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Abstract 
Two approaches for a quantum logic circuit 

simulator based on Quantum Multiple-valued Decision 
Diagrams (QMDDs) are formulated and compared. 
The two approaches for quantum logic circuit 
simulation are performed by explicit multiplication 
using QMDD representations of the circuit and input 
vector, and through implicit multiplication where the 
QMDD representing the circuit undergoes a guided 
traversal based upon the input vector.  These methods 
are implemented and compared in terms of memory 
usage and runtime. 
 
1. Introduction 

Recently there has been significant interest in 
quantum computations since many operations that are 
intractable using classical computers can be solved 
efficiently using quantum algorithm formulations 
including Shor’s factorization algorithm [1] and 
Grover’s search algorithm [2]. Additionally, all 
quantum logic operations are necessarily both logically 
and physically reversible.  As proven by Landauer in 
1961, only reversible circuits can approach the 
theoretical limit of no heat dissipation and hence zero 
power dissipation [3].  For this reason, there is also a 
large amount of interest in the development of practical 
quantum logic circuits for the purpose of low-power 
dissipation. 

Quantum logic circuits represent transformations of 
the state of one or more qubits over time or space and 
these circuits are modeled as cascades of quantum 
logic gates. Because quantum logic gates and circuits 
are represented by unitary transformation matrices, the 
transformation of the initial state of a set of qubits into 
a resulting output state can be mathematically 
computed as a matrix-vector product where the matrix 
represents the quantum logic circuit and the initial 
qubit state is represented as a column vector.  
Unfortunately, for an n-qubit circuit, the size of the 
transformation matrix is 2n×2n and the column vector 
representing the initial state of the n qubits is of size 2n.  
For these reasons, the implementation of a quantum 
logic circuit simulator using explicit matrices and 

vectors is only useful for very small circuits and we are 
motivated to develop more efficient approaches for 
quantum logic circuit simulation. 

Linear algebra computations have been shown to be 
efficiently implemented using decision diagram 
structures in the past.  In [4] an efficient means for 
computing the Walsh spectrum of a Boolean function 
using Binary Decision Diagrams (BDDs) [5] is shown 
that, as a side-effect, illustrates how the tensor or 
Kronecker matrix product can be computed using 
graph algorithms.  Also, in [6] an efficient means for 
the computation of a matrix-vector product using 
BDDs is described.  These ideas and others were used 
for the development of a quantum logic simulator 
using BDD operations in the QuiDDPro software [7,8] 
that uses the very efficient BDD software package 
CUDD [9].  

A new decision diagram structure for the 
representation of quantum logic circuits called the 
Quantum Multiple-valued Decision Diagram (QMDD) 
is described in [10,11,12].  Although this is also a 
decision diagram structure, it represents a matrix in a 
very different way than is usually accomplished 
through the use of BDDs.  The QMDD structure is also 
easily extended to handle quantum circuits with 
multiple-valued (i.e. non-binary) qudits as well as 
binary-valued qubits [10,12]. 

In this paper, two different approaches for quantum 
logic circuit simulation based on QMDD 
manipulations are described.  The first technique 
performs explicit matrix-vector multiplication by 
representing the quantum logic circuit as a QMDD, the 
initial state of the qubits as a QMDD, and then 
invoking a recursive multiplication function that 
produces a product QMDD.  The second method also 
represents the quantum logic circuit as a QMDD, but 
then performs a guided traversal where the product 
vector is implicitly computed during the traversal.  The 
QMDD traversal is guided by the value of the qubit 
initial state vector. 

The paper is organized as follows.  Quantum logic 
circuit matrix representations and QMDDs are 
described in more detail in Section 2.  In Section 3, a 
description of the two simulation approaches is 



provided.  Section 4 contains experimental results. 
Conclusions and areas of future improvement are 
presented in Section 5. 
 
2. Matrix Representations of Quantum 
Circuits and QMDDs 

Many different quantum gates have been developed, 
and they can all be modeled with a unitary 
transformation matrix.  Some of the gates we consider 
are binary reversible gates and are represented by 0/1-
valued permutation matrices.  In the general case, a 
quantum logic gate is represented as a vector rotation 
within the Bloch sphere and corresponding 
transformation matrices contain complex-valued 
components.  Quantum logic circuits are formulated as 
cascades of quantum logic gates and the transformation 
matrix representing the entire quantum circuit is 
computed as the product of the matrices representing 
the individual gates.  Furthermore, an n-qubit circuit is 
formed utilizing n Kronecker matrix products.  The 
QMDD structure is formulated such direct matrix and 
Kronecker product algorithms are implemented as 
recursive graph traversal functions. 

 
2.1. Quantum Logic Gates 

Although numerous quantum logic gates have been 
defined, here we focus on the following subset of 
quantum logic gates since that are currently supported 
by the QMDD software.   

 
• Quantum NOT gates 
• Feynman (Controlled-NOT) gates 
• Toffoli (Controlled-Controlled-NOT) gates 
• Generalized (Multiple Control) Toffoli gates 
• Controlled-V (square root of NOT) gate 
• Controlled-V† (inverse of V) gate 

 
Figure 1 shows the standard diagrams for the NOT 

and Controlled-NOT gates with their corresponding 
transformation matrices.  The quantum NOT gate 
causes a single qubit initially in eigenstate (or basis 
state) |0> to be transformed to the |1> state and vice-
versa.  The controlled-NOT logic gate is a 2-qubit 
circuit that transforms one qubit from its initial 
eigenstate to the opposite basis state if, and only if, the 
other ‘control’ qubit is in eigenstate |1>.  The control 
qubit remains unchanged.  The Toffoli gate is an 
extension of the controlled-NOT gate in that it utilizes 
two control qubits and the generalized Toffoli gate 
operates with more than two control qubits.  These 
operations can also be described with Boolean 
relationships as is also shown in Figure 1.  

The 2-qubit controlled-V gate transforms the target 
qubit by using the transformation given by the matrix 
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control qubit is |1>.  The V transformation matrix is 
sometimes referred to as the square root of NOT gate 
since a cascade of two V gates produces the same 
transformation as a quantum NOT gate.  V† of course 
has the same property since V†= V-1 and V is a unitary 
matrix. 

 
Figure 1: NOT and Controlled-NOT Gates 

 
2.2. Matrix Representations 

Since a quantum gate can be represented by a 
matrix, an n-qubit gate results in a matrix of size 2n × 
2n.  A cascade of gates forming a quantum logic circuit 
can also be represented by a single matrix formed by 
the direct multiplication of the matrices representing 
the individual gates.   

As an example, a single Toffoli gate with variables 
x0 and x2 serving as control qubits and the variable x1 
as the target qubit (denoted by T(x2,x0;x1)) is shown in 
Figure 2.  The corresponding transformation matrix for 
T(x2,x0;x1) is given in (1) where the qubit ordering is  x2 
serving as the most-significant qubit and x0 being the 
least significant qubit: 
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Figure 2. Toffoli Logic Gate:  T(x2,x0;x1) 



2.3. The QMDD Representation 
The main motivation for creating the QMDD 

structure is the regular structure of the matrices that 
represent quantum and reversible circuits.  Since, for 
binary circuits, the dimensions of these matrices are 
always powers of 2, the matrices can always be 
partitioned into four quadrants.  For example, the 
matrix M can be partitioned as 
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and each of the partitions has dimensions 2n-1 × 2n-1.  
Each of these submatrices can also be further 
partitioned into four smaller matrices.  This process 
can recursively continue until the four submatrices 
become single values. The selection variables in a 
QMDD are ordered [5] indicating that each variable 
appears no more than once on any path through the 
QMDD based on a predefined ordering that is identical 
among all possible paths.  Also, standard decision 
diagram techniques [5] are used to reduce the QMDD 
by sharing common subdiagrams and by removing 
redundant subdiagrams.  A complex-valued multiplier 
constant annotates each edge in a QMDD allowing for 
the extraction of common factors from the 
corresponding matrices.  QMDDs contain a single 
terminal vertex annotated with value 1. 

In order to evaluate a QMDD for a particular 
selection variable assignment, the path from the 
starting vertex to the terminal vertex determined by a 
particular assignment is followed.  For example, when 
encountering the variable xi one follows edge number j 
where j is the value that is assigned to xi.  It is possible 
that some of the variables will not appear on the 
designated path.  This simply means that this particular 
variable does not affect the result for this particular 
valuation of xi. From the results in [12], it is proven 
that skipped variables only occur when the exiting 
edge points directly to the terminal vertex of the 
QMDD and has an edge multiplier value of 0.  The 
value associated with a path in a QMDD is the product 
of the edge multipliers encountered on the path 
including the edge leading to the start vertex. 

As an example, Figure 3 shows the QMDD 
representation of the quantum Toffoli gate, T(x2,x0;x1), 
represented by the transformation matrix previously 
given in (1).  The edges 0, 1, 2 and 3 are labeled from 
left to right in the diagram and correspond to the 
subscripts of the submatrices in Equation (2).  A 
complete traversal of the QMDD in Figure 3 allows for 
the formulation of the matrix representation of the gate. 

QMDDs are also easily generalized for the 
representation of multiple-valued quantum circuits.  
For r-valued logic, each matrix has dimension rn × rn 

and each nonterminal vertex in the corresponding 
QMDD has r2 outgoing edges (see [10] for details). 

 

 
Figure 3.  QMDD for Toffoli Gate T(x2,x0;x1) 

 
2.4. Matrix Operations 

Another crucial aspect of a quantum circuit 
simulator is that operations performed on the matrices 
represented as QMDDs be realized efficiently. The 
major operations that are needed are matrix addition, 
matrix multiplication, and the Kronecker product.  
Each of these operations are implemented as recursive 
QMDD graph algorithms as described in [10,11].  
 
3. Quantum Logic Circuit Simulation 

Our circuit simulators are designed to accept two 
different types of circuit description formats.  These 
formats are those used by Maslov in his benchmark 
circuit set [13], and the QASM format [14,15].  The 
QASM format is a text-format language that is used to 
describe quantum circuits (or, from another point of 
view, a quantum algorithm).  The ease of describing 
quantum circuits in QASM is the principal motivation 
for its use.  

Since the QMDD software previously developed 
uses the tfc file format developed by Maslov [13], we 
wrote a simple program to translate a QASM 
specification into the tfc format. Given this tool, a 
QMDD can be built for a circuit described in either 
QASM or the tfc format using the approach described 
in [10,11]. 

 
3.1. Input Vector Formulation and Simulation 

Our simulators assume that the input vectors are 
represented by an n-qubit register with all qubits 
initialized to eigenstate values of |0> or |1>.  In order to 
apply matrix multiplication to compute the resultant 
transformed states of the n-qubit register, a column 
vector is first formed using the Kronecker product 
relationship that transforms the Dirac-ket notation [16] 
into an appropriate column vector. 



Recall that the Kronecker product is defined as 
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The Kronecker product is not a commutative operation, 
however, it is associative.  In our simulators, we 
implemented the operation as a sequence of Kronecker 
products evaluated from right to left. 

As an example, for the initial qubit register values 
of |001>, the column vector is formed as shown in 
Equation (2). 
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 (3) 

 
The resulting column vector is the “input vector” 

for the circuit.   
The next step in the simulation process is to 

perform a matrix multiplication with the column vector 
generated from the initial state of the qubit register and 
the circuit transformation matrix. The resultant product 
is then a column vector of the same dimension as the 
input vector that represents the state of the qubit 
register after it is transformed by the quantum circuit. 

The final step is to convert the output vector back to 
Dirac-ket notation.  In general, this can be a difficult 
process since mathematically it requires formulating a 
Kronecker product factorization.  However since our 
simulators assume all simulation results will be in 
eigenstate form, a simple algorithm suffices to convert 
the output vector back into Dirac-ket form.   
 
3.2. Explicit Multiplication Based Simulator 

The explicit multiplication based simulator 
represents the input vector as a QMDD, the quantum 
logic circuit as a QMDD, and then calls the QMDD 
function that performs matrix multiply. In representing 
the input vector as a QMDD, the column vectors 
representing |0> and |1> as shown in Equations (4) 
utilize the 0- and 2-edges of a QMDD vertex and the 1- 
and 3-edges point to a null value. Figure 4 shows 
QMDD representations of |0> and |1> respectively.  
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Figure 4. QMDDs for |0> and |1> 

 
Once the qubits are represented as QMDD 

structures, they are combined into a single QMDD 
representing the entire input vector using computations 
as shown in Equation (3). This is accomplished by 
invoking the Kronecker multiplication function for 
QMDDs.  

After the QMDD representing the input vector has 
been created, the actual simulation can take place 
through a call to the QMDD matrix multiplication 
function. 

 The following example shows a simulation 
computation by using matrices and vectors in Equation 
(5) instead of the actual QMDDs that represent them.  
In this example, the matrix represents the circuit 
QMDD and the vector on the lefthand side of the 
equation represents the input column vector.  The 
product column vector on the right-hand side of the 
equation represents the QMDD that is returned by the 
multiplication function that is then factored into 
Kronecker products of 2-dimensional vectors.  This 
example consists of a single Toffoli gate (T(x2,x0;x1) ) 
with target variable x1 and control variables x2 and x0.  
The initial state of the qubits in this example is |111> 
resulting in a transformed qubit state of |101>. 
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3.3. Implicit Multiplication Based Simulator 

An alternative approach for quantum circuit 
simulation involving the QMDD structure is a 
recursive QMDD traversal guided by the values of the 
initial state of the n-qubit register.  As is done in the 
explicit multiplication simulation method, a QMDD is 
first built that represents the quantum circuit and it is 
then traversed in a guided manner based on the input 
vector component values.  The output vector 



components of the circuit are computed during the 
traversal.  This implicit multiplication traversal method 
is described as follows.   

Let e denote an edge pointing to a QMDD 
describing a quantum circuit and let vector be an array 
consisting of the initial qubit states.  The algorithm is 
stated where T(e) represents a function that is true if e 
points to a terminal vertex of the QMDD and is false 
otherwise. 

 
1. If T(e) is true, then the weight of e in the ith 

position is stored in the ith position of the 
output vector. 

2. If T(e) is false, then if the value in vector 
corresponding to the variable of the current 
vertex = 0, the following procedure is 
followed. 
a. Call the recursive function with the 0th edge 

of the current vertex. 
b. Call the recursive function with the 2nd edge 

of the current vertex. 
Otherwise, 
c. Call the recursive function with the 1st edge 

of the current vertex. 
d. Call the recursive function with the 3rd edge 

of the current vertex.  
 
The reasoning for using these particular edges 

(either the 0 and 2 edge or the 1 and 3 edge) is due to 
the structure of the matrices and the form of the 
resulting product of the matrices with vectors 
representing |0> and |1>.  As mentioned before, a 
matrix can be partitioned into four equal parts.  When 
this partitioned matrix is multiplied by a zero or one 
qubit, only half of the matrix results in the product 
vector.  Examples are shown below: 
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4. Experimental Results 

All of the experimental results were generated 
using a Dell PE 2650 computer with a Dual Intel Xeon 
processor running at 3.2GHz with 4 GB of RAM 
running a Linux operating system.  

Table 1 contains results pertaining to the initial 
processing phase of the simulators where a circuit 
netlist is parsed and converted into a QMDD 
representation.  These results provide information 
regarding the runtime and memory usage required for 

generating the QMDD circuit representation when 
garbage collection versus no garbage collection is 
invoked.  Garbage collection refers to the process of 
periodically freeing up memory by eliminating QMDD 
vertices present in the unique table created during 
circuit netlist parsing that are no longer needed for 
final representation.  Garbage collection would 
normally always be invoked in normal operation of the 
simulator and the results in Table 1 with no garbage 
collection are included to show the effectiveness of the 
process.  In these results, garbage collection is invoked 
whenever more than 50,000 QMDD vertices are 
created. 

The first column in Table 1 contains the name of 
the circuit netlist followed by the size of each circuit in 
terms of the number of qubits in column 2 and the 
number of gates in column 3.  Each of the example 
circuits were obtained from Maslov’s quantum circuit 
benchmark website [13].  

 Columns 4 and 5 of Table 1 contain the peak 
number of vertices created during the process of 
building the QMDD as the circuit netlist is parsed both 
when the garbage collection feature is used (column 4) 
and not used (column 5). We note that the qubit or 
variable order utilized in these results is the order in 
which the qubits are specified in the benchmark circuit 
netlist.  An alternative QMDD size would generally 
result if a different ordering were used.  In these 
results, no variable reordering techniques are used. 

Columns 6 and 7 of Table 1 contain the total 
runtime required for building each QMDD both with 
and without the garbage collection feature being 
utilized.  Column 8 contains the final vertex count 
required for the representation of each benchmark 
circuit as a QMDD. 

Table 2 contains experimental results for the 
simulation of each benchmark circuit for a set of input 
stimuli or initial input vectors.  Each input vector is 
specified as a set of initial qubit values in Dirac-ket 
form, thus the simulation runtimes include the 
conversion of the input vectors into an appropriate 
column vector and the conversion of the resultant 
column vector back into Dirac-ket form.  As is the case 
with Table 1, columns 1, 2, and 3 contain the 
benchmark circuit name and size in terms of number of 
qubits and gates. 

Column 4 in Table 2 contains the number of 
randomly generated input vectors used in each 
simulation.  Columns 5, 6, and 7 contain the runtime in 
seconds for computing the resultant qubit register state 
for the input vectors.  The runtime results in these 
columns are the average runtime over the set of input 
vectors for the simulation. We also implemented a 
simulator that forms the actual matrix and vector and 
performs a linear algebra matrix-vector product 



computation.  The results in column 5 for the linear 
algebra computations are included for the purpose of 
comparing the use of QMDDs to the linear algebra 
approach for simulation.  Column 6 contains the 
average runtime for the implicit multiplication 
approach whereas column 7 contains the runtime for 
the explicit multiplication approach.   

In the explicit multiplication approach, a product 
QMDD is produced representing the circuit output.  
Column 8 contains the average number of vertices in 
the unique table after the explicit multiplication is 
performed and a garbage collection is invoked.  Thus, 
column 8 contains the number of vertices to represent 
both the original circuit and the product vector.  
Column 9 contains the peak number of vertices 
representing the circuit and product vector after the 
explicit multiplication is performed.  This is the peak 
node count for the input vector that produced the 
largest peak node count. 

 
5.  Conclusions and Future Improvements 

The first set of experimental results in Table 1 show 
the effectiveness of representing the example circuit 
netlists in QMDD form both with and without garbage 
collection.  For those circuits requiring a relatively 
large number of QMDD vertices, it is observed that the 
garbage collection feature can significantly affect 
runtime.  As an example, for the 11 qubit hidden 
weighted circuit, hwb11, runtime is only 17% of that 
required when no garbage collection is used. 

Table 2 provides simulator performance results for 
the two different approaches of producing the circuit 
response through the implicit versus the explicit 
multiplication approach.  In the implicit multiplication 
approach, the QMDD representing the benchmark 
circuit undergoes a traversal that is guided by the input 
vector component values.  This traversal results in 
many subpaths of the QMDD being traversed multiple 
times and thus, for large QMDDs, the overall runtime 
can be larger than the explicit multiplication approach 
although no runtime is expended for creation of new 
QMDD vertices since none are created in this method.  
The explicit multiplication approach actually creates a 
resultant product QMDD representing the circuit 
response.    

In the explicit multiplication approach, the creation 
of the product QMDD also results in a traversal of the 
circuit QMDD during the formation of the product 
QMDD although subpaths of the circuit QMDD are not 
traversed multiple times, however, runtime is expended 
for the creation of new QMDD vertices. 

For all but 2 of the example circuits, the two 
simulation approaches have approximately the same 
runtime.  In the case of benchmarks 0410184 and 

Cycle17_3, the implicit multiplication method 
required significantly larger runtimes.  This is 
attributed to the fact that these two examples required 
many subpaths within the circuit QMDDs to be 
traversed multiple times. 

In the future, we plan to investigate the 
development of alternative guided QMDD traversal 
algorithms that can allow for the use of a cache that 
can be used to avoid repeated traversals of the same 
subpaths when the implicit multiplication method is 
used.  In these results, the traversal functions are 
implemented as recursive routines and thus there is no 
way to predict the entire path that will be traversed 
during the intermediate computations.  If the traversal 
could be implemented in a way where a table lookup 
operation could be performed based upon a current 
vertex and the input vector, repeated path traversals 
could be avoided and runtimes should be improved. 

We also plan to incorporate automatic variable 
reordering in the simulator as described in [12] that 
will result in increased performance for both 
simulation approaches.  After these improvements are 
made to the simulator, we plan to disseminate our 
simulator programs through the creation of a webpage 
where source and executables are available for 
download. 
 
References 
[1] P. Shor, Polynomial-time Algorithms for Prime 

Factorization and Discrete Logarithms on a Quantum 
Computer, SIAM Journal of Computing, vol. 26, 1997, 
pp. 1484-1509. 

[2] L. Grover, A Fast Quantum Algorithm for Database 
Search, In Proceedings of the ACM Symposium on 
Theory of Computing, 1996, pp. 212-219. 

[3] R. Landauer, Irreversibility and Heat Generation in the 
Computing Process, IBM Journal of Research 
Development, vol. 5, 1961, 183. 

[4] D.M. Miller, Graph Algorithms for the Manipulation of 
Boolean Functions and their Spectra, In Proceedings of 
the Congressus Numerantium, 1987, pp. 177-199. 

[5] R.E. Bryant, Graph-based Algorithms for Boolean 
Function Manipulation, IEEE Transactions on 
Computers, Vol. 35, no. 8, 1986, pp. 677-691. 

[6] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. 
Yang, Spectral Transforms for Large Boolean Functions 
with Application to Technology Mapping, In 
Proceedings of the Design Automation Conference, 
1993, pp. 54-60. 

[7] G.F. Viamontes, I.L. Markov, and J.P. Hayes, Graph-
based Simulation of Quantum Computation in the 
Density Matrix Representation, Quantum Information & 
Computation, vol. 5, no. 2, 2005, pp. 113-130. 

 [8] G.F. Viamontes, I.L. Markov, and J.P. Hayes, 
QuiDDPro: High-Performance Quantum Circuit 
Simulation, http://vlsicad.eecs.umich.edu/Quantum/qp/, 
2006. 



 [9] F. Somenzi, The CUDD Package, University of 
Colorado at Boulder, http://vlsi.colorado.edu/~fabio/, 
1995. 

[10] D.M. Miller and M.A. Thornton, QMDD: A Decision 
Diagram Structure for Reversible and Quantum Circuits, 
In Proceedings of the IEEE International Symposium on 
Multiple-Valued Logic, 2006. 

[11] D.M. Miller, M.A. Thornton, and D. Goodman, A 
Decision Diagram Package for Reversible and Quantum 
Circuits, In Proceedings of the IEEE World Congress on 
Computational Intelligence, 2006. 

[12] D.M. Miller, D.Y. Feinstein, and M.A. Thornton, 
Variable Reordering and Sifting for QMDD, In 
Proceedings of the IEEE International Symposium on 
Multiple-Valued Logic, 2007. 

[13] D. Maslov.  Reversible logic synthesis benchmarks 
page.  http://www.cs.uvic.ca/~dmaslov, 2005. 

[14] I. Chuang.   Quantum  Circuit  Viewer:  qasm2circ, 
Massachusetts Institute of Technology,  
http://www.media.mit.edu/quanta/qasm2circ/. 

[15] S. Blaha,  Quantum Computers  and Quantum Computer 
Languages: Quantum Assembly Language and Quantum 
C Language, 
http://www.citebase.org/abstract?id=oai:arXiv.org:quant
-ph/020182. 

[16] M.A. Nielsen and I.L. Chuang, Quantum Computation 
and Quantum Information, Cambridge University 
Press, 2000. 

 
TABLE 1: Experimental Results for Conversion of the Circuit Netlist into a QMDD 

 
 

TABLE 2: Experimental Results Comparing the Explicit and Implicit Multiplication Method Simulators 

 
 

GC on GC off GC on GC off

Ham3 3 5 50 50 <0.000 <0.000 10

3_17 3 6 53 53 <0.000 <0.000 10

rd32 4 4 52 52 <0.000 <0.000 9

mod5adders 6 21 303 303 <0.000 <0.000 38

5mod5tc 6 17 394 394 <0.000 <0.000 28

Hwb7 7 289 8746 8746 0.025 0.025 179

rd53rcmg 7 30 1220 1220 <0.000 <0.000 103

Hwb9-1541 9 1541 50000 128731 0.494 0.535 683

Hwb11 11 9314 50000 2205109 11.536 66.544 2639

0410184.nct 14 46 1156 1156 <0.000 <0.000 39

ham15a 15 132 50000 161493 0.496 0.475 26346

Cycle17_3 20 48 3040 3040 0.004 0.004 236

mod1048576adder 40 210  -  -  -  -  -

Time to Build Circuit 

(seconds)

Resultant 

QMDD Size 

(vertices) 

Circuit Name
Number of 

Qubits

Number of 

Gates

Peak Node Count to Build 

Circuit (vertices) 

Circuit Name
Number of 

Qubits

Number of 

Gates

Number of 

Input 

Vectors

Average CPU 

Runtime for 

Linear Algebra  

Approach 

(seconds)

Average CPU 

Runtime for 

Implicit 

Multiplication  

Approach 

(seconds)

Average CPU 

Runtime for 

QMDD Explicit 

Multiplication 

Approach  

(seconds)

Average 

Resultant QMDD 

Size for Explicit 

Multiplication 

Approach 

(vertices)

QMDD Peak 

Node Count for 

Explicit 

Multiplication 

Approach 

(vertices)

Ham3 3 5 8 < 0.000 0.00005 0.00004 11 20

3_17 3 6 8 < 0.000 0.00005 0.00007 12 21

rd32 4 4 16 <0.000 0.00006 0.00006 18 28

mod5adders 6 21 64 <0.000 0.00007 0.00007 46 51

5mod5tc 6 17 64 <0.000 0.00007 0.00006 38 52

Hwb7 7 289 128 0.040 0.00016 0.00014 220 309

rd53rcmg 7 30 128 <0.000 0.00008 0.00010 127 188

Hwb9-1541 9 1541 512 timeout 0.00084 0.00086 851 1176

Hwb11 11 9314 2048 timeout 0.01028 0.00988 3312 4557

0410184.nct 14 46 16384 timeout 0.00207 0.00009 75 105

ham15a 15 132 328 timeout 0.99800 1.00677 36617 49594

Cycle17_3 20 48 1048 timeout 0.12637 0.00026 255 277

mod1048576adder 40 210  - timeout timeout timeout  -  -


