
Quantum Logic Circuit Simulation Based on the QMDD Data Structure

David Goodman, Mitchell A. Thornton, David Y. Feinstein D. Michael Miller
Department of Computer Science and Engineering Department of Computer Science

Southern Methodist University University of Victoria
Dallas, TX, USA Victoria, BC, Canada

{dgoodman,mitch,dfeinste}@engr.smu.edu mmiller@cs.uvic.ca

Abstract
Two approaches for a quantum logic circuit

simulator based on Quantum Multiple-valued Decision
Diagrams (QMDDs) are formulated and compared.
The two approaches for quantum logic circuit
simulation are performed by explicit multiplication
using QMDD representations of the circuit and input
vector, and through implicit multiplication where the
QMDD representing the circuit undergoes a guided
traversal based upon the input vector. These methods
are implemented and compared in terms of memory
usage and runtime.

1. Introduction

Recently there has been significant interest in
quantum computations since many operations that are
intractable using classical computers can be solved
efficiently using quantum algorithm formulations
including Shor’s factorization algorithm [1] and
Grover’s search algorithm [2]. Additionally, all
quantum logic operations are necessarily both logically
and physically reversible. As proven by Landauer in
1961, only reversible circuits can approach the
theoretical limit of no heat dissipation and hence zero
power dissipation [3]. For this reason, there is also a
large amount of interest in the development of practical
quantum logic circuits for the purpose of low-power
dissipation.

Quantum logic circuits represent transformations of
the state of one or more qubits over time or space and
these circuits are modeled as cascades of quantum
logic gates. Because quantum logic gates and circuits
are represented by unitary transformation matrices, the
transformation of the initial state of a set of qubits into
a resulting output state can be mathematically
computed as a matrix-vector product where the matrix
represents the quantum logic circuit and the initial
qubit state is represented as a column vector.
Unfortunately, for an n-qubit circuit, the size of the
transformation matrix is 2n×2n and the column vector
representing the initial state of the n qubits is of size 2n.
For these reasons, the implementation of a quantum
logic circuit simulator using explicit matrices and

vectors is only useful for very small circuits and we are
motivated to develop more efficient approaches for
quantum logic circuit simulation.

Linear algebra computations have been shown to be
efficiently implemented using decision diagram
structures in the past. In [4] an efficient means for
computing the Walsh spectrum of a Boolean function
using Binary Decision Diagrams (BDDs) [5] is shown
that, as a side-effect, illustrates how the tensor or
Kronecker matrix product can be computed using
graph algorithms. Also, in [6] an efficient means for
the computation of a matrix-vector product using
BDDs is described. These ideas and others were used
for the development of a quantum logic simulator
using BDD operations in the QuiDDPro software [7,8]
that uses the very efficient BDD software package
CUDD [9].

A new decision diagram structure for the
representation of quantum logic circuits called the
Quantum Multiple-valued Decision Diagram (QMDD)
is described in [10,11,12]. Although this is also a
decision diagram structure, it represents a matrix in a
very different way than is usually accomplished
through the use of BDDs. The QMDD structure is also
easily extended to handle quantum circuits with
multiple-valued (i.e. non-binary) qudits as well as
binary-valued qubits [10,12].

In this paper, two different approaches for quantum
logic circuit simulation based on QMDD
manipulations are described. The first technique
performs explicit matrix-vector multiplication by
representing the quantum logic circuit as a QMDD, the
initial state of the qubits as a QMDD, and then
invoking a recursive multiplication function that
produces a product QMDD. The second method also
represents the quantum logic circuit as a QMDD, but
then performs a guided traversal where the product
vector is implicitly computed during the traversal. The
QMDD traversal is guided by the value of the qubit
initial state vector.

The paper is organized as follows. Quantum logic
circuit matrix representations and QMDDs are
described in more detail in Section 2. In Section 3, a
description of the two simulation approaches is

provided. Section 4 contains experimental results.
Conclusions and areas of future improvement are
presented in Section 5.

2. Matrix Representations of Quantum
Circuits and QMDDs

Many different quantum gates have been developed,
and they can all be modeled with a unitary
transformation matrix. Some of the gates we consider
are binary reversible gates and are represented by 0/1-
valued permutation matrices. In the general case, a
quantum logic gate is represented as a vector rotation
within the Bloch sphere and corresponding
transformation matrices contain complex-valued
components. Quantum logic circuits are formulated as
cascades of quantum logic gates and the transformation
matrix representing the entire quantum circuit is
computed as the product of the matrices representing
the individual gates. Furthermore, an n-qubit circuit is
formed utilizing n Kronecker matrix products. The
QMDD structure is formulated such direct matrix and
Kronecker product algorithms are implemented as
recursive graph traversal functions.

2.1. Quantum Logic Gates

Although numerous quantum logic gates have been
defined, here we focus on the following subset of
quantum logic gates since that are currently supported
by the QMDD software.

• Quantum NOT gates
• Feynman (Controlled-NOT) gates
• Toffoli (Controlled-Controlled-NOT) gates
• Generalized (Multiple Control) Toffoli gates
• Controlled-V (square root of NOT) gate
• Controlled-V† (inverse of V) gate

Figure 1 shows the standard diagrams for the NOT

and Controlled-NOT gates with their corresponding
transformation matrices. The quantum NOT gate
causes a single qubit initially in eigenstate (or basis
state) |0> to be transformed to the |1> state and vice-
versa. The controlled-NOT logic gate is a 2-qubit
circuit that transforms one qubit from its initial
eigenstate to the opposite basis state if, and only if, the
other ‘control’ qubit is in eigenstate |1>. The control
qubit remains unchanged. The Toffoli gate is an
extension of the controlled-NOT gate in that it utilizes
two control qubits and the generalized Toffoli gate
operates with more than two control qubits. These
operations can also be described with Boolean
relationships as is also shown in Figure 1.

The 2-qubit controlled-V gate transforms the target
qubit by using the transformation given by the matrix

V =
!!
"

#
$$
%

&
'

'+

1

1

2

1

i

ii if the control qubit is in state |1>.

Similarly, the controlled-V† gate transforms the target
qubit using the matrix V† = V-1 =

!!
"

#
$$
%

&
'

''
1

1

2

1

i

ii , if the

control qubit is |1>. The V transformation matrix is
sometimes referred to as the square root of NOT gate
since a cascade of two V gates produces the same
transformation as a quantum NOT gate. V† of course
has the same property since V†= V-1 and V is a unitary
matrix.

Figure 1: NOT and Controlled-NOT Gates

2.2. Matrix Representations

Since a quantum gate can be represented by a
matrix, an n-qubit gate results in a matrix of size 2n ×
2n. A cascade of gates forming a quantum logic circuit
can also be represented by a single matrix formed by
the direct multiplication of the matrices representing
the individual gates.

As an example, a single Toffoli gate with variables
x0 and x2 serving as control qubits and the variable x1
as the target qubit (denoted by T(x2,x0;x1)) is shown in
Figure 2. The corresponding transformation matrix for
T(x2,x0;x1) is given in (1) where the qubit ordering is x2
serving as the most-significant qubit and x0 being the
least significant qubit:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

 (1)

Figure 2. Toffoli Logic Gate: T(x2,x0;x1)

2.3. The QMDD Representation
The main motivation for creating the QMDD

structure is the regular structure of the matrices that
represent quantum and reversible circuits. Since, for
binary circuits, the dimensions of these matrices are
always powers of 2, the matrices can always be
partitioned into four quadrants. For example, the
matrix M can be partitioned as

M =
M

0
M

1

M
2

M
3

!

"
#

$

%
& (2)

and each of the partitions has dimensions 2n-1 × 2n-1.
Each of these submatrices can also be further
partitioned into four smaller matrices. This process
can recursively continue until the four submatrices
become single values. The selection variables in a
QMDD are ordered [5] indicating that each variable
appears no more than once on any path through the
QMDD based on a predefined ordering that is identical
among all possible paths. Also, standard decision
diagram techniques [5] are used to reduce the QMDD
by sharing common subdiagrams and by removing
redundant subdiagrams. A complex-valued multiplier
constant annotates each edge in a QMDD allowing for
the extraction of common factors from the
corresponding matrices. QMDDs contain a single
terminal vertex annotated with value 1.

In order to evaluate a QMDD for a particular
selection variable assignment, the path from the
starting vertex to the terminal vertex determined by a
particular assignment is followed. For example, when
encountering the variable xi one follows edge number j
where j is the value that is assigned to xi. It is possible
that some of the variables will not appear on the
designated path. This simply means that this particular
variable does not affect the result for this particular
valuation of xi. From the results in [12], it is proven
that skipped variables only occur when the exiting
edge points directly to the terminal vertex of the
QMDD and has an edge multiplier value of 0. The
value associated with a path in a QMDD is the product
of the edge multipliers encountered on the path
including the edge leading to the start vertex.

As an example, Figure 3 shows the QMDD
representation of the quantum Toffoli gate, T(x2,x0;x1),
represented by the transformation matrix previously
given in (1). The edges 0, 1, 2 and 3 are labeled from
left to right in the diagram and correspond to the
subscripts of the submatrices in Equation (2). A
complete traversal of the QMDD in Figure 3 allows for
the formulation of the matrix representation of the gate.

QMDDs are also easily generalized for the
representation of multiple-valued quantum circuits.
For r-valued logic, each matrix has dimension rn × rn

and each nonterminal vertex in the corresponding
QMDD has r2 outgoing edges (see [10] for details).

Figure 3. QMDD for Toffoli Gate T(x2,x0;x1)

2.4. Matrix Operations

Another crucial aspect of a quantum circuit
simulator is that operations performed on the matrices
represented as QMDDs be realized efficiently. The
major operations that are needed are matrix addition,
matrix multiplication, and the Kronecker product.
Each of these operations are implemented as recursive
QMDD graph algorithms as described in [10,11].

3. Quantum Logic Circuit Simulation

Our circuit simulators are designed to accept two
different types of circuit description formats. These
formats are those used by Maslov in his benchmark
circuit set [13], and the QASM format [14,15]. The
QASM format is a text-format language that is used to
describe quantum circuits (or, from another point of
view, a quantum algorithm). The ease of describing
quantum circuits in QASM is the principal motivation
for its use.

Since the QMDD software previously developed
uses the tfc file format developed by Maslov [13], we
wrote a simple program to translate a QASM
specification into the tfc format. Given this tool, a
QMDD can be built for a circuit described in either
QASM or the tfc format using the approach described
in [10,11].

3.1. Input Vector Formulation and Simulation

Our simulators assume that the input vectors are
represented by an n-qubit register with all qubits
initialized to eigenstate values of |0> or |1>. In order to
apply matrix multiplication to compute the resultant
transformed states of the n-qubit register, a column
vector is first formed using the Kronecker product
relationship that transforms the Dirac-ket notation [16]
into an appropriate column vector.

Recall that the Kronecker product is defined as

11 1

1

n

m mn

a B a B

A B

a B a B

! "
$% = # $
$& '

!

" # "

!

The Kronecker product is not a commutative operation,
however, it is associative. In our simulators, we
implemented the operation as a sequence of Kronecker
products evaluated from right to left.

As an example, for the initial qubit register values
of |001>, the column vector is formed as shown in
Equation (2).

| 001>=
1

0

!

"
#
$

%
&'

1

0

!

"
#
$

%
&'

0

1

!

"
#
$

%
& =

1

0

!

"
#
$

%
&'

0

1

0

0

!

"

#
#
#
#

$

%

&
&
&
&

=

0

1

0

0

0

0

0

0

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

 (3)

The resulting column vector is the “input vector”

for the circuit.
The next step in the simulation process is to

perform a matrix multiplication with the column vector
generated from the initial state of the qubit register and
the circuit transformation matrix. The resultant product
is then a column vector of the same dimension as the
input vector that represents the state of the qubit
register after it is transformed by the quantum circuit.

The final step is to convert the output vector back to
Dirac-ket notation. In general, this can be a difficult
process since mathematically it requires formulating a
Kronecker product factorization. However since our
simulators assume all simulation results will be in
eigenstate form, a simple algorithm suffices to convert
the output vector back into Dirac-ket form.

3.2. Explicit Multiplication Based Simulator

The explicit multiplication based simulator
represents the input vector as a QMDD, the quantum
logic circuit as a QMDD, and then calls the QMDD
function that performs matrix multiply. In representing
the input vector as a QMDD, the column vectors
representing |0> and |1> as shown in Equations (4)
utilize the 0- and 2-edges of a QMDD vertex and the 1-
and 3-edges point to a null value. Figure 4 shows
QMDD representations of |0> and |1> respectively.

 |0> =

1

0

!

"
#
$

%
& |1> =

0

1

!

"
#
$

%
& (4)

Figure 4. QMDDs for |0> and |1>

Once the qubits are represented as QMDD

structures, they are combined into a single QMDD
representing the entire input vector using computations
as shown in Equation (3). This is accomplished by
invoking the Kronecker multiplication function for
QMDDs.

After the QMDD representing the input vector has
been created, the actual simulation can take place
through a call to the QMDD matrix multiplication
function.

 The following example shows a simulation
computation by using matrices and vectors in Equation
(5) instead of the actual QMDDs that represent them.
In this example, the matrix represents the circuit
QMDD and the vector on the lefthand side of the
equation represents the input column vector. The
product column vector on the right-hand side of the
equation represents the QMDD that is returned by the
multiplication function that is then factored into
Kronecker products of 2-dimensional vectors. This
example consists of a single Toffoli gate (T(x2,x0;x1))
with target variable x1 and control variables x2 and x0.
The initial state of the qubits in this example is |111>
resulting in a transformed qubit state of |101>.

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

0

0

0

0

0

0

0

1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

=

0

0

0

0

0

1

0

0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

=
0

1

!
"#
$
%&
' 1

0

!
"#
$
%&
' 0

1

!
"#
$
%&

 (5)

3.3. Implicit Multiplication Based Simulator

An alternative approach for quantum circuit
simulation involving the QMDD structure is a
recursive QMDD traversal guided by the values of the
initial state of the n-qubit register. As is done in the
explicit multiplication simulation method, a QMDD is
first built that represents the quantum circuit and it is
then traversed in a guided manner based on the input
vector component values. The output vector

components of the circuit are computed during the
traversal. This implicit multiplication traversal method
is described as follows.

Let e denote an edge pointing to a QMDD
describing a quantum circuit and let vector be an array
consisting of the initial qubit states. The algorithm is
stated where T(e) represents a function that is true if e
points to a terminal vertex of the QMDD and is false
otherwise.

1. If T(e) is true, then the weight of e in the ith

position is stored in the ith position of the
output vector.

2. If T(e) is false, then if the value in vector
corresponding to the variable of the current
vertex = 0, the following procedure is
followed.
a. Call the recursive function with the 0th edge

of the current vertex.
b. Call the recursive function with the 2nd edge

of the current vertex.
Otherwise,
c. Call the recursive function with the 1st edge

of the current vertex.
d. Call the recursive function with the 3rd edge

of the current vertex.

The reasoning for using these particular edges

(either the 0 and 2 edge or the 1 and 3 edge) is due to
the structure of the matrices and the form of the
resulting product of the matrices with vectors
representing |0> and |1>. As mentioned before, a
matrix can be partitioned into four equal parts. When
this partitioned matrix is multiplied by a zero or one
qubit, only half of the matrix results in the product
vector. Examples are shown below:

M
0

M
1

M
2

M
3

!

"
#

$

%
&

0

1

!

"
#
$

%
& =

M
1

M
3

!

"
#

$

%
&

M
0

M
1

M
2

M
3

!

"
#

$

%
&

1

0

!

"
#
$

%
& =

M
0

M
2

!

"
#

$

%
&

4. Experimental Results

All of the experimental results were generated
using a Dell PE 2650 computer with a Dual Intel Xeon
processor running at 3.2GHz with 4 GB of RAM
running a Linux operating system.

Table 1 contains results pertaining to the initial
processing phase of the simulators where a circuit
netlist is parsed and converted into a QMDD
representation. These results provide information
regarding the runtime and memory usage required for

generating the QMDD circuit representation when
garbage collection versus no garbage collection is
invoked. Garbage collection refers to the process of
periodically freeing up memory by eliminating QMDD
vertices present in the unique table created during
circuit netlist parsing that are no longer needed for
final representation. Garbage collection would
normally always be invoked in normal operation of the
simulator and the results in Table 1 with no garbage
collection are included to show the effectiveness of the
process. In these results, garbage collection is invoked
whenever more than 50,000 QMDD vertices are
created.

The first column in Table 1 contains the name of
the circuit netlist followed by the size of each circuit in
terms of the number of qubits in column 2 and the
number of gates in column 3. Each of the example
circuits were obtained from Maslov’s quantum circuit
benchmark website [13].

 Columns 4 and 5 of Table 1 contain the peak
number of vertices created during the process of
building the QMDD as the circuit netlist is parsed both
when the garbage collection feature is used (column 4)
and not used (column 5). We note that the qubit or
variable order utilized in these results is the order in
which the qubits are specified in the benchmark circuit
netlist. An alternative QMDD size would generally
result if a different ordering were used. In these
results, no variable reordering techniques are used.

Columns 6 and 7 of Table 1 contain the total
runtime required for building each QMDD both with
and without the garbage collection feature being
utilized. Column 8 contains the final vertex count
required for the representation of each benchmark
circuit as a QMDD.

Table 2 contains experimental results for the
simulation of each benchmark circuit for a set of input
stimuli or initial input vectors. Each input vector is
specified as a set of initial qubit values in Dirac-ket
form, thus the simulation runtimes include the
conversion of the input vectors into an appropriate
column vector and the conversion of the resultant
column vector back into Dirac-ket form. As is the case
with Table 1, columns 1, 2, and 3 contain the
benchmark circuit name and size in terms of number of
qubits and gates.

Column 4 in Table 2 contains the number of
randomly generated input vectors used in each
simulation. Columns 5, 6, and 7 contain the runtime in
seconds for computing the resultant qubit register state
for the input vectors. The runtime results in these
columns are the average runtime over the set of input
vectors for the simulation. We also implemented a
simulator that forms the actual matrix and vector and
performs a linear algebra matrix-vector product

computation. The results in column 5 for the linear
algebra computations are included for the purpose of
comparing the use of QMDDs to the linear algebra
approach for simulation. Column 6 contains the
average runtime for the implicit multiplication
approach whereas column 7 contains the runtime for
the explicit multiplication approach.

In the explicit multiplication approach, a product
QMDD is produced representing the circuit output.
Column 8 contains the average number of vertices in
the unique table after the explicit multiplication is
performed and a garbage collection is invoked. Thus,
column 8 contains the number of vertices to represent
both the original circuit and the product vector.
Column 9 contains the peak number of vertices
representing the circuit and product vector after the
explicit multiplication is performed. This is the peak
node count for the input vector that produced the
largest peak node count.

5. Conclusions and Future Improvements

The first set of experimental results in Table 1 show
the effectiveness of representing the example circuit
netlists in QMDD form both with and without garbage
collection. For those circuits requiring a relatively
large number of QMDD vertices, it is observed that the
garbage collection feature can significantly affect
runtime. As an example, for the 11 qubit hidden
weighted circuit, hwb11, runtime is only 17% of that
required when no garbage collection is used.

Table 2 provides simulator performance results for
the two different approaches of producing the circuit
response through the implicit versus the explicit
multiplication approach. In the implicit multiplication
approach, the QMDD representing the benchmark
circuit undergoes a traversal that is guided by the input
vector component values. This traversal results in
many subpaths of the QMDD being traversed multiple
times and thus, for large QMDDs, the overall runtime
can be larger than the explicit multiplication approach
although no runtime is expended for creation of new
QMDD vertices since none are created in this method.
The explicit multiplication approach actually creates a
resultant product QMDD representing the circuit
response.

In the explicit multiplication approach, the creation
of the product QMDD also results in a traversal of the
circuit QMDD during the formation of the product
QMDD although subpaths of the circuit QMDD are not
traversed multiple times, however, runtime is expended
for the creation of new QMDD vertices.

For all but 2 of the example circuits, the two
simulation approaches have approximately the same
runtime. In the case of benchmarks 0410184 and

Cycle17_3, the implicit multiplication method
required significantly larger runtimes. This is
attributed to the fact that these two examples required
many subpaths within the circuit QMDDs to be
traversed multiple times.

In the future, we plan to investigate the
development of alternative guided QMDD traversal
algorithms that can allow for the use of a cache that
can be used to avoid repeated traversals of the same
subpaths when the implicit multiplication method is
used. In these results, the traversal functions are
implemented as recursive routines and thus there is no
way to predict the entire path that will be traversed
during the intermediate computations. If the traversal
could be implemented in a way where a table lookup
operation could be performed based upon a current
vertex and the input vector, repeated path traversals
could be avoided and runtimes should be improved.

We also plan to incorporate automatic variable
reordering in the simulator as described in [12] that
will result in increased performance for both
simulation approaches. After these improvements are
made to the simulator, we plan to disseminate our
simulator programs through the creation of a webpage
where source and executables are available for
download.

References
[1] P. Shor, Polynomial-time Algorithms for Prime

Factorization and Discrete Logarithms on a Quantum
Computer, SIAM Journal of Computing, vol. 26, 1997,
pp. 1484-1509.

[2] L. Grover, A Fast Quantum Algorithm for Database
Search, In Proceedings of the ACM Symposium on
Theory of Computing, 1996, pp. 212-219.

[3] R. Landauer, Irreversibility and Heat Generation in the
Computing Process, IBM Journal of Research
Development, vol. 5, 1961, 183.

[4] D.M. Miller, Graph Algorithms for the Manipulation of
Boolean Functions and their Spectra, In Proceedings of
the Congressus Numerantium, 1987, pp. 177-199.

[5] R.E. Bryant, Graph-based Algorithms for Boolean
Function Manipulation, IEEE Transactions on
Computers, Vol. 35, no. 8, 1986, pp. 677-691.

[6] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J.
Yang, Spectral Transforms for Large Boolean Functions
with Application to Technology Mapping, In
Proceedings of the Design Automation Conference,
1993, pp. 54-60.

[7] G.F. Viamontes, I.L. Markov, and J.P. Hayes, Graph-
based Simulation of Quantum Computation in the
Density Matrix Representation, Quantum Information &
Computation, vol. 5, no. 2, 2005, pp. 113-130.

 [8] G.F. Viamontes, I.L. Markov, and J.P. Hayes,
QuiDDPro: High-Performance Quantum Circuit
Simulation, http://vlsicad.eecs.umich.edu/Quantum/qp/,
2006.

 [9] F. Somenzi, The CUDD Package, University of
Colorado at Boulder, http://vlsi.colorado.edu/~fabio/,
1995.

[10] D.M. Miller and M.A. Thornton, QMDD: A Decision
Diagram Structure for Reversible and Quantum Circuits,
In Proceedings of the IEEE International Symposium on
Multiple-Valued Logic, 2006.

[11] D.M. Miller, M.A. Thornton, and D. Goodman, A
Decision Diagram Package for Reversible and Quantum
Circuits, In Proceedings of the IEEE World Congress on
Computational Intelligence, 2006.

[12] D.M. Miller, D.Y. Feinstein, and M.A. Thornton,
Variable Reordering and Sifting for QMDD, In
Proceedings of the IEEE International Symposium on
Multiple-Valued Logic, 2007.

[13] D. Maslov. Reversible logic synthesis benchmarks
page. http://www.cs.uvic.ca/~dmaslov, 2005.

[14] I. Chuang. Quantum Circuit Viewer: qasm2circ,
Massachusetts Institute of Technology,
http://www.media.mit.edu/quanta/qasm2circ/.

[15] S. Blaha, Quantum Computers and Quantum Computer
Languages: Quantum Assembly Language and Quantum
C Language,
http://www.citebase.org/abstract?id=oai:arXiv.org:quant
-ph/020182.

[16] M.A. Nielsen and I.L. Chuang, Quantum Computation
and Quantum Information, Cambridge University
Press, 2000.

TABLE 1: Experimental Results for Conversion of the Circuit Netlist into a QMDD

TABLE 2: Experimental Results Comparing the Explicit and Implicit Multiplication Method Simulators

GC on GC off GC on GC off

Ham3 3 5 50 50 <0.000 <0.000 10

3_17 3 6 53 53 <0.000 <0.000 10

rd32 4 4 52 52 <0.000 <0.000 9

mod5adders 6 21 303 303 <0.000 <0.000 38

5mod5tc 6 17 394 394 <0.000 <0.000 28

Hwb7 7 289 8746 8746 0.025 0.025 179

rd53rcmg 7 30 1220 1220 <0.000 <0.000 103

Hwb9-1541 9 1541 50000 128731 0.494 0.535 683

Hwb11 11 9314 50000 2205109 11.536 66.544 2639

0410184.nct 14 46 1156 1156 <0.000 <0.000 39

ham15a 15 132 50000 161493 0.496 0.475 26346

Cycle17_3 20 48 3040 3040 0.004 0.004 236

mod1048576adder 40 210 - - - - -

Time to Build Circuit

(seconds)

Resultant

QMDD Size

(vertices)

Circuit Name
Number of

Qubits

Number of

Gates

Peak Node Count to Build

Circuit (vertices)

Circuit Name
Number of

Qubits

Number of

Gates

Number of

Input

Vectors

Average CPU

Runtime for

Linear Algebra

Approach

(seconds)

Average CPU

Runtime for

Implicit

Multiplication

Approach

(seconds)

Average CPU

Runtime for

QMDD Explicit

Multiplication

Approach

(seconds)

Average

Resultant QMDD

Size for Explicit

Multiplication

Approach

(vertices)

QMDD Peak

Node Count for

Explicit

Multiplication

Approach

(vertices)

Ham3 3 5 8 < 0.000 0.00005 0.00004 11 20

3_17 3 6 8 < 0.000 0.00005 0.00007 12 21

rd32 4 4 16 <0.000 0.00006 0.00006 18 28

mod5adders 6 21 64 <0.000 0.00007 0.00007 46 51

5mod5tc 6 17 64 <0.000 0.00007 0.00006 38 52

Hwb7 7 289 128 0.040 0.00016 0.00014 220 309

rd53rcmg 7 30 128 <0.000 0.00008 0.00010 127 188

Hwb9-1541 9 1541 512 timeout 0.00084 0.00086 851 1176

Hwb11 11 9314 2048 timeout 0.01028 0.00988 3312 4557

0410184.nct 14 46 16384 timeout 0.00207 0.00009 75 105

ham15a 15 132 328 timeout 0.99800 1.00677 36617 49594

Cycle17_3 20 48 1048 timeout 0.12637 0.00026 255 277

mod1048576adder 40 210 - timeout timeout timeout - -

