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Abstract—The fixed polarity forms of the Reed-Muller (RM)
transform exist in 2n different polarities. The integer-valued
Pascal transform is related to the binary-valued RM transform
through the Sierpinski fractal that can be computed from
Pascal’s triangle and that also appears in the lower triangular
portion of the positive-polarity RM transform. We generalize
the relationship between the fixed-polarity forms of the RM
transform and introduce associated forms of the Pascal transform
that are characterized by a polarity value allowing for a family
of fixed-polarity Pascal (FPP) transform matrices to be defined.
We observe and prove several properties of the FPP transforms
and their inverses. An application of FPP transforms in the area
of computer algebra that enables very fast decomposition of
real-valued polynomials as weighted sums of different binomials
raised to a power as compared to manual symbolic manipulation
is described. The decomposition weights can be considered to
be the FPP spectrum with respect to a real-valued polynomial
since they are computed using one of the linear orthogonal FPP
transformation matrices.

I. BODY OF PAPER REDACTED

II. CONCLUSION

We have introduced the concept of a fixed polarity Pascal
(FPP) transformation matrix that is analogous to the fixed-
polarity Reed-Muller (FPRM) transformation matrices. This
concept resulted in the definition of a family of linear trans-
formations based upon the Pascal transformation that are
characterized by an integer value referred to as the “polarity
number.” We introduced and proved several characteristics of
this family of transformation matrices and showed how the
inverse FPP transforms can be calculated efficiently in closed
form. We applied these results to a computer algebra applica-
tion resulting in methods that are suitable for implementation
as efficient algorithms to both simplify polynomials and to
decompose polynomials into weighted sums of binomials
raised to a power.

In future work, we will investigate methods that attempt
to find the FPP polarity number, and hence the specific FPP
transformation matrix that results in a binomial decomposition
that has as few binomial terms as possible. This problem is a
direct analogy to the well-known and well-studied problem of
finding the polarity number for a FPRM transform that results
in a switching function expressed in a RM expansion that has
as few product terms as possible. We also believe that the FPP
transforms can be used as the core operation in many other

computer algebra applications and we intend to investigate
those as well.
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