and PSNR, to quantify
the impact of noise across varying image types. We conduct
an experiment using amplitude encoding under an amplitude
damping noise model with a parameter value of γ = 0.2. The
results, presented in Table I and illustrated in Fig. 4, reveal
distinct patterns in noise behavior and encoding resilience
across datasets, offering promising insights for robust quantum
image processing.

The results clearly demonstrate that the amplitude damping
noise model exerts a stronger influence on images with sim-
ple structures and centralized intensity distributions than on
more complex images. This behavior can be attributed to the
relatively low qubit utilization in the MNIST dataset, where
the pixel values are predominantly uniform and background
regions contain zero intensity. Consequently, as described in
Eq. 3, the amplitude coefficients are more susceptible to
interference across unintended qubit positions.

Fig. 4: Examples of encoded images (top-row) and noisy
images (bottom-row) in datasets. The first 2 rows are from the
MNIST dataset, and the bottom 2 rows are from the Linnaeus
dataset.

IV. DISCUSSION

In this paper, we examine the influence of multiple quantum
noise channels on image encoding schemes within a quantum
distributed system. Departing from conventional approaches
that primarily assess fidelity between quantum states, we adopt
a direct and intuitive methodology to evaluate the impact of
noise through the lens of quantum image encoding. By varying
encoding parameters and systematically analyzing output devi-
ations using classical metrics, we uncover consistent patterns
that illuminate the behavior of different noise models.

To provide a comprehensive perspective, our experiments
incorporate both Qnode-level gate operations and the quantum
channels that precede the measurement, capturing the full tra-
jectory of noise propagation. We observe distinct relationships
among noise models, particularly in how they disrupt spatial

structures within encoded images. Notably, our comparison
with classical noise patterns reveals intriguing parallels: for
instance, noise generated during amplitude encoding may ex-
hibit features reminiscent of Poisson or Gaussian distributions,
though with markedly different spatial characteristics. Further-
more, as noted in the Qiskit Aer documentation, the amplitude
damping channel includes a parameter known as the excited
state thermal population, governing the equilibrium population
of |0⟩ which can significantly alter the noise behavior. This
parameter opens an avenue for further exploration in future
work.

We also expand our analysis across diverse datasets to
extract generalizable insights. Our results suggest that simpler
image structures, especially those with concentrated intensity
distributions, are disproportionately affected by amplitude
damping noise, underscoring the intricate dependency between
circuit encoding depth and image complexity.

We anticipate that our illustrations may pave an exciting
step toward robust quantum image processing and quantum-
classical co-design. Looking ahead, we aim to validate these
findings on real quantum hardware and explore new encoding
frameworks that mitigate noise effects during quantum em-
bedding and transmission. These directions hold great promise
for the advancement of practical quantum communication and
data integration in hybrid systems.
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