
Direct Reed-Muller Transform of Digital Logic Netlists

Mitchell A. Thornton and Jennifer Dworak
Southern Methodist University

Dallas, Texas, USA

Abstract
A method for computing the Reed-Muller

spectrum of a digital logic circuit based on the
circuit topology is developed. The technique is
based on the definition and use of a transfer
matrix to characterize the circuit of interest. The
transfer matrix is computed through the use of
the structure of the circuit and the transfer
matrices of the individual logic gates. The
resulting transfer matrix describes the Boolean
domain response of the circuit. We next
formulate the transfer matrix in the Reed-Muller
domain that is also capable of being similarly
formulated directly from the structure of the
circuit. The result is that the Reed-Muller
spectrum of a circuit, or subcircuit partition, can
be computed directly thus alleviating the need to
first determine the switching function followed
by subsequent application of the RM transform.

1.0 INTRODUCTION

Many applications for spectral analysis of
digital logic circuits have been developed
including the use of the Reed-Muller family of
spectra. Central to these applications is the
computation of the spectra in an efficient manner
since resulting applications are often hampered
by the initial large computational expense of the
spectrum. Past methods rely upon transforming
the switching functions representing the circuit
behavior. Techniques to address the spectral
computation problem have been devised that
utilize cube list and decision diagram
representations, however, all of these approaches
are exponentially complex in the worst case
since the entire switching function must be
represented in some form prior to
transformation.

The concept of a transfer function describing
the input-output relation of a linear system is a
mature idea and is heavily used in electrical
circuit analysis. Such transfer functions have the
property of allowing for their construction based
on the transfer functions of individual system
components. This hierarchical construction of
transfer functions is useful for dealing with large
systems allowing the overall system
characterization to be achieved in a bottom-up
manner. Furthermore, such transfer functions

can be transformed to frequency domain
representations allowing for design and analysis
techniques to be employed in alternative basis
domains.

We describe a technique that enables
frequency domain analysis of digital logic
circuits through the use of the Reed-Muller
transform applied directly upon a logic circuit
netlist. The technique is based on formulating a
linear algebraic model of the switching function
allowing for the overall circuit switching
function to be represented by a characteristic
linear transfer matrix in the Boolean domain.
The transfer matrix is analogous to a transfer
function or matrix as is commonly used in
classical linear system analysis. Linear system
theory is a mature approach and many excellent
references are available, an example of which is
[1]. Preliminary ideas used to formulate these
results are briefly outlined in [2] but they were
only discussed in the context of a single logic
gate in the Boolean domain and they utilized a
different form of the transfer matrix than that
described here.

Because the circuit transfer matrix can be
derived from a hierarchical construction of the
individual logic gate transfer matrices, the
technique is applicable to the use of the structure
of a netlist or interconnection of individual logic
gates. Furthermore, the RM transform may be
applied at the single gate or larger subcircuit
level avoiding the memory explosion that can
occur when the entire circuit model switching
function is transformed. A similar formulation
for the Walsh transform is described in [3]
although the transfer matrices were formulated
as transposes of those used here. An alternative
method for the computation of single Walsh
spectral coefficients was described in [4],
however, this method required structural
modification of the circuit netlist before it was
traversed for the computation of each coefficient.

The Reed-Muller transfer function response
of the entire circuit can also be derived in a
hierarchical manner. These results lead to a
method for computing the Reed-Muller
transform of a circuit or subcircuit directly from
a netlist representation. An application of this
technique is that the Reed-Muller transform of

partitioned subcircuits can be computed directly
from the netlist without resorting to first
computing the representation of the overall
switching function.

The organization of the paper is as follows.
A review of the mathematical properties of the
Reed-Muller transform and its definition are first
reviewed. Next, we will describe a formulation
of classical digital logic circuits utilizing linear
algebra rather than Boolean algebra analogous to
time domain analysis of linear electrical circuits.
Following these introductory concepts, the Reed-
Muller transform of digital circuit netlists is
formulated using the concepts of linear algebraic
analysis. Finally, conclusions and future work
are outlined.

2.0 REED-MULLER TRANSFORM

The Reed-Muller transform has been
previously described and written about
extensively [5, 6]. In this paper, we will provide
a brief overview of the transform for the sake of
completeness and to emphasize its relationship
with other transforms.

One way to conceptualize discrete spectral
transforms is to consider the set of function
range values to be transformed as a set of
coefficients over which to evaluate a particular
polynomial. The particular polynomial that is
selected defines both the transform and the
discrete function undergoing transformation. For
example, if the polynomial is based on various
powers of the roots of unity with coefficients
representing the discrete range space of a
function, f(x), the discrete Fourier transform
results. The form of the polynomial is shown in
Equation (1).

 (1)

Discrete values of the polynomial can be

computed by expressing the polynomial in the
form of a linear transformation as shown in
Equation (2). The coefficient matrix of Equation
(2) is a Vandermonde matrix since it contains
row vector components that are in the form of a
geometric series.

x0
0 x0

1 x0
2 ... x0

k ... x0
n−1

x1
0 x1

1 x1
2 ... x1

k ... x1
n−1

x2
0 x2

1 x2
2 ... x2

k ... x2
n−1

      x0
n−1

xm
0 xm

1 xm
2 ... xm

k ... xm
n−1

      

xn−1
0 xn−1

1 xn−1
2 ... xn−1

k ... xn−1
n−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

a0
a1
a2


am


an−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

p(x0)
p(x1)
p(x2)


p(xm)


p(xn−1)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(2)

When the roots of unity are used for the xi
values in Equation (2) and they are restricted to
the square roots of unity, the discrete Fourier
transform matrix over GF(2) results. Depending
on the representation of the square roots of unity,
various different transformations result and are
commonly known as the Walsh [7], Hadamard
[8, 9], or Reed-Muller transform [5, 6]. When a
particular discrete function, f(x) is used for the ai
coefficient vector, Equation (2) can be evaluated
and the p(xi) components are the discrete Fourier
transform coefficients of f(x). Equation (3)
contains an expression for the m roots of unity,
that are used as the xi in Equation (2).

 (3)
Figure 1 contains a diagram of the square

roots of unity plotted on the unit circle in the
complex plane.

Figure 1: Square Roots of Unity

When the values of xi are used in the

transformation matrix of Equation (2) for m=2,
the Walsh or Hadamard transform results.
Likewise, when the values of k are used for m=2,
as shown in Figure 1, the Reed-Muller transform
results. As an example, the polarity-0 Reed-
Muller transformation matrix, R3, for a function
of n=3 variables has the form as shown in
Equation (4).

 (4)

Due to the mathematical properties of
Vandermonde matrices and those of the roots of
unity that are used within the matrix, efficient
algorithms such as the so-called “fast”
transforms have been developed and are usually
credited to the work in [10, 11] although the
method was actually used by the famous
mathematician, Carl Gauss in the early 1800’s.
These methods were later applied to efficient
discrete function representations in the form of
decision diagrams [12, 13]. These methods are
applicable for the computation of the RM

transform if the discrete function to be
transformed is represented as the vector of
coefficients, [ai] in Equation (2). The difficulty
in applying these “fast” formulations is that the
vector [ai] is exponential in size, O(2n) for the
case of the RM transform.

The approach described here allows for
frequency responses of the discrete function to
be computed directly from the digital logic
netlist representation of the discrete function.
Furthermore, the spectrum may be computed in a
hierarchical fashion by computing the frequency
responses of partitioned subcircuits from the
netlist.

3.0 NETLIST ANALYSIS

Traditionally, digital logic circuits are
modeled using the axioms and postulates of
binary-valued Boolean algebra and discrete
scalar-valued switching functions. Here, we
reformulate these mathematical models in terms
of linear transforms over vector spaces. Through
the representation of switching functions in this
manner, various spectral transformations are
easily applied including the Reed-Muller
transform.

Linear algebraic notation is expressed using
the ‘bra-ket’ notation devised by physicist Paul
Dirac for the purposes of quantum mechanical
calculations [14]. The column vector a is
represented as ‘ket |a⟩’. Likewise, the row
vector aT is represented as a ‘bra’ ⟨a|. This
notation is particularly convenient when the
norm of a vector or the inner product of two
vectors is expressed. The norm of a vector a
written as ||a|| can be expressed in bra-ket
notation as ⟨a|a⟩ and the inner product of two
vectors a and b can be written as ⟨a|b⟩. The
outer product, or tensor product of two 1st-order
tensors a and b can be expressed as |a⟩⟨b|. Using
this notation, many naturally arising 2nd-order
tensors, or, matrices can be expressed as a sum
of outer product expressions.

The binary constants {0,1} are represented as
the row vectors ⟨0|=[1 0] and ⟨1|=[0 1]. A
transfer matrix for a logic gate can be expressed
in terms of the outer product operation analogous
to the transfer function of a linear system. The
outer product is computed as the tensor, or
Kronecker, product of two vectors or matrices.
Row (or column) vectors representing multiple
bits are likewise computed using the outer
product. As an example, ⟨01|=⟨0|⊗⟨1|=[1 0]⊗
[0 1]=[0 1 0 0].

3.1 Logic Gate Transfer Matrix
Using the definitions of the switching circuit

constants and the linear algebraic notation of the
previous section, a transfer matrix for a
particular logic gate can be formulated. The
transfer matrix can be used to derive the logic
gate output for a given input stimulus.

Definition 1:

The transfer matrix for a logic gate, TGATE,
can be computed as the sum of outer products of
vectors formed from the truth table input and
output values. ☐

Example 1:

As an example, the transfer matrix for a two-
input XOR gate is expressed as:

☐
Examination of the transfer matrix of TXOR

reveals that each row of the matrix is simply the
truth table output encoded as vector constants.
The second column is the truth table output
vector and the first column is the inverse
function truth vector. These observations allow
for efficient methods of function representation
to be used for transfer matrices such as Binary
Decision Diagrams (BDDs) or cube lists.

The term ‘transfer matrix’ is used since it is
analogous to the ‘transfer function’ of linear
systems as commonly used in classical linear
system analyses [1]. As is the case with transfer
functions, the output response is easily obtained

by multiplying the transfer matrix of a gate with
a particular input stimulus.

Example 2:

The output response of the XOR gate when
the input is two logic-1 values, ⟨11|, is calculated
as the direct matrix product.

☐

3.2 Transfer Matrices of Logic Circuits
The overall transfer matrix of a logic circuit

may be calculated using the individual
component transfer matrices. In general, a logic
netlist can contain fanin and fanout points, FIN
and FOUT as depicted in Figure 2. Transfer
matrices must also be used to model these circuit
nodes and are represented in Equations (5) and
(6). It is noted that the case for a fanin input of
⟨01| or ⟨10| is not included. For the purposes of
modeling classical logic, such cases should be
included and are technology-dependent. For
example, if static CMOS circuitry is being
modeled, the ‘wired-AND’ relationship would
result. In general, three-valued logic could also
be used (as is done in hardware description
languages) and a third unknown logic value ‘X’
could be used.

Figure 2: fanout and fanin circuit nodes

 (5)

 (6)

Transfer matrices can be computed for

networks of logic gates by partitioning them into
serial cascades. In each stage of the cascade,

individual gate matrices are combined from top
to bottom using the tensor or Kronecker product
operation. The overall circuit transfer matrix is
calculated as the direct product of the individual
cascade stages. Example 3 is the application of
this principle and contains a fanout point.

Example 3:

The transfer matrix for the two-input, two-
output logic circuit depicted in Figure 3 is
computed using the tensor and direct matrix
products of the circuit components. The vertical
lines indicate the circuit partitions in three
distinct stages.

Figure 3: Example Logic Circuit

☐
As is the case for single-gate transfer

matrices, the matrix of the circuit of example 2
can be considered as being comprised of all
circuit output row vectors in numerical order.
The output responses in this case are in the form
of the tensor product of the individual output bits
from top to bottom. As an example, the fourth
row of T is [0 0 1 0]= [0 1] ⊗ [1 0]=⟨1|⊗⟨0|.

Example 4:

The output response for the logic circuit in
Figure 4 for the input value ⟨11| is calculated as
the direct matrix product with the circuit transfer
matrix.

 ☐

The use of transfer matrices for circuit output
response calculations also allows for multiple
output responses to be calculated with a single
matrix-vector multiply operation. It is necessary
to consider the complete set of single bit
constants that result from all possible two-
dimensional vectors with components 0 and 1.
The complete set is defined in terms of a Hasse
diagram as shown in Figure 4 and are denoted as

⟨t|=[1 1], ⟨1|=[0 1], ⟨0|=[1 0], and ⟨∅|=[0 0]. ⟨t|
denotes a value that is both ⟨0| and ⟨1| while ⟨∅|
is the case where neither ⟨0| or ⟨1| are present.

Figure 4: Hasse Diagram of Logic Values

Example 5:

The output response for the logic circuit in
Figure 2 for all possible input values ⟨tt| is
calculated as a direct matrix product.

This result indicates that three of the input
cases yield an output of ⟨01| while a single input
case results in ⟨10|. This is easily verified by
examination of the circuit diagram showing that
the inputs ⟨00|, ⟨01|, and ⟨10| result in an output
of⟨01| while the input case ⟨11| results in ⟨10|.

☐
3.3 Logic Circuit Implication

The determination of a set of input values
that cause a particular output response of a
circuit is known as circuit implication. Logic
circuit implication is used in many synthesis,
verification, and test algorithms. To compute the
implication, the transfer matrix must be
invertible. In general the transfer matrices
describing a specific logic netlist are non-square
and are not of full rank resulting in matrices with
no inverses. However, the concept of the
pseudo-inverse can be applied to the circuit
implication problem.

In particular, the Moore-Penrose pseudo-
inverse of the circuit transfer matrix can be used
denoted by T+. Depending on the dimensions of
the non-square transfer matrix, either the left-
hand or right-hand pseudoinverse is used. In the
case of multi-input, single-output logic gates, the
transfer matrices have dimension n×m with n>m,
thus the left-hand pseudoinverse is used as
shown in Equation (7).

 (7)

Where T* denotes the conjugate transpose of
matrix T. In the case of classical logic as
considered here, the T*= TT since all matrix
components are real and Equation (7) is rewritten
as shown in Equation (8).

 (8)
As an example, consider the case where a

logic-0 is observed at the output of the AND
gate. The implication calculation becomes:

Thus, the result of the implication is that the
inputs {⟨00|, ⟨01|, ⟨10|} result in an output
response of ⟨0|.

4.0 RM TRANSFORMS OF CIRCUITS

The polarity-zero Reed-Muller transform of a
discrete switching function, f, can be calculated
through the application of the transformation
matrix, R0, to the column vector, f1, representing
the discrete range values. The R0 transformation
matrix for a function of one variable is defined in
Equation (9) and can used as a kernel to generate
higher-dimensioned transformations through the
application of the tensor product as shown in
Equation (10).

 (9)

 (10)
From the previous section, the column vector

f1 can be obtained as the result of the direct
product of the circuit transformation matrix, T,
with a particular input row vector, x. Thus the
Reed-Muller transform, fRM, can be obtained as
shown in Equation (11).

 (11)

The RM transform of all single-bit constants
are computed as the linear transform of R0 with
the tensor representations. Table 1 summarizes
all constant values in both the natural and RM
domain. It is noted that the RM transformed
values of the constants is a permutation of those

as depicted in the Hasse diagram in Figure 4.
Figure 5 contains the Hasse diagram of constant
values in the RM domain. Another interesting
characteristic is that the RM transform matrix,
R1, can be interpreted as consisting of a top row
vector that represents RM domain value of ⟨0|
and the bottom row vector represents the RM
domain value of ⟨1|.

Table 1: Tensor Constant Values

 Logic-∅ Logic-0 Logic-1 Logic-t
Boolean [0 0] [1 0] [0 1] [1 1]
Reed-
Muller [0 0] [1 0] [1 1] [0 1]

Figure 5: Hasse Diagram of RM Logic Values

An alternative definition of the Reed-Muller

transform can now be formulated based on the
representation of constants in the Boolean and
Reed-Muller domains.

Definition 2:

The transfer matrix describing the mapping
from the constants in the Boolean Domain to the
Reed-Muller domain is the Reed-Muller
transform, R1.

 ☐
4.1 RM Transfer Matrices of Logic Gates

The RM response of a logic gate may be
computed by using the RM transform of the gate
transfer matrix. As an example, consider the
two-input OR gate whose Boolean transfer
matrix is given as TOR. Notice that these
calculations utilize modulo-2 addition operator,
⊕, during the matrix multiply calculations.

(12)

The RM transfer matrix of the OR gate is
computed as R2TOR.

 (13)
To obtain the RM frequency response of the

OR gate for a particular input value, its RM
transformed value is multiplied by the RM
transform gate matrix. As an example, the
response of an OR gate when the inputs are both
logic-0, ⟨00|, is computed as shown. To obtain
the RM frequency response, the input row vector
must be transformed to the RM domain as [1 0 0
0]. The resultant output is the RM frequency
domain response since the RM transfer matrix of
the OR gate is multiplied by the Boolean domain
input value.

4.2 RM Transfer Matrices of Netlists

The RM frequency response can also be
calculated from general netlists in two ways.
The explicit approach is to first compute the
transfer matrix of the entire circuit in the
Boolean domain and then to apply the
appropriately dimensioned RM transform matrix,
Rn, where n is the number of dependent inputs of
the circuit. An example of this form of
computation was shown in the previous section
for the two-input OR gate. Note that the second
column of the RM transfer matrix of the OR gate
is in fact the zero-polarity RM spectrum of the
OR function.

The second, and more interesting, method
allows for hierarchical calculation of the circuit
transform by traversing the netlist. To illustrate
the method, consider the circuit shown in Figure
6.

Figure 6: Circuit for Example 6

Example 6:

The Boolean domain transfer matrix for the
circuit in Figure 6 is computed as follows:

Application of the RM transform to the entire

circuit would require the use of R3 since the
circuit of Figure 6 has three inputs:

Making use of the tensor product identity:

The computation becomes:

☐
The second column of the resultant matrix is

the RM transform of the overall switching
function represented by the circuit in Figure 6.
The first column represents the RM spectrum of
the inverse of the function. The first column
contains a “1” in the topmost position which
translates into 1⊕f1=f0.

The RM frequency response can also be
computed using the RM transfer matrix of a
circuit. As an example, consider the multi-
output circuit in Figure 3. Example 7 shows how
the RM frequency response can be used to
compute all possible output values for the circuit.

Example 7:

The RM frequency response for the logic
circuit in Figure 3 is calculated as:

☐

The frequency response vector of Example 7
must be decomposed in the RM domain using
the modulo-2 addition operator. To verify the
final equation of Example 7 is indeed the correct
decomposition, the following equations
transform the indicated circuit outputs ⟨01| and
⟨10| directly, then they show that the modulo-2
sum results in the result of Example 7.

4.3 Non-zero Polarity RM Transform
The hierarchical technique can also be

applied to circuits for other polarities of the RM
transform. So far, all the examples in this paper
have utilized the 0-polarity RM transform
meaning that all literals (or circuit inputs) are
assumed to be non-inverted. There exist 2n
different RM transforms for a circuit of n inputs.
The polarity number, in binary form, indicates
the polarity of a particular circuit input.
Example 6 illustrated the computation of the
transform of the circuit when all inputs are
assumed to be present in positive-polarity or
non-inverted form.

If the bottom-most input of the OR gate is
assumed to present in inverted form, the
corresponding transform would be a polarity-2
transform. To account for the inversion of this
circuit input, the R2 matrix used in Example 6
would be modified as shown in the following
equation.

5.0 APPLICATION OF APPROACH
One of the common uses of the RM

transformation is to replace circuits with their
RM-equivalent form consisting of product terms
combined by a multi-input XOR gate. To
compute the RM transform of a function, the
traditional approach is to multiply the range
vector of the representative switching function
with an appropriately dimensioned R matrix.
The number of product terms in the RM
transformed circuit is then equivalent to the non-
zero terms in the RM spectral vector.

Using the methodology above, the RM
transform may be computed through direct
traversal of a netlist. Furthermore, the netlist can
be partitioned and the RM transform can be
computed on internal subcircuits present in the
netlist.

There are multiple reasons why the RM form
of a subcircuit may be preferable to the original.
In some cases, the RM version may require
fewer gates and thus allow the area to be
reduced. In addition, using the RM form of a
subcircuit can make a subcircuit more testable
[15]. One application is to perform localized
Reed-Muller transforms on internal subcircuits
and to replace those subcircuits with
corresponding RM forms if it is deemed that the
RM form of the subcircuit has more desirable
properties than that of the original subcircuit.

As an example of replacing an internal
subcircuit with its RM equivalent, consider the
logic circuit depicted in Figure 7. The outlined
portion of the circuit is the partition of interest
and the methods described previously are used to
compute the RM transform.

Figure 7: Circuit with Partition

The polarity-0 RM transfer matrix of the

subcircuit indicated by the dotted box in Figure 7
has the following form.

 (14)

Depending on the goals of the local
substitution methodology in the synthesis tool, it
may be determined that it is advantageous to
replace the subcircuit with its equivalent RM
form. Performing this replacement yields the
circuit in Figure 8. The advantage of this
approach is that that the RM transform was
computed based on a logic circuit partition and
the spectrum of the overall switching function
using the 16×16 matrix, R4, was never required.

Figure 8: Updated Circuit of Figure 7

As previously mentioned, the second column
of the RM transfer matrix in Equation (14) is the
0-polarity RM spectrum of the subcircuit while
the first column represents the spectrum of the
inverse of the subcircuit. In this case, the first
column has one fewer “1” components indicating
that the inverse circuit would not require an
XOR gate input tied to a constant “1” value. To
take advantage of this circumstance, the XOR
gate in the circuit partition could be replaced
with an exclusive-NOR gate that does not require
an input to Vdd. This further optimization is
shown in the circuit depicted in Figure 9.

Figure 9: Circuit with XNOR Gate

As an example in the area of testability,

consider Figure 10. This figure shows a portion
of a larger circuit. If fault collapse is used to
remove structurally equivalent faults, the internal
faults in the circuit that must be detected during
test include: P sa1, Q sa0, Q sa1, R sa0, S sa0, T
sa0, U sa1, V sa1, W sa1, and X sa1. We are not
considering faults on the primary inputs or
outputs of the subcircuit as these locations
remain functionally unchanged by the RM

transformation, thus, their testability will thus
remain unchanged as well.

Figure 10: Circuit with Internal Fault Sites

For the sake of simplicity, assume that the

inputs to the subcircuit as well as site D have
disjoint input cones and thus are functionally
independent. Furthermore, assume that inputs A
and B each have a 50% chance of being equal to
a logic-1 and a 50% chance of being equal to a
logic-0. However, assume that input C has only
a 10% chance of being equal to a logic-1 due to
the characteristics of the input cone that drives it.
Similarly, site D has a 20% chance of being
equal to logic-1. Under these conditions, four of
the faults have only a 0.5% chance of being
detected with a random pattern. Furthermore,
even if targeted ATPG is used to generate the
patterns, at least 6 patterns must be applied
because the test sets of many of the faults are
disjoint. Due to these testability concerns, the
dashed box in Figure 9 indicates the subcircuit
partition of interest. Using the methods of
Sections 3 and 4, the Boolean and RM transfer
matrices of the partition in Figure 10 result:

Now consider the same subcircuit in Figure
11 where the partition of interest is replaced with
the polarity-0 RM equivalent subcircuit. This
circuit is much smaller, and the area savings are
significant. It is also much more testable.
Assuming that A, B, and C do not fanout
elsewhere, there is only one internal circuit site K
we must consider, and thus only two internal
faults that must be detected. The probability of
detecting the harder-to-detect fault, K sa0, is now
5%, an increase in detectability of an order of
magnitude as compared to the 0.5% value in
Figure 9. At the same time, K sa1 has a 15%
chance of being detected. Only two test patterns
are necessary in a targeted test set to detect these
two faults.

Figure 11: New Circuit with Fault Sites

In general, increases in testability are likely to

occur for many potential subcircuits. Hard-to-
detect faults are often hard to detect due to the
difficulty of fault observation. However, each
input of an XOR gate is automatically
observable. Thus, replacing a subcircuit with its
equivalent RM form results in the presence of
internal sites that are likely to be more
observable than those of the original circuit.

6.0 IMPLEMENTATION USING BDDS

The application of the result of the previous
section is that a subcircuit partition may be
analyzed to determine if the RM circuit form is
more desirable. A multi-level netlist is
partitioned into subcircuits and the RM transfer
matrix of each subcircuit is then computed in
hierarchical manner by traversing the netlist.

One concern is the large matrices and
corresponding arithmetic that would be required
in these calculations. However, using Binary
Decision diagram representations to perform the
matrix arithmetic computations reduces the
average complexity of the calculations.

Observation of the form of the Boolean
transform matrices for a basic logic gate (or
subcircuit for that matter) reveals that, for a
single output circuit, the rightmost column
vector of the matrix is simply the underlying
switching function output vector and the leftmost
column vector represents the inverse of the
switching function. Thus, a BDD representation
of the switching function is interpreted as a
representation of the transfer matrix in the
Boolean domain. Using this observation, the
procedure can be implemented using BDDs as
follows:
 1) Partition netlist into subcircuits
 2) Represent each partition as a BDD
 3) Transform the BDD to its’ RM form
 using the efficient methods described
 in [12, 13]
 4) Examine the RM transfer matrix
 represented by each BDD to
 determine if it is desirable to replace
 that portion of the subcircuit with the
 equivalent RM form.
 5) If circuit replacement is deemed
 desirable, perform the replacement.

7.0 CONCLUSIONS
In the past, RM transformation techniques

required first formulating the switching function
of the entire circuit followed by application of a
subsequent transformation. This paper has
presented a method whereby this
computationally prohibitive step is avoided and
the transformations can be applied locally on
smaller circuit partitions. Section 2.0 showed
that the RM transform is a special case of the
Fourier transform, thus these results are
applicable to a wide variety of transforms.

Modeling of classical logic circuits has
traditionally been accomplished through the use
of switching theory based on Boolean algebras
for binary circuits while spectral analysis has
been traditionally expressed in terms of linear
algebra. This work reformulates classical circuit
analysis in terms of linear algebra hence the
mathematics of classical and RM spectral netlist
analysis is now unified with a common
mathematical basis.

Although the transfer matrices are
exponentially large, it is noted that their structure
is very regular and that efficient representations
in terms of BDDs and cube lists can in fact be
interpreted as transfer matrix representations.
This fact allows the representation complexity to
be equivalent to that of traditional switching
theory based methods.

The result presented here is an algorithm for
performing local transformations of partitioned
subcircuits in a netlist and replacing the
subcircuits with their Reed-Muller equivalents if
a merit function indicates such a substitution is
desirable. This technique can be implemented
using BDDs for all matrix computations to
reduce the average exponential complexity
encountered when matrix arithmetic is used
explicitly.

Future research will investigate the effective
extraction of appropriate subcircuits to which the
proposed method may be applied to reduce area
and/or enhance testability. We will also consider
the insertion of test points at the outputs of
subcircuit partitions. Implementation will be
accomplished through the use of BDDs for the
linear algebraic computations to reduce average
complexity.

REFERENCES
[1] Chen, C.-T., Linear System Theory and
Design, Holt, Rinehart and Winston, ISBN 0-03-
060289-0, 1984.
[2] Yanofsky, N.S. and Mannucci, M.A., Quantum
Computing for Computer Scientists, Cambridge
University Press, 2008, ISBN 978-0-521-879965.

[3] Thornton, M.A., “Spectral analysis of digital
logic using circuit netlists,” Proc. of the International
Conference on Computer Aided Systems Theory
(EUROCAST), ISBN 978-84-693-9560-8 Modeling
and Design of Complex Digital Systems Workshop,
pp. 444-445, February 2011.
[4] Drechsler, R. and Thornton, M.A.,
“Computation of spectral information from logic
netlists,” Proc. Int. Symp. Multiple-Valued Logic, pp.
53-58, 2000.
[5] Reed, I.S., “A class of multiple-error-correcting
codes and their decoding scheme,” IRE Transactions
on Information Theory, 4:38-49, 1954.
[6] Muller, D.E., “Application of Boolean algebra
to switching circuit design and error detection,” IRE
Transactions on Electronic Computers, 3:6-12, 1954.
[7] Walsh, J.L., “A closed set of normal orthogonal
functions,” American Journal of Mathematics, 55:5-
24, 1923.
[8] Sylvester, J.J., “Thoughts on inverse orthogonal
matrices, simultaneous sign successions, and
tessellated pavements in two or more colours, with
applications to Newton’s rule, ornamental tilework,
and the theory of numbers,” Philosophical Magazine,
34:461-475, 1867.
[9] Hadamard, J., “Résolution d’une question
relative aux déterminants,” Bulletin des Sciences
Mathématiques, 17:240-246, 1893, (in French).
[10] Good, I.J., “The interaction algorithm and
practical Fourier analysis,” Journal of the Royal
Statistical Society B, 20:2, pp. 361-372, 1958;
addendum, ibid. 22(2), pp. 373-375, 1960.
[11] Cooley, J.T. and Tukey, J.W., “An algorithm for
the machine calculation of complex Fourier series,”
Math. Computation, 19:297-301, 1965.
[12] Thornton, M.A., Drechsler, R., and Miller,
D.M., Spectral Techniques in VLSI CAD, Kluwer
Academic Publishers, July 2001, ISBN 0-7923-7433-
9.
[13] Stankovic´, R. and Astola, J., Spectral
Interpretation of Decision Diagrams, Springer-
Verlag, ISBN 0-387-95545-3, 2003.
[14] Dirac, P.A.M., “A new notation for quantum
mechanics,” Proceedings of the Cambridge
Philosophical Society, vol. 35, p. 416, 1939.
[15] Reddy, S.M., “Easily testable realizations for
logic functions,” IEEE Transactions on Computers,
vol. 21, no. 11, pp. 1183-1188, 1972.

