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Abstract 

We investigate the benefit of using ESOP 
minimization in the synthesis of quantum-dot cellular 
automata (QCA). We determine the size and delay of 
multi-input XOR and AND/OR gates when 
implemented in using 3-input majority gates that are 
easily realized in QCA, and use our results in our 
QCAexor estimator tool. We found that most 
benchmarks have at least one output that can be better 
minimized using EXOR techniques.  
 
1. Introduction 

It has been projected that by around 2015, 
mainstream CMOS technology will not be able to 
continue along Moore’s curve of speed and density 
that currently doubles every 18 months. Emerging 
nanotechnologies have been developed in the hope of 
achieving performance that go beyond the end-of-
curve limits of CMOS. Quantum-dot Cellular 
Automata (QCA) is such a promising technology. 

QCA was first suggested by Lent, et al. in 1993 
[7,14].  Promising size density of several orders of 
magnitude smaller than CMOS, fast switching time in 
the range of 10-12 to 10-15 seconds, and extremely low 
power, has caused QCA to become a topic of intense 
research.   Experimental circuits utilizing metal dots 
were demonstrated in the late 90s [1], followed by the 
recent development of molecular QCA circuits [10], 
that put QCA at the front line of emerging 
nanotechnologies.  

QCA is radically different than today’s CMOS 
technology. Information in QCA propagates along a 
line of cells via Coulombic charge interaction as 
opposed to conventional electronic current in CMOS 
devices. Unlike the gate versatility of CMOS, QCA 
technology natively implements the 3-input majority 
gate as the basic building block. QCA also requires a 
new multi-zone clock mechanism for proper data 
propagation.  Recently, the QCADesigner synthesis 
and simulation tool was developed by Walus et al. 

[15,16], allowing convenient experimentation with 
virtual QCA circuits. 

In this paper we are interested in how to use the 
QCA native 3-input majority gate in an efficient way 
to synthesize logic circuits. More particularly, we 
investigate techniques for direct transformation of 
Exclusive-OR Sum-of-Products (ESOP) forms of logic 
description into an implementation with 3-input 
majority gates.  It is well known that ESOP 
minimization of the logic description can often (but not 
always) produce better results (less and smaller cubes) 
than the more common inclusive-OR Sum-of-Products 
(SOP) forms [3,4,8,11,12, 13].  

The paper is organized as follows. Quantum-dot 
Cellular Automata circuits and related work on 
majority logic reductions are described in more detail 
in Section 2.  In Section 3, we describe our synthesis 
approach using ESOP minimization of the target 
circuit. Section 4 contains experimental results. 
Conclusions and areas of future improvement are 
presented in Section 5. 
 
2. Background and Related Work  

The basic QCA cell can be schematically depicted 
as a square substrate with four quantum dots located at 
each of cell’s four corners [7].  Each cell contains only 
two free electrons so that they tend to be in the two 
bistable arrangements shown in Fig. 1.a.  The electrons 
cannot occupy two adjacent dots due to the Coulombic 
repulsion between them. We arbitrarily select the first 
cell as logic 1 encoding, leaving the second cell to 
encode logic 0.  

The same Coulombic repulsion aligns the data 
within the cells when they are arranged along a “wire” 
as shown in Fig. 1.b. Here we assume that information 
flows from left to right and the cells in the dotted box 
are next to respond. Various clocking mechanisms, as 
described in [16] are used to enforce proper data 
propagation. It should be noted that since no current is 
flowing between the cells, QCA is essentially a very 



low power technology (even though current is used in 
some implementations for the clocking zones [18]).  

 

 
Figure 1: Basic QCA cell (a) and a wire (b) 

 
2.1. QCA Majority Gate and Inverters  

The native gate for QCA is created when five cells 
are placed adjacently as shown in Fig. 2. The result is a 
majority gate with three inputs and one output. This 
three input majority gate performs the binary function 
M(a,b,c) = ab + bc + ac. Basic two variable AND and 
OR functions can be readily implemented by M(a,b,0) 
and M(a,b,1) respectively. However, the majority gate 
is not a universal gate since it is unable to implement 
the NOT function. Therefore, majority logic gates must 
be combined with inverter circuits in order to 
implement arbitrary logic. 
 

 
Figure 2: QCA 3-input majority gate 
 
Fig. 3 shows a fork inverter. The output cell is 

affected by both end cells of the fork to insure reliable 
operations. Other inverters that use 450 and 900 cells 
orientations have been developed [6].   

 

 
Figure 3: QCA fork inverter 

 
2.2. Early work on 3-input Majority Gate 
Synthesis  

Early interest in logic synthesis based on majority 
voters was briefly experienced in Japan during the late 

50s and early 60s due to the invention of the 
Parametron by E. Goto [5] and its inclusion in early 
Japanese computers [9].  The Parametron natively 
realized 3-input majority function but quickly became 
obsolete due to the emergence of high speed 
transistors. Miyata [9] distinguished between majority 
elements of the first kind, which implement the simple 
2-input AND or OR gates, and majority elements of 
the second kind where the third input is 
advantageously used to minimize the design. Since 
majority voter circuits require relatively complex 
implementation within mainstream CMOS circuits, 
they posed little interest as a building block for logic 
synthesis [3]. 
 
2.3. Recent Work on Majority Logic Reduction 

QCA prompted new research interest with 3-input 
majority gate synthesis. Zhang et al. [19] described an 
algebraic method for reducing the number of majority 
gates required to implement all arbitrary 3-variable 
Boolean functions. Observing the three-cube 
representation of such functions, there are 8 minterms 
that may be included, providing a total of 256 possible 
Boolean functions. They identify 13 standard functions 
which can be used with rotation and translation to 
represent any of these arbitrary 256 Boolean functions. 
They proposed minimal implementations of these 
functions using 3-input majority gates.  

Walus et al. [17] further refined their previous work 
in [19] to improve three of the standard function 
implementations using Karnaugh maps minimizations. 
Improvement is made when the total number of 
majority gates is reduced or when the number of levels 
(delay) is reduced.  Boolean functions of more than 3 
inputs must be factored (or use algebraic division) in 
order to decompose the function into 3-input functions 
that use this and the previous work.  Zhang and Jha 
[20] developed the MALS tool that produces 
optimized majority logic circuits. They use 
factorization methods in a pre-synthesis step that can 
reduce the size of the circuit. Their factorization 
technique is applied to the SOP representation of the 
desired logic. 

Another approach was presented by Xiaobo et al. 
[18] proposing a QCA based Programmable Logic 
Array (PLA) implemented by a combination of AND 
and OR planes. Each PLA cell can be used as logic or 
as “wire” thus achieving a flexible architecture.  

Yet another approach was suggested by Huang et 
al. [6] for tile-based QCA logic synthesis, where the 
cells are arranged in regular K×K tiles.  Such tiles 
might be fully or partially populated, producing 
majority-like and inverter functions. They 



demonstrated that the 3x3 cell tiles show much 
promise for efficient designs.  

 
2.4. ESOP vs. SOP Logic Synthesis 

In standard Sum-of-Products (SOP) logic synthesis, 
the required circuit is converted into a list of cubes 
which are inclusively OR-ed together to form the 
required output. It is crucial to minimize the number of 
cubes and their sizes (number of literals that are AND-
ed in the cube) in order to achieve the most efficient 
synthesis results. Heuristic tools like MINI and 
Espresso find optimal or near-optimal minimization of 
SOPs [2,11].  

Exclusive-OR-Sum-of-Products (ESOP) synthesis 
is an alternative to SOP synthesis in which the cubes 
are exclusively OR-ed together. Important sub-groups 
of ESOP are the Reed-Muller expressions which were 
gradually developed over the past seventy years [13]. 
Interest in ESOP synthesis increased in the early 90s 
when Sasao and Besslich [12] noted that on average, 
ESOPs require fewer products than corresponding 
SOP forms. However, it is well known that a given 
technique for subsets of the ESOP family (e.g. PPRM, 
FPRM, KRO, PSDRM, PSDKRO, or GRM) may score 
much more worth than SOP based synthesis in 
particular applications [11]. Fleisher et al. [4] 
developed a computer algorithm that minimizes Reed-
Muller canonical forms which examine an EXOR cube 
in a parallel way to the work described in Section 2.3..  

We are motivated by the potential of obtaining 
better minimization of arbitrary binary functions using 
ESOPs as opposed to standard SOP synthesis for 
application to QCA circuit synthesis. This ESOP 
investigation is further motivated in view of the better 
testability that is usually obtained with ESOP designs 
[11,13]. 

 
3. Our Approach 

In this research we compare the size and delay of 
QCA majority gate based virtual circuits that are 
formed by either SOP or ESOP synthesis of standard 
benchmarks (in two level *.PLA format). In the first 
step of our research we perform minimizations in the 
classical logic sense. We then use our estimation 
program to determine and compare the size and cost of 
our SOP and ESOP minimizations when they are 
mapped to QCA majority gate technology. We use 
ESPRESSO to minimize our benchmarks for SOP 
minimizations, and EXORCISM4, a tool by 
Mishchenko and Perkowski [8] to minimize our 
benchmarks in ESOP form. Since EXORCISM4 uses a 
PLA input format, we provide this tool with the 
ESPRESSO output files. We have verified that the size 

of ESOP implementations by the EXORCISM4 tool 
when input with the disjoint version of the PLA file 
(ESPRESSO –Ddisjoint) is equal to the size achieved 
with the SOP minimized version of the PLA file.  
Before we describe our test flow, we investigate multi-
input XOR implementations with QCA majority gates 
and compare them with the corresponding AND/OR 
implementation.  
 
3.1. Implementing Multi-input XOR Gates by 
3-input Majority Gates 

A 2-input XOR circuit can be realized with three 3-
input majority gates as shown in Fig. 4. The circuit 
performs the well known function 

__
bababa +=⊕                                            (1) 

 
and it uses two majority gates to implement the AND 
functions and one majority gate to implement the OR. 
All these majority gates are of the first kind, in 
accordance with [9]. The schematic diagram of this 
gate is also shown in Fig. 4. 

  

 
Figure 4: 2-input XOR gate use 3 majority gates. 

Schematic symbol shown on the right 
 

A naïve implementation of a 3-input XOR gate can 
be achieved by connecting two XOR2 gates as shown 
in Fig. 5.a. 

  
 
 
(a) 

 
 

 
 
(b) 

 
 

Figure 5: 3-input XOR gate. (a) Naïve 
implementation with 2-input XOR gates. 

 (b) minimized implementation and its symbol 
 



This implementation is fairly inefficient as it 
requires a total of 6 majority gates of the first kind.  A 
better implementation of the XOR3 gate is illustrated 
in Fig. 5.b. Here we efficiently use only 3 majority 
gates of the second kind.  We can see that the XOR2 
gate is equivalent to the minimized XOR3 gate of Fig. 
5.b. with one input set to 0, performing  

 
0+⊕=⊕ baba                                           (2) 

 
Fig. 6 explores the architecture of XOR gates with 

4,5,6,7,8, and 9 inputs. These results indicate that only 
XOR3, XOR5, XOR7 and XOR9 are relatively 
efficient in the sense that they exclusively use majority 
gates of the second kind.  Although we assume, 
following [9], that once all inputs of the 3-input 
majority gate are used we have a relatively efficient 
implementation, it is still possible that the techniques 
shown in [19] combined with factoring or 
decomposition may still improve our results. However, 
our construction provides a reasonable baseline 
estimation of the complexity of the general k-input 
XOR QCA implementation. 

 
 
(a) 4-in XOR 

 
 

 
 
(b) 5-in XOR 

 
 

 
 
(c) 6-in XOR 

 
 

 
 
(d) 7-in XOR 

 
 

 
 
 
(e) 8-in XOR 

 
 

 
 
 
 
(f) 9-in XOR 

 
 

Figure 6: Implementation of 4, 5, 6, 7, 8, and 9 
input XOR gates 

 
We summarize our analysis for the number of 

majority gates (circuit size) and number of levels 
(delay) in Table 1. We note that each XOR3 circuit in 
Fig. 6 also requires 3 inverters, which incur higher cost 
in QCA versus CMOS technology. The more efficient 
implementations are marked in bold in Table 1.  

TABLE 1 
SIZE AND DELAY OF MULTI-INPUT XOR GATES IN QCA 

Inputs 2 3 4 5 6 7 8 9 
Majority gates 3 3 6 6 9 9 12 12 
Inverters 2 3 5 6 8 9 11 12 
Levels 2 2 4 4 4 4 4 4 

   
Based on this construction, the number of levels dxor 

is: 
 ⎡ ⎤nd xor 3log2×=                                                   (3)  
The number of 3-input majority gates mxor is  
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The number of inverters ixor is 
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=

1
                                    (5) 

 Clearly, the complexity of XOR implementation is 
O(log3n) delay and O(n) in size.  

For example, an XOR10 requires 14 majority gates, 
13 inverters, and has a delay of 4. 

 



3.3. Implementing Multi-input AND/OR Gates 
by 3-input Majority Gates  

 
We intuitively construct a multi-input AND or OR 

gate using majority gates of the first kind arranged in a 
binary tree-like architecture. Fig. 7 illustrates the 
construction of a 9-input gate.  Note that setting S to 0 
selects the AND functions, while S=1 selects the OR 
function.    

 
 

 
Figure 7: Implementation of a 9-input AND or 

OR gate. The AND function is selected when the 
select line S=0, the OR functions selected when S=1 

 
Based on this construction, the number of levels 

dand is: 
                                                      (6)  ⎡ nd and 2log= ⎤
The number of 3-input majority gates m is  

1−= nmand                                                         (7) 
The OR and AND functions have the same size and 

delay since the only difference is the value of S. Notice 
that the OR/AND construction follows the same 
asymptotic complexity (O(log2n) delay and O(n) size) 
as the XOR construction. However, it is clear that even 
before considering the extra cost of inverters for the 
XOR construction, the AND/OR is significantly 
smaller.   

 
3.3. Comparison between SOP and ESOP 
Virtual Implementations  

An overview of our approach is shown in Fig. 8. In 
our pre-processing step, the benchmark files in the 
*.pla format are minimized by ESPRESSO to produce 
the SOP cube list. The resulting files are input to 
EXORCISM4 to produce corresponding ESOP cube 
lists in a *.esop file. For size comparisons between 
benchmark files in the *.pla and *.esop formats, the 
reader is asked to refer to [8].  

Our QCAexor tool accepts both the *.pla and 
*.esop forms of the investigated benchmark file. The 
tool matches the individual outputs and works on one 
output at a time. Using the size and delay functions of 
sections 3.1 and 3.2, QCAexor estimates the size of the 
SOP cube lists when implemented in majority gates. 
Similarly, it estimates the size and delay of the ESOP 
cube list. The tool also logs the number of inverters 
required by the XOR gate implementation since 
inverters are expensive resources for QCA. After its’ 
analysis is complete, QCAexor saves the comparison 
results in a comma delimited file *.cvs. The data in the 
*.cvs is shown in the tables 2-5 of Section 4. 

The virtual implementations based on the 
constructions of section 3.1 and 3.2 require the ESOP 
cube list to be implemented by one multi-input XOR 
function and several multi-input AND functions. 
Similarly, the SOP cube list uses the simpler OR 
implementation.  Therefore, it is expected that ESOP 
synthesis may show a gain over SOP synthesis only 
when the number of cubes (that is, the size of the 
XOR) and their sizes are smaller.  For this reason, we 
found it useful to make the comparison per each output 
in the ON-list rather than the entire circuit (which is 
the common practice when considering standard 
CMOS logic [8]).  
 

 
Figure 8: An overview of our QCAexor Tool  



 
We emphasize that for this research, we use general 

EXOR minimization (as provided by the EXORCISM4 
tool). We note that Falkowski and Kannurao [21] 
suggested a method to identify disjunctive 
decomposition using majority gates for balanced 
Boolean functions based on the coefficients of their 
Walsh spectrum. We plan to consider using such 

ectral approaches in our future research. 

4.

and function 13, which is identical to the XOR form 

 
me

P form 
instead of SOP, and it is computed as follows: 

AIN = 100% (SOPsize–ESOsize–ESOPinverters)/SOP size. 

our approach to investigate each output individually as 

sp
 

 Experimental Results 
We first found that it is not possible for an ESOP 

minimization to produce better results for 3-input 
general Boolean functions than the reduction obtained 
by the algebraic and K-map methods of Section 2.2. 
This result was expected since a simple XOR of 2 
variables consumes three majority gates while an 
inclusive OR of 2 variables is implemented by a single 
majority gate. In fact, after minimizing the 13 standard 
functions of [19] in ESOP form, we were able to 
obtain several instances of smaller cubes but the 
complexity of the 2-input XOR implementation caused 
the circuits to use more majority gates.  The only 
exceptions were the trivial single cube function f=1 

cb⊕⊕  as is shown in Fig. 6. 
We have analyzed a large number of the standard 

PLA benchmarks and show representative results in 
Tables 2-5. In the tables, the first column depicts the 
current output investigated in the table rows. Columns 
2-4 show the results for that output using the SOP 
specification data and column 5-8 shows the results 
using the ESOP data. The second and fifth columns 
show the number of products associated with the 
output. The third and sixth columns show the total size 
in majority gates. For ESOP implementations, column 
7 shows the extra number of inverters required by the 
top XOR gate. We show the maximum delay, as

a

asured by majority gate levels, in columns 4 and 8. 
The GAIN ESOP column shows the size benefit (if 

any) when an output is implemented in ESO

 
G
 
A negative result indicates that the SOP form 

produces  implementations of smaller size than ESOP 
forms. Table 2 shows the results the benchmark 
ALU4.PLA. The Espresso minimization of this 14 
input and 8 output files had 575 cubes, while the 
EXROCISM4 minimization produced 426 cubes.  The 
large negative results for outputs 0, 2 and 3 validates 

these negative results would clearly mask the benefit 
of ESOP implementation for outputs 1,4,5, and 6.  
 

TABLE 2 
COMPARISON OF ALU4.PLA – 14 INPUTS/8 OUTPUTS 

 
Out SOP 

prds 
SOP 
size 

SOP 
delay 

ESOP 
prds 

ESOP 
size 

ESOP 
invs 

ESOP 
delay 

GAIN 
ESOP 

0 16 67 7 31 218 45 7 -292% 
1 12 51 6 5 15 6 6 58% 
2 50 247 9 51 466 75 9 -119% 
3 72 423 10 130 1327 195 10 -259% 
4 186 1594 12 53 481 78 12 64% 
5 90 614 10 25 161 36 10 67% 
6 36 206 9 9 37 12 9 76% 
7 182 1927 12 210 2183 315 12 -29% 
 

The VG2.PLA benchmark shown in Table 3 
demonstrates a case where ESOP synthesis should not 
be used at all. In fact, for this 25 input and 8 output 
benchmark, ESPRESSO minimized it to 110 cubes 
while EXORCISM4 minimized to 184 cubes.  
 

TABLE 3 
COMPARISON OF VG2.PLA – 25 INPUTS/8 OUTPUTS 

 
Out SOP 

prds
SOP 
size

SOP 
delay

ESOP 
prds 

ESOP 
size 

ESOP 
invs 

ESOP 
delay 

GAIN 
ESOP 

0 5 46 6 7 74 9 6 -80% 
1 10 173 9 14 263 21 9 -64% 
2 5 46 6 7 73 9 6 -78% 
3 10 103 8 22 249 33 8 -173%
4 40 235 9 84 813 126 9 -299%
5 5 16 4 7 31 9 4 -150%
6 30 161 8 66 550 99 8 -303%
7 5 16 4 7 31 9 4 -150%

 
The remaining examples for the 5XP1.PLA and the 

DC2.PLA clearly indicate that there is a potential when 
selectively using ESOP minimizations.  
 

TABLE 4 
COMPARISON OF 5XP1.PLA – 7 INPUTS/10 OUTPUTS 

 
Out SOP 

prds
SOP 
size 

SOP 
delay 

ESOP 
prds 

ESOP 
size 

ESOP 
invs 

ESOP 
delay 

GAIN 
ESOP 

0 12 50 6 8 37 12 6 2% 
1 12 54 7 12 62 18 7 -48% 
2 19 86 8 14 57 21 8 9% 
3 15 62 6 8 27 12 6 37% 
4 10 38 6 6 17 9 6 31% 
5 5 15 4 3 6 3 4 40% 
6 8 34 6 4 7 6 6 61% 
7 2 3 0 2 3 3 0 -100% 
8 1 0 0 1 0 0 0 0% 
9 3 10 3 3 14 3 3 -70% 
 

 
 
 
 



TABLE 5 
COMPARISON OF DC2.PLA – 8 INPUTS/7OUTPUTS 

 
Out SOP 

prds 
SOP 
size 

SOP 
delay 

ESOP 
prds 

ESOP 
size 

ESOP 
invs 

ESOP 
delay 

GAIN 
ESOP 

0 4 17 5 4 22 6 5 -64% 
1 7 40 6 9 49 12 6 -52% 
2 10 52 7 11 57 15 7 -38% 
3 12 70 7 15 84 21 7 -50% 
4 9 49 6 7 31 9 6 18% 
5 8 44 6 6 31 9 6 9% 
6 1 0 0 1 0 0 0 0% 
 
  We summarize our results with various benchmarks 
in Table 6. Column 4 indicates the total number of 
cubes in the ESPRESSO minimization of the 
benchmark, while column 5 shows the minimization 
results with EXORCISM4. In column 5 we show how 
many of the outputs can be implemented based on the 
ESOP minimization with a gain over the results with 
SOP minimization. We also show the best gain and the 
worst loss achieved during the processing of all the 
outputs individually. 

TABLE 6 
POTENTIAL GAIN IN USING ESOP MINIMIZATION PRIOR TO QCA 

MAJORITY GATE IMPLEMENTATION 

 
Benchmark Inputs Outputs 

ESPR. 
Minim. 

EX-4 
Minim. 

ESOP  
GAINS 

Best  
gain 

Worst  
loss 

5xp1.pla 7 10 65 31 6 of 10 61% -100%

dc2.pla 8 7 39 32 3 of  7 18% -64%

alu1.pla 12 8 19 16 0 of 8 0% -150%

seq.pla 41 35 336 246 6 of 35 74% -333%

vg2.pla 25 8 110 184 0 of 8 none -303%

alu4.pla 14 8 575 426 4 of 8 76% -259%

9sym.pla 9 1 86 51 1 of 1 8% none 

c8.pla 28 18 79 50 4 of 18 31% -166%

z5xp1.pla 7 10 65 33 9 of 10 89% -20%

tial.pla 14 8 581 428 4 of 4 76% -317%

x6dn 39 5 82 95 0 of 5 none -120%

vda 17 39 93 87 4 of 39 12% -2820%

 
It is important to note that QCAexor was able to 

perform the entire analysis for all our benchmarks at a 
fraction of a second.  For this reason, we did not report 
timing in the experimental results. Therefore, 
combining our tool with EXORCISM4 and ESRESSO 
will not significantly extend the CPU time needed for 
the initial SOP or ESOP minimization step.  
 
5.  Conclusions and Future Improvements 

We have investigated the methodical construction 
of multi-variable XOR, AND, and OR gates using 
native 3-input majority gates in QCA-based 
architectures.  While we have not proved that our 

constructions are optimal, they clearly provide easily 
computable upper bounds for the size and delay 
expected from QCA complex structures. 

We have developed an estimation tool, QCAexor, 
that can determine if a given output should be 
minimized using SOP or ESOP forms prior to actual 
QCA synthesis. We demonstrated that significant size 
reduction can be achieved in most standard 
benchmarks for at least some of the outputs. The 
estimation time to predict if a given output should be 
implement based on ESOP or SOP minimization is 
extremely low. 

In the future, we plan to investigate the potential of 
using spectral techniques instead of (or in addition to) 
the general EXOR minimization used in this research. 

 
ACKNOWLEDGMENT 

The authors thank Alan Mischenko for providing 
the EXCORSICM4 tool used in this research. 

 
References 
[1] I. Amlani, A.O. Orlov, G.L. Snider and C.S. Lent, 

“Demonstration of a functional quantum-dot cellular 
automata cell”, J. Vac. Sci. Technol., B, 16, 1998, pp. 
3795-3799. 

[2]  R.K. Brayton, G.D. Hachtel, C.T. McMullen and A.L.M. 
Sangiovanni-Vincentelli, Logic Minimization 
Algorithms for VLSI Synthesis, Kluwer Academic 
Publishers, Botson, 1984. 

[3]  B.J. Falkowski and S. Kannurao, “Spectral theory of 
disjunctive decomposition for balanced Boolean 
functions”, 13th Int’l Conf on VLSI Design, 2000, pp. 
506-511. 

[4]  H. Fleisher, M. Tavel, J. Yeager, “A computer algorithm 
for minimizing Reed-Muller canonical forms”, IEEE 
Trans. Comp. Vol. 36. No. 2, February 1987, pp. 247-
250. 

[5]  E. Goto, “The parametron: a digital computer element 
which utilized parametric oscillation”, In Proc. IRE, 
Vol. 47, No. 8, 1959, pp. 1304-1316. 

[6]   J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and 
F. Lombardi, “Tile-based QCA design using majority-
like logic primitives”, J. Emerging Tech. in Comp. Sys. 
(JETC), Vol. 1, No. 3, Oct. 2005, pp. 163-185. 

[7]  C.S. Lent, P.D. Tougaw, and W. Porod, “Bistable 
saturation of in coupled quantum dot for quantum 
cellular automata”, In Appl. Phys. Letters, Vol. 62, No. 
7, February 1993, pp. 714-716. 

[8] A. Mischenko and M. Perkowski, “Fast heuristic 
minimization of exclusive-sums-of-products”, 5th Int’l 
Reed-Muller Workshop, 2001, pp. 242-250. 

[9]  F. Miyata, “Realization of arbitrary logical functions 
using majority element”, IEEE TEC, Vol. EC-12, No. 3, 
1963, pp. 183-191. 

[10] H. Qi, S. Sharma, Z.H. Li, G.L. Snider, A. Orlov, C.S. 
Lent and T.P. Fehlner, “Molecular quantum cellular 



automata cells”, In J. Am. Chem. Soc. 2003, 125, pp 
15250-15259.  

[11] T. Sasao, Switching Theory for Logic Synthesis, 
Kluwer Academic Publishers, 1999. 

[12]  T. Sasao and Ph. W. Besslich, “On the complexity of 
MOD-2  sum PLA’s”, IEEE Trans. On Computers, Vol. 
34, No. 2, 1990, pp. 262-266. 

[13] R.S. Stanković, C. Moraga and J.T. Astola, “Reed-
Muller expressions in the previous decade”, In 5th Int’l 
Reed-Muller Workshop, 2001, pp. 7-26. 

[14] P.D. Tougaw, C.S. Lent, and W. Porod, “Bistable 
saturation in coupled quantum dot cells”, In J. Appl. 
Phys, Vol. 74, No. 5, September 1993, pp. 3558-3566. 

[15] K. Walus, T.J. Dysart, G.A. Jullien, and R.A. Budiman, 
“QCADesigner: a rapid design and Simulation tool for 
quantum-dot cellular automata”, IEEE Trans. on 
Nanotechnology , Vol. 3,  No. 1,  March 2004, pp. 26 – 
31. 

[16] K, Walus and G.A. Jullien, “Design tools for an 
emerging SoC technology: quantum-dot cellular 
automata”, Proc. of the IEEE, Vol. 94, No. 6, June 
2006, pp. 1225 – 1244. 

[17] K. Walus, G. Schulhof, G., G.A. Jullien, R. Zhang, and 
W. Wang, “Circuit design based on majority gates for 
applications with quantum-dot cellular automata”,  38th 
Asilomar Conference on Signals, Systems and 
Computers, Vol. 2, Nov. 2004, pp. 1354 - 1357. 

[18] S.H. Xiaobo, M Crocker, M. Niemier, Y. Minjun and G. 
Bernstein, ”PLAs in quantum-dot cellular automata”,  
Proc. of Emerging VLSI Technologies and Architectures 
(ISVLSI’06), March 2006, 6 pp. 

[19] R. Zhang, K. Walus, W. Wei, and G.A. Jullien, “A 
method of majority logic reduction for quantum cellular 
automata”, In IEEE Trans.on Nanotechnology, Vol, 3,  
No. 4,  Dec. 2004, pp 443 – 450. 

[20] R. Zhang and N.K. Jha, “Threshold/majority logic 
synthesis and concurrent error detection targeting 
nanoelectronic implementations”, In GLSVLSI’06, April 
2006, pp. 8-13. 

.  
 
  

 


	1. Introduction
	2. Background and Related Work
	2.1. QCA Majority Gate and Inverters
	2.2. Early work on 3-input Majority Gate Synthesis
	Early interest in logic synthesis based on majority voters w
	2.3. Recent Work on Majority Logic Reduction
	2.4. ESOP vs. SOP Logic Synthesis

	3. Our Approach
	3.1. Implementing Multi-input XOR Gates by 3-input Majority 
	3.3. Implementing Multi-input AND/OR Gates by 3-input Majori
	3.3. Comparison between SOP and ESOP Virtual Implementations

	4. Experimental Results
	ACKNOWLEDGMENT
	References

