
ESOP Transformation to Majority Gates for Quantum-dot Cellular
Automata Logic Synthesis

David Y. Feinstein and Mitchell A. Thornton

Department of Computer Science and Engineering
Southern Methodist University

Dallas, TX, USA
{dfeinste, mitch}@engr.smu.edu

Abstract

We investigate the benefit of using ESOP
minimization in the synthesis of quantum-dot cellular
automata (QCA). We determine the size and delay of
multi-input XOR and AND/OR gates when
implemented in using 3-input majority gates that are
easily realized in QCA, and use our results in our
QCAexor estimator tool. We found that most
benchmarks have at least one output that can be better
minimized using EXOR techniques.

1. Introduction

It has been projected that by around 2015,
mainstream CMOS technology will not be able to
continue along Moore’s curve of speed and density
that currently doubles every 18 months. Emerging
nanotechnologies have been developed in the hope of
achieving performance that go beyond the end-of-
curve limits of CMOS. Quantum-dot Cellular
Automata (QCA) is such a promising technology.

QCA was first suggested by Lent, et al. in 1993
[7,14]. Promising size density of several orders of
magnitude smaller than CMOS, fast switching time in
the range of 10-12 to 10-15 seconds, and extremely low
power, has caused QCA to become a topic of intense
research. Experimental circuits utilizing metal dots
were demonstrated in the late 90s [1], followed by the
recent development of molecular QCA circuits [10],
that put QCA at the front line of emerging
nanotechnologies.

QCA is radically different than today’s CMOS
technology. Information in QCA propagates along a
line of cells via Coulombic charge interaction as
opposed to conventional electronic current in CMOS
devices. Unlike the gate versatility of CMOS, QCA
technology natively implements the 3-input majority
gate as the basic building block. QCA also requires a
new multi-zone clock mechanism for proper data
propagation. Recently, the QCADesigner synthesis
and simulation tool was developed by Walus et al.

[15,16], allowing convenient experimentation with
virtual QCA circuits.

In this paper we are interested in how to use the
QCA native 3-input majority gate in an efficient way
to synthesize logic circuits. More particularly, we
investigate techniques for direct transformation of
Exclusive-OR Sum-of-Products (ESOP) forms of logic
description into an implementation with 3-input
majority gates. It is well known that ESOP
minimization of the logic description can often (but not
always) produce better results (less and smaller cubes)
than the more common inclusive-OR Sum-of-Products
(SOP) forms [3,4,8,11,12, 13].

The paper is organized as follows. Quantum-dot
Cellular Automata circuits and related work on
majority logic reductions are described in more detail
in Section 2. In Section 3, we describe our synthesis
approach using ESOP minimization of the target
circuit. Section 4 contains experimental results.
Conclusions and areas of future improvement are
presented in Section 5.

2. Background and Related Work

The basic QCA cell can be schematically depicted
as a square substrate with four quantum dots located at
each of cell’s four corners [7]. Each cell contains only
two free electrons so that they tend to be in the two
bistable arrangements shown in Fig. 1.a. The electrons
cannot occupy two adjacent dots due to the Coulombic
repulsion between them. We arbitrarily select the first
cell as logic 1 encoding, leaving the second cell to
encode logic 0.

The same Coulombic repulsion aligns the data
within the cells when they are arranged along a “wire”
as shown in Fig. 1.b. Here we assume that information
flows from left to right and the cells in the dotted box
are next to respond. Various clocking mechanisms, as
described in [16] are used to enforce proper data
propagation. It should be noted that since no current is
flowing between the cells, QCA is essentially a very

low power technology (even though current is used in
some implementations for the clocking zones [18]).

Figure 1: Basic QCA cell (a) and a wire (b)

2.1. QCA Majority Gate and Inverters

The native gate for QCA is created when five cells
are placed adjacently as shown in Fig. 2. The result is a
majority gate with three inputs and one output. This
three input majority gate performs the binary function
M(a,b,c) = ab + bc + ac. Basic two variable AND and
OR functions can be readily implemented by M(a,b,0)
and M(a,b,1) respectively. However, the majority gate
is not a universal gate since it is unable to implement
the NOT function. Therefore, majority logic gates must
be combined with inverter circuits in order to
implement arbitrary logic.

Figure 2: QCA 3-input majority gate

Fig. 3 shows a fork inverter. The output cell is

affected by both end cells of the fork to insure reliable
operations. Other inverters that use 450 and 900 cells
orientations have been developed [6].

Figure 3: QCA fork inverter

2.2. Early work on 3-input Majority Gate
Synthesis

Early interest in logic synthesis based on majority
voters was briefly experienced in Japan during the late

50s and early 60s due to the invention of the
Parametron by E. Goto [5] and its inclusion in early
Japanese computers [9]. The Parametron natively
realized 3-input majority function but quickly became
obsolete due to the emergence of high speed
transistors. Miyata [9] distinguished between majority
elements of the first kind, which implement the simple
2-input AND or OR gates, and majority elements of
the second kind where the third input is
advantageously used to minimize the design. Since
majority voter circuits require relatively complex
implementation within mainstream CMOS circuits,
they posed little interest as a building block for logic
synthesis [3].

2.3. Recent Work on Majority Logic Reduction

QCA prompted new research interest with 3-input
majority gate synthesis. Zhang et al. [19] described an
algebraic method for reducing the number of majority
gates required to implement all arbitrary 3-variable
Boolean functions. Observing the three-cube
representation of such functions, there are 8 minterms
that may be included, providing a total of 256 possible
Boolean functions. They identify 13 standard functions
which can be used with rotation and translation to
represent any of these arbitrary 256 Boolean functions.
They proposed minimal implementations of these
functions using 3-input majority gates.

Walus et al. [17] further refined their previous work
in [19] to improve three of the standard function
implementations using Karnaugh maps minimizations.
Improvement is made when the total number of
majority gates is reduced or when the number of levels
(delay) is reduced. Boolean functions of more than 3
inputs must be factored (or use algebraic division) in
order to decompose the function into 3-input functions
that use this and the previous work. Zhang and Jha
[20] developed the MALS tool that produces
optimized majority logic circuits. They use
factorization methods in a pre-synthesis step that can
reduce the size of the circuit. Their factorization
technique is applied to the SOP representation of the
desired logic.

Another approach was presented by Xiaobo et al.
[18] proposing a QCA based Programmable Logic
Array (PLA) implemented by a combination of AND
and OR planes. Each PLA cell can be used as logic or
as “wire” thus achieving a flexible architecture.

Yet another approach was suggested by Huang et
al. [6] for tile-based QCA logic synthesis, where the
cells are arranged in regular K×K tiles. Such tiles
might be fully or partially populated, producing
majority-like and inverter functions. They

demonstrated that the 3x3 cell tiles show much
promise for efficient designs.

2.4. ESOP vs. SOP Logic Synthesis

In standard Sum-of-Products (SOP) logic synthesis,
the required circuit is converted into a list of cubes
which are inclusively OR-ed together to form the
required output. It is crucial to minimize the number of
cubes and their sizes (number of literals that are AND-
ed in the cube) in order to achieve the most efficient
synthesis results. Heuristic tools like MINI and
Espresso find optimal or near-optimal minimization of
SOPs [2,11].

Exclusive-OR-Sum-of-Products (ESOP) synthesis
is an alternative to SOP synthesis in which the cubes
are exclusively OR-ed together. Important sub-groups
of ESOP are the Reed-Muller expressions which were
gradually developed over the past seventy years [13].
Interest in ESOP synthesis increased in the early 90s
when Sasao and Besslich [12] noted that on average,
ESOPs require fewer products than corresponding
SOP forms. However, it is well known that a given
technique for subsets of the ESOP family (e.g. PPRM,
FPRM, KRO, PSDRM, PSDKRO, or GRM) may score
much more worth than SOP based synthesis in
particular applications [11]. Fleisher et al. [4]
developed a computer algorithm that minimizes Reed-
Muller canonical forms which examine an EXOR cube
in a parallel way to the work described in Section 2.3..

We are motivated by the potential of obtaining
better minimization of arbitrary binary functions using
ESOPs as opposed to standard SOP synthesis for
application to QCA circuit synthesis. This ESOP
investigation is further motivated in view of the better
testability that is usually obtained with ESOP designs
[11,13].

3. Our Approach

In this research we compare the size and delay of
QCA majority gate based virtual circuits that are
formed by either SOP or ESOP synthesis of standard
benchmarks (in two level *.PLA format). In the first
step of our research we perform minimizations in the
classical logic sense. We then use our estimation
program to determine and compare the size and cost of
our SOP and ESOP minimizations when they are
mapped to QCA majority gate technology. We use
ESPRESSO to minimize our benchmarks for SOP
minimizations, and EXORCISM4, a tool by
Mishchenko and Perkowski [8] to minimize our
benchmarks in ESOP form. Since EXORCISM4 uses a
PLA input format, we provide this tool with the
ESPRESSO output files. We have verified that the size

of ESOP implementations by the EXORCISM4 tool
when input with the disjoint version of the PLA file
(ESPRESSO –Ddisjoint) is equal to the size achieved
with the SOP minimized version of the PLA file.
Before we describe our test flow, we investigate multi-
input XOR implementations with QCA majority gates
and compare them with the corresponding AND/OR
implementation.

3.1. Implementing Multi-input XOR Gates by
3-input Majority Gates

A 2-input XOR circuit can be realized with three 3-
input majority gates as shown in Fig. 4. The circuit
performs the well known function

__
bababa +=⊕ (1)

and it uses two majority gates to implement the AND
functions and one majority gate to implement the OR.
All these majority gates are of the first kind, in
accordance with [9]. The schematic diagram of this
gate is also shown in Fig. 4.

Figure 4: 2-input XOR gate use 3 majority gates.

Schematic symbol shown on the right

A naïve implementation of a 3-input XOR gate can
be achieved by connecting two XOR2 gates as shown
in Fig. 5.a.

(a)

(b)

Figure 5: 3-input XOR gate. (a) Naïve
implementation with 2-input XOR gates.

 (b) minimized implementation and its symbol

This implementation is fairly inefficient as it
requires a total of 6 majority gates of the first kind. A
better implementation of the XOR3 gate is illustrated
in Fig. 5.b. Here we efficiently use only 3 majority
gates of the second kind. We can see that the XOR2
gate is equivalent to the minimized XOR3 gate of Fig.
5.b. with one input set to 0, performing

0+⊕=⊕ baba (2)

Fig. 6 explores the architecture of XOR gates with

4,5,6,7,8, and 9 inputs. These results indicate that only
XOR3, XOR5, XOR7 and XOR9 are relatively
efficient in the sense that they exclusively use majority
gates of the second kind. Although we assume,
following [9], that once all inputs of the 3-input
majority gate are used we have a relatively efficient
implementation, it is still possible that the techniques
shown in [19] combined with factoring or
decomposition may still improve our results. However,
our construction provides a reasonable baseline
estimation of the complexity of the general k-input
XOR QCA implementation.

(a) 4-in XOR

(b) 5-in XOR

(c) 6-in XOR

(d) 7-in XOR

(e) 8-in XOR

(f) 9-in XOR

Figure 6: Implementation of 4, 5, 6, 7, 8, and 9
input XOR gates

We summarize our analysis for the number of

majority gates (circuit size) and number of levels
(delay) in Table 1. We note that each XOR3 circuit in
Fig. 6 also requires 3 inverters, which incur higher cost
in QCA versus CMOS technology. The more efficient
implementations are marked in bold in Table 1.

TABLE 1
SIZE AND DELAY OF MULTI-INPUT XOR GATES IN QCA

Inputs 2 3 4 5 6 7 8 9
Majority gates 3 3 6 6 9 9 12 12
Inverters 2 3 5 6 8 9 11 12
Levels 2 2 4 4 4 4 4 4

Based on this construction, the number of levels dxor

is:
 ⎡ ⎤nd xor 3log2×= (3)
The number of 3-input majority gates mxor is

⎥⎦
⎥

⎢⎣
⎢×=

2
3 nmxor

 (4)

The number of inverters ixor is

even
odd

is
is

n
n

if
if

m
m

i
⎩
⎨
⎧

−
=

1
 (5)

 Clearly, the complexity of XOR implementation is
O(log3n) delay and O(n) in size.

For example, an XOR10 requires 14 majority gates,
13 inverters, and has a delay of 4.

3.3. Implementing Multi-input AND/OR Gates
by 3-input Majority Gates

We intuitively construct a multi-input AND or OR

gate using majority gates of the first kind arranged in a
binary tree-like architecture. Fig. 7 illustrates the
construction of a 9-input gate. Note that setting S to 0
selects the AND functions, while S=1 selects the OR
function.

Figure 7: Implementation of a 9-input AND or

OR gate. The AND function is selected when the
select line S=0, the OR functions selected when S=1

Based on this construction, the number of levels

dand is:
 (6) ⎡ nd and 2log= ⎤
The number of 3-input majority gates m is

1−= nmand (7)
The OR and AND functions have the same size and

delay since the only difference is the value of S. Notice
that the OR/AND construction follows the same
asymptotic complexity (O(log2n) delay and O(n) size)
as the XOR construction. However, it is clear that even
before considering the extra cost of inverters for the
XOR construction, the AND/OR is significantly
smaller.

3.3. Comparison between SOP and ESOP
Virtual Implementations

An overview of our approach is shown in Fig. 8. In
our pre-processing step, the benchmark files in the
*.pla format are minimized by ESPRESSO to produce
the SOP cube list. The resulting files are input to
EXORCISM4 to produce corresponding ESOP cube
lists in a *.esop file. For size comparisons between
benchmark files in the *.pla and *.esop formats, the
reader is asked to refer to [8].

Our QCAexor tool accepts both the *.pla and
*.esop forms of the investigated benchmark file. The
tool matches the individual outputs and works on one
output at a time. Using the size and delay functions of
sections 3.1 and 3.2, QCAexor estimates the size of the
SOP cube lists when implemented in majority gates.
Similarly, it estimates the size and delay of the ESOP
cube list. The tool also logs the number of inverters
required by the XOR gate implementation since
inverters are expensive resources for QCA. After its’
analysis is complete, QCAexor saves the comparison
results in a comma delimited file *.cvs. The data in the
*.cvs is shown in the tables 2-5 of Section 4.

The virtual implementations based on the
constructions of section 3.1 and 3.2 require the ESOP
cube list to be implemented by one multi-input XOR
function and several multi-input AND functions.
Similarly, the SOP cube list uses the simpler OR
implementation. Therefore, it is expected that ESOP
synthesis may show a gain over SOP synthesis only
when the number of cubes (that is, the size of the
XOR) and their sizes are smaller. For this reason, we
found it useful to make the comparison per each output
in the ON-list rather than the entire circuit (which is
the common practice when considering standard
CMOS logic [8]).

Figure 8: An overview of our QCAexor Tool

We emphasize that for this research, we use general

EXOR minimization (as provided by the EXORCISM4
tool). We note that Falkowski and Kannurao [21]
suggested a method to identify disjunctive
decomposition using majority gates for balanced
Boolean functions based on the coefficients of their
Walsh spectrum. We plan to consider using such

ectral approaches in our future research.

4.

and function 13, which is identical to the XOR form

me

P form
instead of SOP, and it is computed as follows:

AIN = 100% (SOPsize–ESOsize–ESOPinverters)/SOP size.

our approach to investigate each output individually as

sp

 Experimental Results
We first found that it is not possible for an ESOP

minimization to produce better results for 3-input
general Boolean functions than the reduction obtained
by the algebraic and K-map methods of Section 2.2.
This result was expected since a simple XOR of 2
variables consumes three majority gates while an
inclusive OR of 2 variables is implemented by a single
majority gate. In fact, after minimizing the 13 standard
functions of [19] in ESOP form, we were able to
obtain several instances of smaller cubes but the
complexity of the 2-input XOR implementation caused
the circuits to use more majority gates. The only
exceptions were the trivial single cube function f=1

cb⊕⊕ as is shown in Fig. 6.
We have analyzed a large number of the standard

PLA benchmarks and show representative results in
Tables 2-5. In the tables, the first column depicts the
current output investigated in the table rows. Columns
2-4 show the results for that output using the SOP
specification data and column 5-8 shows the results
using the ESOP data. The second and fifth columns
show the number of products associated with the
output. The third and sixth columns show the total size
in majority gates. For ESOP implementations, column
7 shows the extra number of inverters required by the
top XOR gate. We show the maximum delay, as

a

asured by majority gate levels, in columns 4 and 8.
The GAIN ESOP column shows the size benefit (if

any) when an output is implemented in ESO

G

A negative result indicates that the SOP form

produces implementations of smaller size than ESOP
forms. Table 2 shows the results the benchmark
ALU4.PLA. The Espresso minimization of this 14
input and 8 output files had 575 cubes, while the
EXROCISM4 minimization produced 426 cubes. The
large negative results for outputs 0, 2 and 3 validates

these negative results would clearly mask the benefit
of ESOP implementation for outputs 1,4,5, and 6.

TABLE 2
COMPARISON OF ALU4.PLA – 14 INPUTS/8 OUTPUTS

Out SOP

prds
SOP
size

SOP
delay

ESOP
prds

ESOP
size

ESOP
invs

ESOP
delay

GAIN
ESOP

0 16 67 7 31 218 45 7 -292%
1 12 51 6 5 15 6 6 58%
2 50 247 9 51 466 75 9 -119%
3 72 423 10 130 1327 195 10 -259%
4 186 1594 12 53 481 78 12 64%
5 90 614 10 25 161 36 10 67%
6 36 206 9 9 37 12 9 76%
7 182 1927 12 210 2183 315 12 -29%

The VG2.PLA benchmark shown in Table 3
demonstrates a case where ESOP synthesis should not
be used at all. In fact, for this 25 input and 8 output
benchmark, ESPRESSO minimized it to 110 cubes
while EXORCISM4 minimized to 184 cubes.

TABLE 3
COMPARISON OF VG2.PLA – 25 INPUTS/8 OUTPUTS

Out SOP

prds
SOP
size

SOP
delay

ESOP
prds

ESOP
size

ESOP
invs

ESOP
delay

GAIN
ESOP

0 5 46 6 7 74 9 6 -80%
1 10 173 9 14 263 21 9 -64%
2 5 46 6 7 73 9 6 -78%
3 10 103 8 22 249 33 8 -173%
4 40 235 9 84 813 126 9 -299%
5 5 16 4 7 31 9 4 -150%
6 30 161 8 66 550 99 8 -303%
7 5 16 4 7 31 9 4 -150%

The remaining examples for the 5XP1.PLA and the

DC2.PLA clearly indicate that there is a potential when
selectively using ESOP minimizations.

TABLE 4
COMPARISON OF 5XP1.PLA – 7 INPUTS/10 OUTPUTS

Out SOP

prds
SOP
size

SOP
delay

ESOP
prds

ESOP
size

ESOP
invs

ESOP
delay

GAIN
ESOP

0 12 50 6 8 37 12 6 2%
1 12 54 7 12 62 18 7 -48%
2 19 86 8 14 57 21 8 9%
3 15 62 6 8 27 12 6 37%
4 10 38 6 6 17 9 6 31%
5 5 15 4 3 6 3 4 40%
6 8 34 6 4 7 6 6 61%
7 2 3 0 2 3 3 0 -100%
8 1 0 0 1 0 0 0 0%
9 3 10 3 3 14 3 3 -70%

TABLE 5
COMPARISON OF DC2.PLA – 8 INPUTS/7OUTPUTS

Out SOP

prds
SOP
size

SOP
delay

ESOP
prds

ESOP
size

ESOP
invs

ESOP
delay

GAIN
ESOP

0 4 17 5 4 22 6 5 -64%
1 7 40 6 9 49 12 6 -52%
2 10 52 7 11 57 15 7 -38%
3 12 70 7 15 84 21 7 -50%
4 9 49 6 7 31 9 6 18%
5 8 44 6 6 31 9 6 9%
6 1 0 0 1 0 0 0 0%

 We summarize our results with various benchmarks
in Table 6. Column 4 indicates the total number of
cubes in the ESPRESSO minimization of the
benchmark, while column 5 shows the minimization
results with EXORCISM4. In column 5 we show how
many of the outputs can be implemented based on the
ESOP minimization with a gain over the results with
SOP minimization. We also show the best gain and the
worst loss achieved during the processing of all the
outputs individually.

TABLE 6
POTENTIAL GAIN IN USING ESOP MINIMIZATION PRIOR TO QCA

MAJORITY GATE IMPLEMENTATION

Benchmark Inputs Outputs

ESPR.
Minim.

EX-4
Minim.

ESOP
GAINS

Best
gain

Worst
loss

5xp1.pla 7 10 65 31 6 of 10 61% -100%

dc2.pla 8 7 39 32 3 of 7 18% -64%

alu1.pla 12 8 19 16 0 of 8 0% -150%

seq.pla 41 35 336 246 6 of 35 74% -333%

vg2.pla 25 8 110 184 0 of 8 none -303%

alu4.pla 14 8 575 426 4 of 8 76% -259%

9sym.pla 9 1 86 51 1 of 1 8% none

c8.pla 28 18 79 50 4 of 18 31% -166%

z5xp1.pla 7 10 65 33 9 of 10 89% -20%

tial.pla 14 8 581 428 4 of 4 76% -317%

x6dn 39 5 82 95 0 of 5 none -120%

vda 17 39 93 87 4 of 39 12% -2820%

It is important to note that QCAexor was able to

perform the entire analysis for all our benchmarks at a
fraction of a second. For this reason, we did not report
timing in the experimental results. Therefore,
combining our tool with EXORCISM4 and ESRESSO
will not significantly extend the CPU time needed for
the initial SOP or ESOP minimization step.

5. Conclusions and Future Improvements

We have investigated the methodical construction
of multi-variable XOR, AND, and OR gates using
native 3-input majority gates in QCA-based
architectures. While we have not proved that our

constructions are optimal, they clearly provide easily
computable upper bounds for the size and delay
expected from QCA complex structures.

We have developed an estimation tool, QCAexor,
that can determine if a given output should be
minimized using SOP or ESOP forms prior to actual
QCA synthesis. We demonstrated that significant size
reduction can be achieved in most standard
benchmarks for at least some of the outputs. The
estimation time to predict if a given output should be
implement based on ESOP or SOP minimization is
extremely low.

In the future, we plan to investigate the potential of
using spectral techniques instead of (or in addition to)
the general EXOR minimization used in this research.

ACKNOWLEDGMENT

The authors thank Alan Mischenko for providing
the EXCORSICM4 tool used in this research.

References
[1] I. Amlani, A.O. Orlov, G.L. Snider and C.S. Lent,

“Demonstration of a functional quantum-dot cellular
automata cell”, J. Vac. Sci. Technol., B, 16, 1998, pp.
3795-3799.

[2] R.K. Brayton, G.D. Hachtel, C.T. McMullen and A.L.M.
Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, Botson, 1984.

[3] B.J. Falkowski and S. Kannurao, “Spectral theory of
disjunctive decomposition for balanced Boolean
functions”, 13th Int’l Conf on VLSI Design, 2000, pp.
506-511.

[4] H. Fleisher, M. Tavel, J. Yeager, “A computer algorithm
for minimizing Reed-Muller canonical forms”, IEEE
Trans. Comp. Vol. 36. No. 2, February 1987, pp. 247-
250.

[5] E. Goto, “The parametron: a digital computer element
which utilized parametric oscillation”, In Proc. IRE,
Vol. 47, No. 8, 1959, pp. 1304-1316.

[6] J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and
F. Lombardi, “Tile-based QCA design using majority-
like logic primitives”, J. Emerging Tech. in Comp. Sys.
(JETC), Vol. 1, No. 3, Oct. 2005, pp. 163-185.

[7] C.S. Lent, P.D. Tougaw, and W. Porod, “Bistable
saturation of in coupled quantum dot for quantum
cellular automata”, In Appl. Phys. Letters, Vol. 62, No.
7, February 1993, pp. 714-716.

[8] A. Mischenko and M. Perkowski, “Fast heuristic
minimization of exclusive-sums-of-products”, 5th Int’l
Reed-Muller Workshop, 2001, pp. 242-250.

[9] F. Miyata, “Realization of arbitrary logical functions
using majority element”, IEEE TEC, Vol. EC-12, No. 3,
1963, pp. 183-191.

[10] H. Qi, S. Sharma, Z.H. Li, G.L. Snider, A. Orlov, C.S.
Lent and T.P. Fehlner, “Molecular quantum cellular

automata cells”, In J. Am. Chem. Soc. 2003, 125, pp
15250-15259.

[11] T. Sasao, Switching Theory for Logic Synthesis,
Kluwer Academic Publishers, 1999.

[12] T. Sasao and Ph. W. Besslich, “On the complexity of
MOD-2 sum PLA’s”, IEEE Trans. On Computers, Vol.
34, No. 2, 1990, pp. 262-266.

[13] R.S. Stanković, C. Moraga and J.T. Astola, “Reed-
Muller expressions in the previous decade”, In 5th Int’l
Reed-Muller Workshop, 2001, pp. 7-26.

[14] P.D. Tougaw, C.S. Lent, and W. Porod, “Bistable
saturation in coupled quantum dot cells”, In J. Appl.
Phys, Vol. 74, No. 5, September 1993, pp. 3558-3566.

[15] K. Walus, T.J. Dysart, G.A. Jullien, and R.A. Budiman,
“QCADesigner: a rapid design and Simulation tool for
quantum-dot cellular automata”, IEEE Trans. on
Nanotechnology , Vol. 3, No. 1, March 2004, pp. 26 –
31.

[16] K, Walus and G.A. Jullien, “Design tools for an
emerging SoC technology: quantum-dot cellular
automata”, Proc. of the IEEE, Vol. 94, No. 6, June
2006, pp. 1225 – 1244.

[17] K. Walus, G. Schulhof, G., G.A. Jullien, R. Zhang, and
W. Wang, “Circuit design based on majority gates for
applications with quantum-dot cellular automata”, 38th
Asilomar Conference on Signals, Systems and
Computers, Vol. 2, Nov. 2004, pp. 1354 - 1357.

[18] S.H. Xiaobo, M Crocker, M. Niemier, Y. Minjun and G.
Bernstein, ”PLAs in quantum-dot cellular automata”,
Proc. of Emerging VLSI Technologies and Architectures
(ISVLSI’06), March 2006, 6 pp.

[19] R. Zhang, K. Walus, W. Wei, and G.A. Jullien, “A
method of majority logic reduction for quantum cellular
automata”, In IEEE Trans.on Nanotechnology, Vol, 3,
No. 4, Dec. 2004, pp 443 – 450.

[20] R. Zhang and N.K. Jha, “Threshold/majority logic
synthesis and concurrent error detection targeting
nanoelectronic implementations”, In GLSVLSI’06, April
2006, pp. 8-13.

.

	1. Introduction
	2. Background and Related Work
	2.1. QCA Majority Gate and Inverters
	2.2. Early work on 3-input Majority Gate Synthesis
	Early interest in logic synthesis based on majority voters w
	2.3. Recent Work on Majority Logic Reduction
	2.4. ESOP vs. SOP Logic Synthesis

	3. Our Approach
	3.1. Implementing Multi-input XOR Gates by 3-input Majority
	3.3. Implementing Multi-input AND/OR Gates by 3-input Majori
	3.3. Comparison between SOP and ESOP Virtual Implementations

	4. Experimental Results
	ACKNOWLEDGMENT
	References

