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Abstract 
A method for computing the Reed-Muller 

spectrum of a digital logic circuit based on the 
circuit topology is developed.  The technique is 
based on the definition and use of a transfer 
matrix to characterize the circuit of interest.  The 
transfer matrix is computed through the use of 
the structure of the circuit and the transfer 
matrices of the individual logic gates.  The 
resulting transfer matrix describes the Boolean 
domain response of the circuit.  We next 
formulate the transfer matrix in the Reed-Muller 
domain that is also capable of being similarly 
formulated directly from the structure of the 
circuit.  The result is that the Reed-Muller 
spectrum of a circuit, or subcircuit partition, can 
be computed directly thus alleviating the need to 
first determine the switching function followed 
by subsequent application of the RM transform. 
 
1.0   INTRODUCTION 

Many applications for spectral analysis of 
digital logic circuits have been developed 
including the use of the Reed-Muller family of 
spectra.  Central to these applications is the 
computation of the spectra in an efficient manner 
since resulting applications are often hampered 
by the initial large computational expense of the 
spectrum.  Past methods rely upon transforming 
the switching functions representing the circuit 
behavior.  Techniques to address the spectral 
computation problem have been devised that 
utilize cube list and decision diagram 
representations, however, all of these approaches 
are exponentially complex in the worst case 
since the entire switching function must be 
represented in some form prior to 
transformation. 

The concept of a transfer function describing 
the input-output relation of a linear system is a 
mature idea and is heavily used in electrical 
circuit analysis.  Such transfer functions have the 
property of allowing for their construction based 
on the transfer functions of individual system 
components.  This hierarchical construction of 
transfer functions is useful for dealing with large 
systems allowing the overall system 
characterization to be achieved in a bottom-up 
manner.  Furthermore, such transfer functions 

can be transformed to frequency domain 
representations allowing for design and analysis 
techniques to be employed in alternative basis 
domains. 

We describe a technique that enables 
frequency domain analysis of digital logic 
circuits through the use of the Reed-Muller 
transform applied directly upon a logic circuit 
netlist.  The technique is based on formulating a 
linear algebraic model of the switching function 
allowing for the overall circuit switching 
function to be represented by a characteristic 
linear transfer matrix in the Boolean domain.  
The transfer matrix is analogous to a transfer 
function or matrix as is commonly used in 
classical linear system analysis. Linear system 
theory is a mature approach and many excellent 
references are available, an example of which is 
[1].   Preliminary ideas used to formulate these 
results are briefly outlined in [2] but they were 
only discussed in the context of a single logic 
gate in the Boolean domain and they utilized a 
different form of the transfer matrix than that 
described here. 

Because the circuit transfer matrix can be 
derived from a hierarchical construction of the 
individual logic gate transfer matrices, the 
technique is applicable to the use of the structure 
of a netlist or interconnection of individual logic 
gates.  Furthermore, the RM transform may be 
applied at the single gate or larger subcircuit 
level avoiding the memory explosion that can 
occur when the entire circuit model switching 
function is transformed.  A similar formulation 
for the Walsh transform is described in [3] 
although the transfer matrices were formulated 
as transposes of those used here.  An alternative 
method for the computation of single Walsh 
spectral coefficients was described in [4], 
however, this method required structural 
modification of the circuit netlist before it was 
traversed for the computation of each coefficient. 

The Reed-Muller transfer function response 
of the entire circuit can also be derived in a 
hierarchical manner.  These results lead to a 
method for computing the Reed-Muller 
transform of a circuit or subcircuit directly from 
a netlist representation.  An application of this 
technique is that the Reed-Muller transform of 



partitioned subcircuits can be computed directly 
from the netlist without resorting to first 
computing the representation of the overall 
switching function.   

The organization of the paper is as follows.  
A review of the mathematical properties of the 
Reed-Muller transform and its definition are first 
reviewed.  Next, we will describe a formulation 
of classical digital logic circuits utilizing linear 
algebra rather than Boolean algebra analogous to 
time domain analysis of linear electrical circuits.  
Following these introductory concepts, the Reed-
Muller transform of digital circuit netlists is 
formulated using the concepts of linear algebraic 
analysis.  Finally, conclusions and future work 
are outlined. 

 
2.0   REED-MULLER TRANSFORM 

The Reed-Muller transform has been 
previously described and written about 
extensively [5, 6].  In this paper, we will provide 
a brief overview of the transform for the sake of 
completeness and to emphasize its relationship 
with other transforms. 

One way to conceptualize discrete spectral 
transforms is to consider the set of function 
range values to be transformed as a set of 
coefficients over which to evaluate a particular 
polynomial.  The particular polynomial that is 
selected defines both the transform and the 
discrete function undergoing transformation.  For 
example, if the polynomial is based on various 
powers of the roots of unity with coefficients 
representing the discrete range space of a 
function, f(x), the discrete Fourier transform 
results.  The form of the polynomial is shown in 
Equation (1). 

 
   (1) 

 
Discrete values of the polynomial can be 

computed by expressing the polynomial in the 
form of a linear transformation as shown in 
Equation (2).  The coefficient matrix of Equation 
(2) is a Vandermonde matrix since it contains 
row vector components that are in the form of a 
geometric series.   
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When the roots of unity are used for the xi 
values in Equation (2) and they are restricted to 
the square roots of unity, the discrete Fourier 
transform matrix over GF(2) results.  Depending 
on the representation of the square roots of unity, 
various different transformations result and are 
commonly known as the Walsh [7], Hadamard 
[8, 9], or Reed-Muller transform [5, 6].  When a 
particular discrete function, f(x) is used for the ai 
coefficient vector, Equation (2) can be evaluated 
and the p(xi) components are the discrete Fourier 
transform coefficients of f(x).  Equation (3) 
contains an expression for the m roots of unity, 
that are used as the xi in Equation (2).   

                       (3) 
Figure 1 contains a diagram of the square 

roots of unity plotted on the unit circle in the 
complex plane. 

 
Figure 1: Square Roots of Unity  

 
When the values of xi are used in the 

transformation matrix of Equation (2) for m=2, 
the Walsh or Hadamard transform results.  
Likewise, when the values of k are used for m=2, 
as shown in Figure 1, the Reed-Muller transform 
results.  As an example, the polarity-0 Reed-
Muller transformation matrix, R3, for a function 
of n=3 variables has the form as shown in 
Equation (4). 

               (4) 

Due to the mathematical properties of 
Vandermonde matrices and those of the roots of 
unity that are used within the matrix, efficient 
algorithms such as the so-called “fast” 
transforms have been developed and are usually 
credited to the work in [10, 11] although the 
method was actually used by the famous 
mathematician, Carl Gauss in the early 1800’s. 
These methods were later applied to efficient 
discrete function representations in the form of 
decision diagrams [12, 13].  These methods are 
applicable for the computation of the RM 



transform if the discrete function to be 
transformed is represented as the vector of 
coefficients, [ai] in Equation (2).  The difficulty 
in applying these “fast” formulations is that the 
vector [ai] is exponential in size, O(2n) for the 
case of the RM transform.   

The approach described here allows for 
frequency responses of the discrete function to 
be computed directly from the digital logic 
netlist representation of the discrete function.  
Furthermore, the spectrum may be computed in a 
hierarchical fashion by computing the frequency 
responses of partitioned subcircuits from the 
netlist.  

 
3.0 NETLIST ANALYSIS 

Traditionally, digital logic circuits are 
modeled using the axioms and postulates of 
binary-valued Boolean algebra and discrete 
scalar-valued switching functions.  Here, we 
reformulate these mathematical models in terms 
of linear transforms over vector spaces.  Through 
the representation of switching functions in this 
manner, various spectral transformations are 
easily applied including the Reed-Muller 
transform.   

Linear algebraic notation is expressed using 
the ‘bra-ket’ notation devised by physicist Paul 
Dirac for the purposes of quantum mechanical 
calculations [14].  The column vector a is 
represented as ‘ket |a⟩’.  Likewise, the row 
vector aT is represented as a ‘bra’ ⟨a|.  This 
notation is particularly convenient when the 
norm of a vector or the inner product of two 
vectors is expressed.  The norm of a vector a 
written as ||a|| can be expressed in bra-ket 
notation as ⟨a|a⟩ and the inner product of two 
vectors a and b can be written as ⟨a|b⟩.  The 
outer product, or tensor product of two 1st-order 
tensors a and b can be expressed as |a⟩⟨b|.  Using 
this notation, many naturally arising 2nd-order 
tensors, or, matrices can be expressed as a sum 
of outer product expressions. 

The binary constants {0,1} are represented as 
the row vectors ⟨0|=[1 0] and ⟨1|=[0 1].  A 
transfer matrix for a logic gate can be expressed 
in terms of the outer product operation analogous 
to the transfer function of a linear system.   The 
outer product is computed as the tensor, or 
Kronecker, product of two vectors or matrices.  
Row (or column) vectors representing multiple 
bits are likewise computed using the outer 
product.  As an example, ⟨01|=⟨0|⊗⟨1|=[1 0]⊗  
[0 1]=[0 1 0 0]. 

 
 

3.1 Logic Gate Transfer Matrix 
Using the definitions of the switching circuit 

constants and the linear algebraic notation of the 
previous section, a transfer matrix for a 
particular logic gate can be formulated.  The 
transfer matrix can be used to derive the logic 
gate output for a given input stimulus. 
 
Definition 1: 

The transfer matrix for a logic gate, TGATE, 
can be computed as the sum of outer products of 
vectors formed from the truth table input and 
output values.                    ☐ 

 
Example 1: 

As an example, the transfer matrix for a two-
input XOR gate is expressed as: 

 

 

 

 

☐ 
Examination of the transfer matrix of TXOR 

reveals that each row of the matrix is simply the 
truth table output encoded as vector constants.   
The second column is the truth table output 
vector and the first column is the inverse 
function truth vector. These observations allow 
for efficient methods of function representation 
to be used for transfer matrices such as Binary 
Decision Diagrams (BDDs) or cube lists. 

The term ‘transfer matrix’ is used since it is 
analogous to the ‘transfer function’ of linear 
systems as commonly used in classical linear 
system analyses [1].  As is the case with transfer 
functions, the output response is easily obtained 



by multiplying the transfer matrix of a gate with 
a particular input stimulus. 

 
Example 2: 

The output response of the XOR gate when 
the input is two logic-1 values, ⟨11|, is calculated 
as the direct matrix product. 

 

 

 
☐ 

3.2 Transfer Matrices of Logic Circuits 
The overall transfer matrix of a logic circuit 

may be calculated using the individual 
component transfer matrices.  In general, a logic 
netlist can contain fanin and fanout points, FIN 
and FOUT as depicted in Figure 2.  Transfer 
matrices must also be used to model these circuit 
nodes and are represented in Equations (5) and 
(6).  It is noted that the case for a fanin input of 
⟨01| or ⟨10| is not included.  For the purposes of 
modeling classical logic, such cases should be 
included and are technology-dependent.  For 
example, if static CMOS circuitry is being 
modeled, the ‘wired-AND’ relationship would 
result.  In general, three-valued logic could also 
be used (as is done in hardware description 
languages) and a third unknown logic value ‘X’ 
could be used. 

 

 
Figure 2: fanout and fanin circuit nodes 

 

       (5)    

 

           (6) 

  
Transfer matrices can be computed for 

networks of logic gates by partitioning them into 
serial cascades.  In each stage of the cascade, 

individual gate matrices are combined from top 
to bottom using the tensor or Kronecker product 
operation.  The overall circuit transfer matrix is 
calculated as the direct product of the individual 
cascade stages. Example 3 is the application of 
this principle and contains a fanout point. 

 
Example 3: 

The transfer matrix for the two-input, two-
output logic circuit depicted in Figure 3 is 
computed using the tensor and direct matrix 
products of the circuit components.  The vertical 
lines indicate the circuit partitions in three 
distinct stages. 
 
 
 
 

Figure 3: Example Logic Circuit 
 

 

 

☐ 
As is the case for single-gate transfer 

matrices, the matrix of the circuit of example 2 
can be considered as being comprised of all 
circuit output row vectors in numerical order.  
The output responses in this case are in the form 
of the tensor product of the individual output bits 
from top to bottom.  As an example, the fourth 
row of T is [0 0 1 0]= [0 1] ⊗ [1 0]=⟨1|⊗⟨0|. 
 
Example 4: 

The output response for the logic circuit in 
Figure 4 for the input value ⟨11| is calculated as 
the direct matrix product with the circuit transfer 
matrix. 

 
   ☐ 

The use of transfer matrices for circuit output 
response calculations also allows for multiple 
output responses to be calculated with a single 
matrix-vector multiply operation.  It is necessary 
to consider the complete set of single bit 
constants that result from all possible two-
dimensional vectors with components 0 and 1.     
The complete set is defined in terms of a Hasse 
diagram as shown in Figure 4 and are denoted as 



⟨t|=[1 1], ⟨1|=[0 1], ⟨0|=[1 0], and ⟨∅|=[0 0]. ⟨t| 
denotes a value that is both ⟨0| and ⟨1| while ⟨∅| 
is the case where neither ⟨0| or ⟨1| are present. 

 

 
Figure 4: Hasse Diagram of Logic Values 

 
Example 5: 

The output response for the logic circuit in 
Figure 2 for all possible input values ⟨tt| is 
calculated as a direct matrix product. 

 

 

 
 

This result indicates that three of the input 
cases yield an output of ⟨01| while a single input 
case results in ⟨10|.  This is easily verified by 
examination of the circuit diagram showing that 
the inputs ⟨00|, ⟨01|, and ⟨10| result in an output 
of⟨01| while the input case ⟨11| results in ⟨10|. 

☐ 
3.3 Logic Circuit Implication 

The determination of a set of input values 
that cause a particular output response of a 
circuit is known as circuit implication.  Logic 
circuit implication is used in many synthesis, 
verification, and test algorithms.  To compute the 
implication, the transfer matrix must be 
invertible.  In general the transfer matrices 
describing a specific logic netlist are non-square 
and are not of full rank resulting in matrices with 
no inverses.  However, the concept of the 
pseudo-inverse can be applied to the circuit 
implication problem.   

In particular, the Moore-Penrose pseudo-
inverse of the circuit transfer matrix can be used 
denoted by T+.  Depending on the dimensions of 
the non-square transfer matrix, either the left-
hand or right-hand pseudoinverse is used.  In the 
case of multi-input, single-output logic gates, the 
transfer matrices have dimension n×m with n>m, 
thus the left-hand pseudoinverse is used as 
shown in Equation (7). 

                      (7) 

Where T* denotes the conjugate transpose of 
matrix T.  In the case of classical logic as 
considered here, the T*= TT since all matrix 
components are real and Equation (7) is rewritten 
as shown in Equation (8). 

 

                     (8) 
As an example, consider the case where a 

logic-0 is observed at the output of the AND 
gate.  The implication calculation becomes: 

 

 

 

Thus, the result of the implication is that the 
inputs {⟨00|, ⟨01|, ⟨10|} result in an output 
response of ⟨0|. 

 
4.0 RM TRANSFORMS OF CIRCUITS 

The polarity-zero Reed-Muller transform of a 
discrete switching function, f, can be calculated 
through the application of the transformation 
matrix, R0, to the column vector, f1, representing 
the discrete range values.  The R0 transformation 
matrix for a function of one variable is defined in 
Equation (9) and can used as a kernel to generate 
higher-dimensioned transformations through the 
application of the tensor product as shown in 
Equation (10). 

 
                        (9) 

 

                      (10) 
From the previous section, the column vector 

f1 can be obtained as the result of the direct 
product of the circuit transformation matrix, T, 
with a particular input row vector, x.  Thus the 
Reed-Muller transform, fRM, can be obtained as 
shown in Equation (11). 

 

                       (11) 
 

The RM transform of all single-bit constants 
are computed as the linear transform of R0 with 
the tensor representations.  Table 1 summarizes 
all constant values in both the natural and RM 
domain.  It is noted that the RM transformed 
values of the constants is a permutation of those 



as depicted in the Hasse diagram in Figure 4.  
Figure 5 contains the Hasse diagram of constant 
values in the RM domain.  Another interesting 
characteristic is that the RM transform matrix, 
R1, can be interpreted as consisting of a top row 
vector that represents RM domain value of ⟨0| 
and the bottom row vector represents the RM 
domain value of ⟨1|. 

 
Table 1: Tensor Constant Values 

 Logic-∅  Logic-0 Logic-1 Logic-t 
Boolean [0 0] [1 0] [0 1] [1 1] 
Reed-
Muller [0 0] [1 0] [1 1] [0 1] 

 

 
Figure 5: Hasse Diagram of RM Logic Values  

 
An alternative definition of the Reed-Muller 

transform can now be formulated based on the 
representation of constants in the Boolean and 
Reed-Muller domains. 

 
Definition 2: 

The transfer matrix describing the mapping 
from the constants in the Boolean Domain to the 
Reed-Muller domain is the Reed-Muller 
transform, R1.  

 

 

          ☐ 
4.1 RM Transfer Matrices of Logic Gates 

The RM response of a logic gate may be 
computed by using the RM transform of the gate 
transfer matrix.  As an example, consider the 
two-input OR gate whose Boolean transfer 
matrix is given as TOR.  Notice that these 
calculations utilize modulo-2 addition operator, 
⊕,  during the matrix multiply calculations. 

 

(12) 

The RM transfer matrix of the OR gate is 
computed as R2TOR. 

 

     (13) 
To obtain the RM frequency response of the 

OR gate for a particular input value, its RM 
transformed value is multiplied by the RM 
transform gate matrix.  As an example, the 
response of an OR gate when the inputs are both 
logic-0, ⟨00|, is computed as shown.  To obtain 
the RM frequency response, the input row vector 
must be transformed to the RM domain as [1 0 0 
0].  The resultant output is the RM frequency 
domain response since the RM transfer matrix of 
the OR gate is multiplied by the Boolean domain 
input value. 

 

 

  
4.2 RM Transfer Matrices of Netlists 

The RM frequency response can also be 
calculated from general netlists in two ways.  
The explicit approach is to first compute the 
transfer matrix of the entire circuit in the 
Boolean domain and then to apply the 
appropriately dimensioned RM transform matrix, 
Rn, where n is the number of dependent inputs of 
the circuit.  An example of this form of 
computation was shown in the previous section 
for the two-input OR gate.  Note that the second 
column of the RM transfer matrix of the OR gate 
is in fact the zero-polarity RM spectrum of the 
OR function. 

The second, and more interesting, method 
allows for hierarchical calculation of the circuit 
transform by traversing the netlist.  To illustrate 
the method, consider the circuit shown in Figure 
6. 

 
Figure 6: Circuit for Example 6 

 
Example 6:  

The Boolean domain transfer matrix for the 
circuit in Figure 6 is computed as follows: 



 
Application of the RM transform to the entire 

circuit would require the use of R3 since the 
circuit of Figure 6 has three inputs: 

 
Making use of the tensor product identity: 

 
 

 
The computation becomes: 

 
 

☐ 
The second column of the resultant matrix is 

the RM transform of the overall switching 
function represented by the circuit in Figure 6.  
The first column represents the RM spectrum of 
the inverse of the function.  The first column 
contains a “1” in the topmost position which 
translates into 1⊕f1=f0. 

The RM frequency response can also be 
computed using the RM transfer matrix of a 
circuit.  As an example, consider the multi-
output circuit in Figure 3.  Example 7 shows how 
the RM frequency response can be used to 
compute all possible output values for the circuit. 
 
Example 7: 

The RM frequency response for the logic 
circuit in Figure 3 is calculated as: 

 
 

 

 

☐ 

The frequency response vector of Example 7 
must be decomposed in the RM domain using 
the modulo-2 addition operator.  To verify the 
final equation of Example 7 is indeed the correct 
decomposition, the following equations 
transform the indicated circuit outputs ⟨01| and 
⟨10| directly, then they show that the modulo-2 
sum results in the result of Example 7. 

 

 

 
 

4.3    Non-zero Polarity RM Transform 
The hierarchical technique can also be 

applied to circuits for other polarities of the RM 
transform.  So far, all the examples in this paper 
have utilized the 0-polarity RM transform 
meaning that all literals (or circuit inputs) are 
assumed to be non-inverted.  There exist 2n 
different RM transforms for a circuit of n inputs.  
The polarity number, in binary form, indicates 
the polarity of a particular circuit input.  
Example 6 illustrated the computation of the 
transform of the circuit when all inputs are 
assumed to be present in positive-polarity or 
non-inverted form. 

If the bottom-most input of the OR gate is 
assumed to present in inverted form, the 
corresponding transform would be a polarity-2 
transform.  To account for the inversion of this 
circuit input, the R2 matrix used in Example 6 
would be modified as shown in the following 
equation. 

 

 

 

 



5.0   APPLICATION OF APPROACH 
One of the common uses of the RM 

transformation is to replace circuits with their 
RM-equivalent form consisting of product terms 
combined by a multi-input XOR gate.  To 
compute the RM transform of a function, the 
traditional approach is to multiply the range 
vector of the representative switching function 
with an appropriately dimensioned R matrix.  
The number of product terms in the RM 
transformed circuit is then equivalent to the non-
zero terms in the RM spectral vector. 

Using the methodology above, the RM 
transform may be computed through direct 
traversal of a netlist.  Furthermore, the netlist can 
be partitioned and the RM transform can be 
computed on internal subcircuits present in the 
netlist. 

There are multiple reasons why the RM form 
of a subcircuit may be preferable to the original.  
In some cases, the RM version may require 
fewer gates and thus allow the area to be 
reduced.  In addition, using the RM form of a 
subcircuit can make a subcircuit more testable 
[15]. One application is to perform localized 
Reed-Muller transforms on internal subcircuits 
and to replace those subcircuits with 
corresponding RM forms if it is deemed that the 
RM form of the subcircuit has more desirable 
properties than that of the original subcircuit.   

As an example of replacing an internal 
subcircuit with its RM equivalent, consider the 
logic circuit depicted in Figure 7.  The outlined 
portion of the circuit is the partition of interest 
and the methods described previously are used to 
compute the RM transform. 

 

 
Figure 7: Circuit with Partition 

 
The polarity-0 RM transfer matrix of the 

subcircuit indicated by the dotted box in Figure 7 
has the following form. 

 

                      (14) 

Depending on the goals of the local 
substitution methodology in the synthesis tool, it 
may be determined that it is advantageous to 
replace the subcircuit with its equivalent RM 
form.  Performing this replacement yields the 
circuit in Figure 8. The advantage of this 
approach is that that the RM transform was 
computed based on a logic circuit partition and 
the spectrum of the overall switching function 
using the 16×16 matrix, R4, was never required. 

 

 
Figure 8: Updated Circuit of Figure 7 

As previously mentioned, the second column 
of the RM transfer matrix in Equation (14) is the 
0-polarity RM spectrum of the subcircuit while 
the first column represents the spectrum of the 
inverse of the subcircuit.  In this case, the first 
column has one fewer “1” components indicating 
that the inverse circuit would not require an 
XOR gate input tied to a constant “1” value.  To 
take advantage of this circumstance, the XOR 
gate in the circuit partition could be replaced 
with an exclusive-NOR gate that does not require 
an input to Vdd.  This further optimization is 
shown in the circuit depicted in Figure 9. 
 

 
Figure 9: Circuit with XNOR Gate 

 
As an example in the area of testability, 

consider Figure 10.  This figure shows a portion 
of a larger circuit.  If fault collapse is used to 
remove structurally equivalent faults, the internal 
faults in the circuit that must be detected during 
test include: P sa1, Q sa0, Q sa1, R sa0, S sa0, T 
sa0, U sa1, V sa1, W sa1, and X sa1.  We are not 
considering faults on the primary inputs or 
outputs of the subcircuit as these locations 
remain functionally unchanged by the RM 



transformation, thus, their testability will thus 
remain unchanged as well. 

 
Figure 10: Circuit with Internal Fault Sites 

 
For the sake of simplicity, assume that the 

inputs to the subcircuit as well as site D have 
disjoint input cones and thus are functionally 
independent.  Furthermore, assume that inputs A 
and B each have a 50% chance of being equal to 
a logic-1 and a 50% chance of being equal to a 
logic-0.  However, assume that input C has only 
a 10% chance of being equal to a logic-1 due to 
the characteristics of the input cone that drives it.  
Similarly, site D has a 20% chance of being 
equal to logic-1.  Under these conditions, four of 
the faults have only a 0.5% chance of being 
detected with a random pattern.  Furthermore, 
even if targeted ATPG is used to generate the 
patterns, at least 6 patterns must be applied 
because the test sets of many of the faults are 
disjoint. Due to these testability concerns, the 
dashed box in Figure 9 indicates the subcircuit 
partition of interest.  Using the methods of 
Sections 3 and 4, the Boolean and RM transfer 
matrices of the partition in Figure 10 result: 

 

Now consider the same subcircuit in Figure 
11 where the partition of interest is replaced with 
the polarity-0 RM equivalent subcircuit. This 
circuit is much smaller, and the area savings are 
significant.  It is also much more testable.  
Assuming that A, B, and C do not fanout 
elsewhere, there is only one internal circuit site K 
we must consider, and thus only two internal 
faults that must be detected.   The probability of 
detecting the harder-to-detect fault, K sa0, is now 
5%, an increase in detectability of an order of 
magnitude as compared to the 0.5% value in 
Figure 9.  At the same time, K sa1 has a 15% 
chance of being detected.  Only two test patterns 
are necessary in a targeted test set to detect these 
two faults. 

 
Figure 11: New Circuit with Fault Sites 

 
In general, increases in testability are likely to 

occur for many potential subcircuits.  Hard-to-
detect faults are often hard to detect due to the 
difficulty of fault observation.  However, each 
input of an XOR gate is automatically 
observable.  Thus, replacing a subcircuit with its 
equivalent RM form results in the presence of 
internal sites that are likely to be more 
observable than those of the original circuit.   

 
6.0 IMPLEMENTATION USING BDDS 

The application of the result of the previous 
section is that a subcircuit partition may be 
analyzed to determine if the RM circuit form is 
more desirable.  A multi-level netlist is 
partitioned into subcircuits and the RM transfer 
matrix of each subcircuit is then computed in 
hierarchical manner by traversing the netlist.   

One concern is the large matrices and 
corresponding arithmetic that would be required 
in these calculations.  However, using Binary 
Decision diagram representations to perform the 
matrix arithmetic computations reduces the 
average complexity of the calculations. 

Observation of the form of the Boolean 
transform matrices for a basic logic gate (or 
subcircuit for that matter) reveals that, for a 
single output circuit, the rightmost column 
vector of the matrix is simply the underlying 
switching function output vector and the leftmost 
column vector represents the inverse of the 
switching function.  Thus, a BDD representation 
of the switching function is interpreted as a 
representation of the transfer matrix in the 
Boolean domain.  Using this observation, the 
procedure can be implemented using BDDs as 
follows: 
 1) Partition netlist into subcircuits 
 2)  Represent each partition as a BDD 
 3) Transform the BDD to its’ RM form  
  using the efficient methods described  
  in [12, 13] 
 4) Examine the RM transfer matrix  
  represented by each BDD to  
  determine if it is desirable to replace  
  that portion of the subcircuit with the  
  equivalent  RM form. 
 5) If circuit replacement is deemed  
  desirable, perform the replacement. 



7.0   CONCLUSIONS 
In the past, RM transformation techniques 

required first formulating the switching function 
of the entire circuit followed by application of a 
subsequent transformation.  This paper has 
presented a method whereby this 
computationally prohibitive step is avoided and 
the transformations can be applied locally on 
smaller circuit partitions.  Section 2.0 showed 
that the RM transform is a special case of the 
Fourier transform, thus these results are 
applicable to a wide variety of transforms. 

Modeling of classical logic circuits has 
traditionally been accomplished through the use 
of switching theory based on Boolean algebras 
for binary circuits while spectral analysis has 
been traditionally expressed in terms of linear 
algebra.  This work reformulates classical circuit 
analysis in terms of linear algebra hence the 
mathematics of classical and RM spectral netlist 
analysis is now unified with a common 
mathematical basis. 

Although the transfer matrices are 
exponentially large, it is noted that their structure 
is very regular and that efficient representations 
in terms of BDDs and cube lists can in fact be 
interpreted as transfer matrix representations.  
This fact allows the representation complexity to 
be equivalent to that of traditional switching 
theory based methods.  

The result presented here is an algorithm for 
performing local transformations of partitioned 
subcircuits in a netlist and replacing the 
subcircuits with their Reed-Muller equivalents if 
a merit function indicates such a substitution is 
desirable.  This technique can be implemented 
using BDDs for all matrix computations to 
reduce the average exponential complexity 
encountered when matrix arithmetic is used 
explicitly.  

Future research will investigate the effective 
extraction of appropriate subcircuits to which the 
proposed method may be applied to reduce area 
and/or enhance testability.  We will also consider 
the insertion of test points at the outputs of 
subcircuit partitions.  Implementation will be 
accomplished through the use of BDDs for the 
linear algebraic computations to reduce average 
complexity.  
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