Automated Quantum Oracle Synthesis with a Minimal
Number of Qubits

Jessie M. Henderson®, Elena R. Henderson®, Aviraj Sinha®, Mitchell A. Thornton®, and
D. Michael Miller®

#Southern Methodist University, 6425 Boaz Lane Dallas, TX 75205, USA
bUniversity of Victoria, P.O. Box 3055 Victoria, BC VW 3P6, Canada

ABSTRACT

Several prominent quantum computing algorithms—including Grover’s search algorithm and Shor’s algorithm
for finding the prime factorization of an integer—employ subcircuits termed ‘oracles’ that embed a specific
instance of a mathematical function into a corresponding bijective function that is then realized as a quantum
circuit representation. Designing oracles, and particularly, designing them to be optimized for a particular use
case, can be a non-trivial task. For example, the challenge of implementing quantum circuits in the current
era of NISQ-based quantum computers generally dictates that they should be designed with a minimal number
of qubits, as larger qubit counts increase the likelihood that computations will fail due to one or more of the
qubits decohering. However, some quantum circuits require that function domain values be preserved, which can
preclude using the minimal number of qubits in the oracle circuit. Thus, quantum oracles must be designed with
a particular application in mind. In this work, we present two methods for automatic quantum oracle synthesis.
One of these methods uses a minimal number of qubits, while the other preserves the function domain values
while also minimizing the overall required number of qubits. For each method, we describe known quantum
circuit use cases, and illustrate implementation using an automated quantum compilation and optimization tool
to synthesize oracles for a set of benchmark functions; we can then compare the methods with metrics including
required qubit count and quantum circuit complexity.

Keywords: Quantum computing, quantum oracle, quantum circuit synthesis, automated quantum oracle circuit
design

1. INTRODUCTION

A quantum circuit is a representation of an algorithm intended to run on a quantum computer using the gate
model paradigm of computation. This model consists of quantum bits, or qubits, and a sequence of low-level
quantum operations, or quantum gates, that act upon those qubits. Graphically, a quantum circuit is depicted as
a set of horizontal lines that represent the state of qubits over some time interval, during which gates, represented
by symbols intersecting the horizontal lines, act upon the qubits, causing them to evolve to a new quantum state.
While many quantum circuits are well-known patterns, a significant number also require the specification of an
arbitrary mathematical function as a subcircuit for a particular use-case. This requires the quantum programmer
to determine a customized subcircuit—termed a quantum oracle—that realizes the particular function of interest.
Furthermore, before producing such an oracle, the quantum programmer must convert each function of interest—
which is not necessarily a bijection nor completely specified—to a corresponding bijective, completely-specified
‘embedding function’ that can be represented by an oracle subcircuit.

Manual oracle design becomes challenging as either the cardinality of the dependent variable set or the number
of qubits required to represent the function domain increases. In addition to the challenge of determining an
appropriate embedding function, the act of specifying the embedding function as a series of low-level quantum
operators quickly becomes an unwieldy task for human programmers. Oracle synthesis is made even more

Further author information: (Send correspondence to JMH.)
JMH: hendersonj@smu.edu, ERH: erhenderson@smu.edu, AS: avirajs@Qsmu.edu,
MAT: mitch@smu.edu, DMM: mmillerQuvic.ca

challenging given the constraints of contemporary quantum hardware, which is part of the noisy, intermediate-
scale quantum (NISQ) era.? Today’s quantum computers must overcome tremendous engineering challenges to
prevent qubits from decohering during circuit execution, and thus, even state-of-the-art gate-based machines that
have a mere O(10?) qubits are susceptible to decoherence. Therefore, it is desirable to minimize both the number
of qubits and the number of required gates when designing quantum circuits, adding yet more considerations to
a quantum developer’s list.

Not only is quantum oracle design a difficult problem, but it is also an important one, because many quantum
algorithms include structures that are—or can be considered—quantum oracles. For example, consider Grover’s
database search program, in which an oracle implements a function that indicates if an element within a collec-
tion of search objects satisfies a programmer-selected criterion. Although the characteristics of Grover’s search
algorithm are well-understood, the structure of the Grover oracle depends upon the types of objects within the
database, as well as the characteristics of the sought object. Therefore, the oracle used within an implementation
of Grover’s search must be designed for each use case.

Given the difficulty and importance of oracle synthesis, designing tools to aid quantum software developers
with oracle generation is an active area of research. For example, recent work developed an automated oracle
synthesis framework for formally verifying generated oracle circuits using a custom “oracle quantum assembly
language”.® In this article, we focus on circuit synthesis rather than formal verification; we present a tool for
automatically synthesizing oracle circuits from user-specified functions, even when those functions are not re-
versible nor completely-specified. We thus provide quantum developers a more flexible, natural way of specifying
functions of interest, while also relieving them of the difficult task of manually formulating embedding functions
or manually translating those embedding functions into a minimal set of qubits and quantum operators.

The automated oracle synthesis tool comprises two different oracle synthesis methods, one of which produces
an oracle with the minimum number of required qubits to support the embedding function, and the other
of which produces an oracle with more qubits—but usually fewer gates—in order to preserve the embedding
function domain values. The remainder of this paper proceeds as follows. Section 2 provides a brief introduction
to quantum circuits and quantum oracles, and includes discussion of well-known quantum algorithms that employ
oracles. Section 3 describes methods of determining embedding functions. This is the portion of the synthesis
process that allows developers to automatically obtain complete, reversible circuits from incomplete, irreversible
function specifications. Section 4 then describes the two oracle synthesis methods implemented in our quantum
compilation and optimization tool, before Section 5 illustrates our implementation on both a straightforward
conceptual example and on benchmark circuits. We conclude with a brief discussion of potential use cases for
the different synthesis methods, as well as avenues for future work.

2. BACKGROUND
2.1 Quantum Circuits and Oracles

Figure 1 depicts a sample quantum circuit that is annotated with a coordinate system. This graphical depiction
of a quantum program represents the composite quantum state of the qubits at different times, as indicated by
the horizontal coordinate axis. Specifically, Figure 1 is comprised of two qubits represented by the two horizontal
lines. The vertical axis depicts the discrete number of qubits in the circuit, and the symbols intersecting the
horizontal lines represent quantum state transformations, or gates, applied to the qubits. For example, the box
annotated with H on the leftmost side of the figure represents the application of a Hadamard gate to qubit
[1) that occurs during the time interval of (to,t1). And the symbol in the time interval (¢1,t¢2) represents a
controlled-X gate, a two-qubit operation applied to the |1)¢) qubit pair that is also commonly referred to as a
‘controlled-NOT’ gate.*

Quantum oracles are subcircuits that are used in several well-known quantum algorithms. When considered
as part of such an algorithm, oracles are blackbox functions that act on circuit outputs based upon circuit inputs.
An oracle’s action depends both upon the algorithm for which the oracle is being developed (e.g., Grover’s search,
Simon’s periodicity, etcetera) and upon the specific context in which the algorithm’s task is being performed

*This paper uses Dirac notation, which is a standard way of mathematically representing quantum state vectors. For
an introduction to Dirac notation, please see Ref. 6 or Ref. 7.

>=I0

D> =10

t t t t t

Figure 1. An example of a quantum circuit.

(e.g., for Grover’s algorithm, searching a deck of cards, searching a database of employees, etcetera). Thus,
quantum algorithms can be developed ‘around’ such oracles, allowing for consideration of the overall process
without requiring synthesis of a particular oracle for a particular contextual case.

For example, consider Grover’s search algorithm, which uses an oracle to identify database items that satisfy
user-specified constraints. The exact gates constituting this oracle must change to fit each different database
and search query. However, the overall structure of the Grover search algorithm involves querying an oracle,
for which the precise gates are unspecified, but for which functionality is understood as determining the input
values that satisfy a particular search criteria.

For clarity, we provide formal definitions in 2.1 and 2.2 to clearly differentiate the meaning of the terms
‘reversible logic’ and ‘switching function’ as used in the remainder of this paper.

DEFINITION 2.1. “Reversible logic” describes a function that is defined over a digit set with a cardinality of
two (2). Reversible logic functions are restricted to the set of functions that are bijective relations; therefore, a
reversible logic function can be specified as a unitary transformation matriz U that is in the form of a permutation
matriz. Reversible logic functions may be defined over the digit set Zo = B = {0,1} or over the computational
basis set {|0),|1)}, depending upon the circuit technology for which they are mathematical models. It is worth
noting that irreversible operators such as the switching logic operators OR, AND, XOR, etcetera can be employed
in the specification of binary-valued reversible logic functions. O

DEFINITION 2.2. A “switching function” is a representation of any function wherein the range consists of a
subset of elements from the set Z%' and, likewise, the domain is a subset of elements from the set Z%. The set
Zs is defined as Zo =B = {0,1}, and m and n are positive non-zero integers. O

Given Definitions 2.3 through 2.5, the objective of this work is thus to determine an oracle function U that
represents an embedding function, f.(x) that, in turn, covers the function of interest, f(z) and to automatically
produce a quantum circuit that realizes the oracle function transfer matrix, Uy, as comprising an allowable
set of quantum gates. This automated process is designed to be convenient for users in a number of ways,
including by automatically converting irreversible, incomplete switching functions of interest into reversible,
complete specifications prior to synthesis, and by producing oracle circuits that use the minimal number of
required qubits.

DEFINITION 2.3. A “function of interest,” f(x), is one that is not necessarily bijective nor completely specified,
and that may be characterized with a domain set whose members use a different number of digits than the
members within the range set. Functions of interest are often determined by quantum software developers when
implementing quantum circuit patterns for a specific use case. O

DEFINITION 2.4. An “embedding function,” f.(x), is a bijective function that contains the same mappings or
relations as those specified by the function of interest, f(x). Reversible functions are necessarily bijective and it
s a consequence of the postulates of quantum mechanics and the definition of a gate-based quantum computer
that all quantum circuits represent reversible functions. O

DEFINITION 2.5. An “oracle function” is a representation of an embedding function f.(x) in the form of a unitary
quantum circuit transfer matriz denoted as Uy. Thus, the oracle function can be mathematically described as
fe(x), or by the unitary transfer matriz, Uy that has f(x) embedded within it. Quantum oracle circuits utilize a
subset of input qubits to represent specific valuations of the domain values x, and they may also use an additional
subset of output qubits to represent valuations of f(x). Some quantum orcale circuits also comprise ancillary
and/or garbage qubits that are required to enable the represented embedding function, f.(x) to be bijective. Input
ancillary values, |a), and output garbage wvalues, |g), are incorporated into the oracle function to accurately
represent the embedding function’s bijectiveness. O

It is worth noting that an embedding function and its corresponding oracle function are homomorphic,
meaning that they can be mapped to one another with a bijective operation. The same is not true for the
original function of interest, which is not generally isomorphic to either the embedding or the oracle function
since it is not necessarily bijective nor completely specified. Once an initial function is made bijective and
completely specified via conversion to an embedding function, a quantum oracle can be used to represent the
same information as is contained in the initial function.

2.2 Examples of Quantum Algorithms with Oracles

To illustrate the purpose—and frequent use—of oracles, we briefly discuss five well-known quantum algorithms
that employ oracles. First is the Deutsch-Jozsa algorithm, which was originally specified as an example to show
the power of gate-model quantum computing.®? The Deustch-Jozsa algorithm embeds an unknown switching
function within a “blackbox” that is implemented as an oracle. The algorithm’s objective is to determine if
the embedded function is “balanced,” meaning whether exactly half of the function values evaluate to a unique
codomain value. Subfigure a) of Figure 2 depicts the quantum circuit that implements the Deutsch-Jozsa
algorithm.

Second is the Bernstein-Vazirani hidden string finding algorithm.'® This algorithm uses an oracle with an
embedded function of the form fq(x) : Z§ — Zo, such that some string of length n, denoted as s, is referred to
as a “hidden string.” The embedded function f is a switching function that yields the inner product of the two
n-bit strings x and s, and the Bernstein-Vazirani algorithm computes the hidden string s. The purpose of this
algorithm is to demonstrate properties regarding the complexity classes BQP and BPP. Subfigure b) of Figure 2
contains the quantum circuit implementing the Bernstein-Vazirani algorithm.

Third is Grover’s database search algorithm.'! As briefly mentioned earlier, the quantum circuit that imple-
ments Grover’s search uses an oracle that indicates if a database object is present at the |z) inputs. Subfigure
¢) of Figure 2 depicts the quantum circuit implementing an iteration of Grover’s search algorithm.

Fourth is Simon’s periodicity finding algorithm.'? It is similar to the Deutsch-Josza algorithm: the oracle
is considered a “blackbox” that embeds a switching function of the form f : Z3 — Z%, and the objective is
to determine the period of the function f. Simon’s periodicity finding algorithm is shown in Subfigure d) in
Figure 2.

Fifth and finally is Shor’s factoring algorithm that is used to efficiently factor integers into prime factors.'?
The oracle is formed based upon the determination of a modulo-powers function, fi y(x) = k%(modN), that
depends on two constant numeric parameters, kK and N, which are determined in a preprocessing step. fx v
serves as the embedded function for the oracle in Shor’s algorithm. Subfigure e) of Figure 2 depicts the portion
of Shor’s algorithm that executes on a quantum computer.

Before discussing the two forms of quantum oracle that our tool creates, it is worth re-emphasizing that
implementing oracles for the above algorithms can require a significant amount of work on the part of quantum
software developers when the oracles are manually determined. In particular, while the function of interest for
Shor’s algorithm—the modulo-N powers function—is inherently realizable as a unitary function, the same is not
true, in general, for the functions of interest used in the oracles for the Deutsch-Jozsa, Grover’s, and Simon’s

a) b)
0.0—— H®" Ui wH H®" 4 /7\2- 0.0—— H®" Hip wH HE" H AL

la> lasf(x)

1 |
p—+ H Heo asftx) - H

c) d)

0.0—— H®" Hio boHTH2AH /7\2- 00— H®" Hio wH HE" L 7 A

> lasf{x)

o s 0.0 ————

1
T

0.0—— H®" Hi» wHOFTTH AL

Uty
0.0—A > e

/7\—

V4

Figure 2. Examples of quantum algorithms that use oracles: a) The Deutsch-Jozsa algorithm, b) The Bernstein-Vazirani
algorithm, ¢) Grover’s search algorithm, d) Simon’s periodicity finding algorithm, and e) Shor’s factoring algorithm.

algorithms. Thus—absent a tool such as ours—quantum developers must manually transform such functions to
be reversible before synthesising circuits representing them. Furthermore, regardless of whether the functions
are inherently unitary, oracle design always requires a re-synthesis or re-compilation step for each particular
situational context, even when the algorithmic use-case remains the same. Returning to an aforementioned
example, performing Grover’s searches for two different databases requires two entirely different oracles, as does
performing two different searches for the same database of items. To emphasize the importance of this re-
synthesis, we can contrast with classical computing. In the latter, once an algorithm has been implemented, it
requires only a single compilation, even for execution in different situational contexts. Because the same is not
true for quantum algorithms, it is desirable to eliminate the need for a quantum software developer to manually
re-synthesize oracle subcircuits for every use case.

2.3 Quantum Oracles with Minimal Qubits

Most quantum algorithms use qubits that are defined as quantum states over a binary basis. For such algorithms,
it is necessary to represent a function of interest as a switching function prior to determining the structure
of a quantum oracle. Functions that are not natively defined in the form of a switching function are easily
represented in that form by representing all domain and range values as fixed-point signed or unsigned values.
When converting a non-binary function into a switching function form, it is usually the case that a minimal
number of bits/qubits, n, is used for efficiency. More specifically, the number of bits or qubits, n, used to
represent variable valuations, or domain values, d;, in unsigned, fixed-point form is given in Equation (1).

n = [logy(max(d;))] (1)

Likewise, Equation (2) is typically used to determine the number of bits or qubits, m, representing valuations
of a function given a specific variable valuation, or the range values, r;, of a function.

m = [logy(max(r;))] (2)

We note that restricting the switching function form of an embedding function to use these n and m values is
a heuristic for reducing the circuit complexity of a resulting quantum oracle circuit. While using more than the
minimally required number of qubits can lead to further reduction of circuit complexity, the determination of an
optimal number of required qubits with respect to circuit complexity reduction is an open research question not
further addressed in this work.

As previously mentioned, functions of interest need not be bijective, meaning they need not be one-to-
one. Indeed, it is often the case that a specific function has n # m. For example, an oracle in a Grover’s search
algorithm is usually specified with m = 1, since the result of the oracle is either “true” or “false,” depending upon
whether or not the search object is present within a larger dataset. However, quantum program implementations
represent unitary transformation matrices, and therefore, quantum oracles need to represent unitary transforms.
As a result, we must generate one-to-one embedding functions from functions of interest that are not natively
one-to-one. Quantum oracles then represent such embedding functions by incorporating ancilla and garbage
qubits. The lower bound for the number of required qubits is given by N, = max(n,m) + v, where v is the
minimal number of ancilla qubits required by the oracle. If the function of interest is natively one-to-one, then
v =0, 80 Nypin = maz(n,m).

In oracles that minimize qubit count, some of the n qubits that represent the domain values are reused. In
other words, the oracle causes their quantum states to evolve into the quantum states of some or all of the qubits
representing the m range qubits. Specifically, for an embedding function, if n > m, then the resulting minimized
oracle has n qubits: on the output side, m qubits are used for the range values, and n — m qubits are garbage
outputs. Alternatively, if n < m, then the resulting oracle has m qubits: on the input side, n qubits are used for
domain values, and m — n ancilla qubits are initialized to some state |a), which is often |0). Figure 3 contains
a diagram of oracles with these structures. Each of these implements the oracle function represented by the
transfer matrix U, which itself represents a unitary transformation containing the embedding function.

a) b)

n —ﬁﬁ; % o —;&-)
o> —;L'P Uf m m-n
——> [f{x) &> —F—>

Figure 3. An oracle with a minimal number of qubits: m < n (a) and n < m (b).

U i

2.4 Quantum Oracles that Preserve the Domain Qubits

Many quantum algorithms require the preservation of the domain values after the embedded function is eval-
uated. For example, some algorithms—such as Simon’s periodicity finding algorithm and Shor’s algorithm for
determining prime factors—use entanglement properties of the domain values and the corresponding range val-
ues (produced by the oracle) for further processing. Thus, it is important for the oracle to preserve the domain
values as part of its output. Figure 4 illustrates an oracle with such a domain-preserving structure.

The oracle depicted in Figure 4 consists of n + m qubits. The n-qubit function variable, |z), and m-qubit
ancilla, |a), are shown on the input side of the oracle. The output side consists of the n-qubit variable valuation
that is identical to the input, |z), and the corresponding function evaluation that is combined in a qubit-wise

> —A ” L e
> —f> BNy

Figure 4. An oracle that preserves domain values.

manner with the m ancilla qubits through the exclusive-OR operator. Since the oracle, Uy, is a reversible logic
function, the exclusive-OR operator operates over the computational basis values of |0) and |1) in the same
manner as the conventional digital logic operator defined over elements in Z,. It is worth noting that, because
the oracle outputs are the n uniquely-valued domain qubits and the m range-valued qubits, the total number of
required qubits is always Ny,;, = n + m. No additional qubits must be included to serve as ancilla or garbage,
even when the function of interest is not one-to-one. Thus, even when there exist duplicated range values, the
presence of the uniquely-valued domain qubits enables the oracle transformation matrix to be unitary.

3. FUNCTION EMBEDDING

Generating a quantum oracle from a function of interest requires first representing that function in a suitable
form. Specifically, if the function is not natively in the form of a switching function, it is first converted to a
radix-2 switching function. For developer convenience, our automated tool represents functions of interest in a
tabular form that is straightforward to generate.

We utilize the .pla file format, which represents switching functions in a table.'* While a tabular representa-
tion permits any function to be specified, such representation is exponential in size, requiring a table with O(2")
rows and O(n + m) columns of values from the set Zo. Each row consists of n + m bits, with the first n bits
representing one of the unique bitstrings that corresponds to a unique variable valuation, along with a bitstring
of length m representing the corresponding function valuation. Thus, the .pla format includes features to reduce
the size of function-specification tables.'* First, the n-bit function variable values that differ in only a single bit
value from other variable values are collapsed into a single row, with the “-” symbol replacing the appropriate
bit to indicate that both “0” and “1” values are represented. Table rows may contain multiple instances of the
“-” character, combining even more rows. Second, rows are not included for undefined range values. Third, if
certain function range values may be assigned either a “0” or “1” value, a “-” is included in the corresponding
location of the m-bit string; in this case, the “-” symbol represents a “don’t care” condition, meaning that either
a “0” or a “1” can be assigned. It is important to note the difference in “-” meaning when present in the n-bit
string representing the function variable valuations versus the m-bit string representing the function value. In
the first case, the “-” represents that function values exist for both a “0” and a “1” in place of the “-”, while in
the second case, the “-” represents that either a “0” or a “1” is a suitable replacement for the “-”.

Before moving on, it is worth noting that—while the .pla format has advantages for reducing the exponential
size in many cases—there are alternative representational forms that could be used and that might, in some cases,
allow for better table-size reduction than the .pla format. For example, two other possible representations are
text-based structural netlists of conventional digital logic gates using a formally specified language such as
Verilog, and graphical forms such as digital logic circuit diagrams or other forms of decision diagrams.'® The
methods described in this work could be adapted to use such forms of representation for embedding functions to
leverage situations in which the functions might be more efficiently represented. However, this work will consider
only .pla representations for two reasons: first, the ease of use of .pla files is consistent with developing an
oracle-generation tool that is straightforward to use. Second, the purpose of this work is to describe the methods
for efficiently synthesizing quantum oracles, and not to compare different methods for the representation of
switching functions. So, while we acknowledge the possible utility of other representational forms, we leave
further exploration to future work.

3.1 Embedding Functions with Minimal Qubits

When synthesizing a circuit that will use the fewest possible number of qubits, it is required that the circuit
be specified as a one-to-one function. There are a variety of approaches for this task,'® and in this work, we
utilize a three-step process to embed a switching function of interest into a one-to-one representation using a
minimal number of inputs and outputs. This process is termed the RT'T method; it was originally presented in
a workshop,!” and has been refined for use with methods such as those in this work.

The RTT process applies to a given function representation with n-bit strings representing function variable
values and m-bit strings representing function values. The first step is to determine Ny, the maximum number
of times that an m-bit string is duplicated in the representation. An m-bit string is duplicated when it represents
the function value for multiple of the distinct n-bit strings that represent function variable values. The second
step of the RT'T method uses this value of Ng,, to add ancilla inputs and garbage outputs for embedding the
original function of interest in a one-to-one representation. If Ng,, = 0, then the function of interest is one-to-
one, so there are no ancilla or garbage to be added. Otherwise, v garbage outputs are required, where the value
of v is given by v = logy(Ngup). Adding v garbage outputs may require the addition of ancilla such that the
function remains one-to-one. Thus, w is the number of ancilla qubits to be added, and is given by w = v+m —n.
When added, the v garbage outputs and the w ancilla values are initialized to the value O.

The third and final step of the RTT method is to assign values from Zs to the w ancilla inputs and v
garbage outputs such that the duplicated m-bit function-value strings of the original representation are now
differentiated. For each group of m-bit function-value duplicates, the first duplicate instance’s garbage remains
assigned to 0, and each subsequent duplicate instance is assigned to the value of the previous instance incremented
by 1. The same holds for the n-bit function values associated with these function valuations: the first instance’s
ancilla remains assigned to 0, with each subsequent instance being assigned to a value of the previous instance
incremented by 1. At this point, the embedding function is represented as a one-to-one function that, when
synthesized, will use the minimally-required number of qubits.

3.2 Embedding Functions that are Mathematically Onto

The TBS method that we apply to synthesize oracles with minimal qubits requires that the functions be not only
one-to-one, but also onto. There are many approaches for embedding non-onto functions into onto variants.'®
Here, we discuss two methods, both of which are described in Ref. 18, and both of which are applied after the
functions have been made one-to-one, as discussed above.

The first method is a naive approach: there will be an equal number of inputs and outputs that are not
specified explicitly as part of the function, and the naive method simply pairs these up randomly. So, the first
input to not have a specified output is paired with the first output to not have a specified input, and so on, until
all inputs and outputs are paired.

While there is nothing incorrect about this approach, it is not optimized for the TBS synthesis method. The
TBS algorithm produces circuits with lower quantum circuit complexity—as described in section 5—when the
number of input values that are identical to their associated output values is maximized. Therefore, a more
sophisticated approach for generating onto functions that will be synthesized using TBS is to pair as many
unspecified input values to matching output values as possible. We accomplish this in two steps: first, all
unspecified input values are matched with identical unspecified output values, assuming that such an output
value is available. Second, once all possible input values have been matched with identical output values, we
assign each remaining unspecified input value to an unspecified output value that is as similar to the input value
in terms of matched bits (é.e., in terms of Hamming distance) as possible. For example, consider a function with
n = m = 3 for which 001 is an unspecified input value that could be paired with either 110 or 011, which are
unspecified output values. In this case, 001 would be paired with 011, because those values differ by only one
bit, while 001 and 110 differ by three bits.

3.3 Embedding Functions with Preserved Domain Qubits

To preserve the values of the domain qubits, the oracle must evolve the n domain values at the quantum circuit
inputs to n qubits at the output. Thus, the function embedding step replaces the function of interest (with

n-qubit domain values and m-qubit range values) with a function that depends upon the same n-qubit domain
values, but that has (m + n)-qubit range values wherein the n domain qubits are now added to the original m
range-value qubits. Fortunately, explicit copying and modification of the tabular representation of the function
is not required, and instead occurs inherently by simply considering the table as representing the embedding
function as described above: the domain values are the first n qubits of each row in the table plus m zero values,
and the range values are the (n 4+ m) values in each row.

4. ORACLE SYNTHESIS METHODS

Before describing the oracle synthesis methods in more detail, we note that—for both methods—the synthesized
oracle function is in the form of a technology-independent QASM specification.!?>20

4.1 Minimal Qubit Quantum Oracle Synthesis

Given a completely specified reversible function, Transformation-Based Synthesis (TBS) methods produce a
reversible circuit with a minimal number of qubits that realizes the given function. The circuit produced is
a reversible logic gate cascade comprised of Pauli-X gates (i.e., NOT), Feynman gates (i.e., controlled-X or
CNOT), Toffoli gates (i.e., controlled-controlled-X or C-CNOT), and multiple-control Toffoli (MCT) gates (i.e.,
gates with three or more control inputs and a target Pauli-X operation).?!

The basic unidirectional TBS method processes a tabular specification by adding gates to the output side
of the circuit so that each output pattern matches the corresponding input pattern.?! Since the specification is
reversible, one could consider the inverse specification, derive a reverse circuit, and then choose whichever pro-
duced circuit is the smaller. A more effective approach is to apply the method in both directions simultaneously,
the so-called bidirectional TBS, choosing to add gates at the input side or the output side of the circuit at each
step of the synthesis process.?! A further extension of TBS to a so-called multidirectional approach is described
in Ref. 22, and search based TBS methods have been described in Ref. 23. Complete details of both basic and
varied TBS methods are provided in the above references; here, we provide a summary of the basic TBS method.

The input to basic TBS is a truth-table specification of a completely-specified, reversible (bijective) switching
function with the number of inputs (n) equal to the number of outputs (m). For example, a tabular specification
of a function produced using the RTT method described in Section 3.1 is a valid input for TBS. Given such
a specification, the basic TBS method identifies the desired reversible circuit by iteratively transforming the
given reversible function into the identity function and obtaining a cascade of gates that implements the required
transformation. Reversing that cascade identifies a circuit that maps the identity function to the specified
reversible function, and thus maps each input pattern to the required output pattern. The gate cascade identifies
a quantum circuit, and for our purposes, a quantum oracle.

The basic TBS method works through the given tabular specification in ascending order of the input patterns,
i.e., (0...00),(0...01), (0...10)...(1...11). Note that for ease of implementation, a given tabular representation is
typically reordered so that the input patterns are in the desired order. At each step, gates are chosen to map
the given output pattern to one that matches the input pattern, and are added to the output side of the cascade
being constructed. The gates chosen are applied to the function being synthesized, resulting in an intermediate
residual function, f;,:, that becomes the function to be synthesized in the next step. In other words, each time
a reversible gate is determined and appended to the output specification, a new intermediate representation of
the function to be synthesized, fi.¢, is created for use in subsequent TBS operations.

Consider the first step of basic TBS, in which the input pattern is (0...0), and a set of NOT gates is chosen to
make the output pattern (0...0). In each subsequent step, gates are chosen to map the given output pattern to
the target input pattern—the key being that those gates are chosen so that they do not affect any entry earlier
in the specification.?! After the second-to-last row of the specification has been transformed, the last row must
be such that the input and output patterns are both (1...11) and no further gates are required. The f;,; function
will at that point be the identity function, and, as noted earlier, the reverse of the gate sequence that produced
the identity represents the synthesized gate cascade for the initial given reversible function.

Finally, we note that while the initial specification of basic TBS in Ref. 21 and the description above are stated
in terms of a truth-table specification, the method can also be implemented using more compact representations
such as decision diagrams.

4.2 Oracles that Preserve the Variable Values

When an oracle should preserve the variable values by producing them as oracle outputs, the RTT procedure
need not be applied to the function of interest prior to synthesis. As described in Section 3.3, the function of
interest is implicitly converted to an embedding function by interpreting each domain and range valuation as a
combined n+m output, thus resulting in an oracle that always consists of n+m qubits, with n qubits producing
the variable values, and m qubits evolving to a state representing the function values. Specifically, the .pla table
representing the function of interest is used directly as input to a procedure termed the ESOP synthesis method,
which was first described in Ref. 24. The ESOP method produces an oracle with the structure illustrated in
Figure 4.

A function in ESOP form is represented as an exclusive-OR sum-of-products: function variables are combined
into products via logical conjunctive AND operators, and these products are summed together with disjunctive
exclusive-OR. operators.?* When the resulting expression is evaluated at variable values, it produces the corre-
sponding function values. A .pla table can be converted into ESOP form, meaning it comprises a list of products
that produce the ESOP representation of the function when combined via exclusive-OR, operators. Each row
of input variable values of the table represents a product, wherein a value of 1 or 0 corresponds to an input in
positive or negative polarity, respectively. In our synthesis tool, we apply the implementation of EXORCISM-4
to obtain .pla tables in a minimized ESOP form.?®

For each product in a given ESOP-from .pla table, the ESOP method produces a Toffoli gate, and thereby
maps a list of products to a reversible logic circuit.?* The basic steps for this mapping are as follows. For each
input variable and each output variable of the ESOP-form .pla table, a qubit is added to the generated circuit
as an input or output, respectively. For each product of the table, each output variable value of 1 maps to a
Toffoli gate with its target on the corresponding output qubit. The controls of each Toffoli gate are determined
by the inputs corresponding to the output variable. Specifically, an input variable value of 1 means a control
is placed on the corresponding input qubit, while an input variable value of 0 means a control is placed on the
corresponding input qubit along with two Pauli-X gates, one on either side of the control, in order to reverse
the qubit’s polarity and then restore it for subsequent Toffoli gates. This process produces a circuit of n + m
qubits, and thus, given a .pla table representing a function of interest interpreted as an embedding function,
the ESOP method produces an oracle that preserves variable values.

5. EXPERIMENTAL RESULTS

We implemented the two oracle synthesis methods described in Section 4 in a quantum synthesis, compilation,
and optimization tool termed Mustang@.?52° Mustang@ is designed to use various internal representations of
both conventional switching functions and quantum circuits, including .pla, QMDD,3° and a customized data
structure that represents the structural form of a quantum circuit comprised of gates.

To illustrate Mustang@’s automated synthesis of oracle functions, we first consider a small and conceptually-
straightforward example: synthesizing a Grover’s search oracle for a database containing a ‘deck of cards.” We
then extend this example by illustrating how the output of Mustang@ can be used to run simulations of Grover’s
algorithm using Qiskit. Thus, this example not only illustrates the oracle-generation aspect of Mustang@, but
also the tool’s utility when preparing circuits for specific quantum hardware. After the deck of cards example,
we illustrate Mustang@’s data generation using both the ESOP and TBS methods on a series of benchmark
functions specified in .pla format. This allows us to compare the two methods, highlighting the benefits of each.

5.1 Starting Simple: Oracles for Searching a Deck of Cards

Consider a database comprising a representation of the fifty-two cards in a standard playing deck. Each card is
specified as a six-bit switching function, where the first two qubits encode the suit, and the latter four qubits
encode the numerical value of the card. Table 5.1 illustrates the card encoding; note that three of the numerical
values are unused, because they do not correspond to the numerical values 2-10, Ace, Jack, Queen, or King.

Before considering a specific example with the playing cards, we briefly consider Grover’s algorithm in general.
As shown in Figure 2, there are three segments of a circuit implementing the search. First, all qubits are put
into superposition to ensure that all possible items in the search space are considered. Second, the oracle ‘marks’

Table 1. Encoding card suit as a two-digit bitstring and card rank as a four-digit bitstring.

Clubs 00 6 0110
Spades 01 7 0111
Diamonds 10 8 1000
Hearts 11 9 1001
Ace 0001 10 1010
2 0010 Jack 1011
3 0011 Queen 1100
4 0100 King 1101

5 0101 Unused | 0000, 1110, 1111

one or more desired items by changing the phase of their associated states to be opposite that of the other states
in the search space. Third, ‘inversion about the mean’ magnifies the amplitudes of the ‘marked’ states, while
reducing the amplitudes of unmarked states, and then inverts all of the amplitudes about the average amplitude.
Repeated application of the oracle and the inversion about the mean results in a circuit that—when its qubits are
measured—is likely to collapse to any of the desired states. The number of repetitions required is proportional
to the square root of the number of elements in the search space, and this provides the speedup over classical
methods, which have a complexity on the order of the number of elements in the database.

The portions of the circuit for both the first and third steps are entirely determined by the number of qubits
present, which is in turn determined by the size of the database. Conversely, the second portion specifying the
oracle changes based upon both the database being searched and the particular search query, so it must be
re-synthesized for each new search. Mustang(@ automates this synthesis for different searches, as is illustrated by
the following oracles synthesized to find a specific card or subset of cards in the 64-item deck-of-cards database.

Consider searching for the ten of diamonds, which is equivalent to searching for the state 101010. Figure 5
illustrates the oracle that Mustang@ generated to mark the state 101010 as the sought member of the database.
In this straightforward situation, the oracle is trivially simple, because it involves solely a generalized-Toffoli gate
with controls on each of the six input qubits, and a target on the output qubit. The controls are positive for
inputs that are designated as one (1) in this case, and are negative for inputs that are designated as zero (0); as
illustrated in the figure, ‘negative’ controls are equivalent to positive controls with a Pauli-X gate on either side.

ins

I

in,

i, —F 95

in;

in,

S¥

N
LV

Outo NV

Figure 5. Oracle for marking the ten of diamonds, encoded as 101010 in our deck-of-cards database.

Inserting this oracle into a circuit for the remainder of Grover’s algorithm generates the circuit depicted in
Figure 6. We note two features of this circuit. First, we re-emphasize that the subroutine denoted “Inversion
About Mean” depends solely on the number of qubits present and thus does not vary by database as does the
oracle. Second, we note that the highlighted portion is repeated six times prior to measurement; we determined
the number of iterations experimentally, as this trivial example is too small to meaningfully utilize the recom-

mendation of O(\/%) iterations, where IV is the number of items in the database, and M is the number of
database items that are solutions to the search query.

After generating the circuit for searching the deck for a ten of diamonds, we used Qiskit to simulate running
the circuit on quantum hardware. Using an ideal simulator (i.e., one that does not introduce noise as a result of
imperfect hardware), we generated the results in Figure 6, which shows correctly obtaining the ten of diamonds
state (101010) in 99% of 1024 shots.

ins -@ f/\z— o0

CNTTRE S o

iny {H A
Inversion X6 ‘ 3

in, <‘H @ @ About Mean hi— L

in, {H] AN

iy {1}—CP- - o

outy] A

7
g,
91y,
10004,
100y,

Figure 6. The circuit and simulation results for obtaining the ten of diamonds (101010) using Grover’s algorithm on an
ideal simulator with 1024 shots. The results illustrate that the correct result was found in 99% of the 1024 shots. Note
that Qiskit lists qubit results in an order opposite that expected, meaning that 101010 appears as 010101 on the z-axis.

Figure 7 illustrates another search for any card with a clubs (00) suit. While the concepts of the oracle
design and the oracle’s inclusion in the Grover circuit are the same as for the ten of diamonds case, there is an
important difference: instead of seeking only one card, we expect to find every card (i.e., bitstring) with a 00 as
the suit. Figure 7 illustrates that our results are as expected: we measure sixteen different bitstring encodings,
each of which is either the Ace through King of clubs or one of the three ‘unused’ numerical values (0000, 1110,
1111) for the clubs suit.

/7\2—
A —
in3 H 7_ 0.06
Inversion ‘ P
x4 N
in, { H About Mean A R

in, @ '
in, @ -

N - Py -
Ou%@@ & § H é H

Figure 7. The circuit and simulation results for obtaining all cards of the club suit (with first digits 00) using Grover’s
algorithm on an ideal simulator with 1024 shots. Note that Qiskit lists qubit results in an order opposite that expected,
meaning that all results with the clubs suit have 00 as their last two qubit values.

®oyg,
"0/()00
D0,
oy,
O11g4,
11,
00109
1010,
10175,

1107,
{1109,
11g,

5.2 Oracles for benchmark functions

The oracles for the deck-of-cards searches provide a straightforward conceptual example of oracle synthesis. In
this section, we illustrate the oracle synthesis of complex functions that do not lend themselves to such ‘manual’
consideration using Mustang(@. Due to the limitations of contemporary quantum computers, the circuits we
present here are too large to be run on existing machines. Thus, these examples demonstrate MustangQ’s
automated oracle synthesis for future quantum hardware and—in the meantime—allow for comparing the two
synthesis methods at scale.

For oracle specifications, we adapt functions from the .pla benchmark set and synthesize three sets of oracles:
(1) with ESOP synthesis; (2) with ESOP synthesis following RT'T preprocessing; and (3) with TBS synthesis,
which requires RTT preprocessing. (“RTT preprocessing” refers to applying the RTT method to the .pla table
prior to synthesis.) It is worth emphasizing that the combination of ESOP synthesis with RTT preprocessing
is for experimental purposes only, meaning it is included not to introduce a practical method of synthesis, but
to illustrate a more equitable comparison of the ESOP and TBS methods. The functions used for each of these
three sets are listed in Tables 2, 3, and 4 (in Sec. 7), and Figures 8 through 10 illustrate the results.

For each quantum circuit, we collected the time-to-synthesis, as well as three metrics for quantum circuit
evaluation: qubit count, gate count, and a circuit complexity metric that is representative of quantum cost.?!
Qubit and gate count are self-explanatory. By contrast, quantum cost is not standardized; it is proportional
to the number of gates in a circuit, but weights gates differently according to their properties.?? Consequently,
the quantum cost of a circuit is technology-dependent, depending upon the native gate set of the machine on
which a circuit is run. However, regardless of the precise weighting of the gates, more complex circuits—meaning
those including more gates that act on more qubits—will have larger cost values than circuits that are simpler—
meaning with fewer gates that generally act on fewer qubits. Therefore, we assess quantum circuit complexity
using a straightforward, technology-independent metric: the circuit complexity is the sum of the ‘costs’ of each
gate, where gate ‘cost’ is the number of qubits on which a gate acts, including both control and target qubits.

In the following discussion, we compare the synthesis methods across three metrics: circuit complexity (which
exhibits the same trends as quantum gate count), time-to-synthesis, and qubit count. First, consider circuit com-
plexity. As illustrated in Figure 8, the functions synthesized with the ESOP method (with no RTT preprocessing),
generate oracles with an average circuit complexity of 3,769.5. By contrast, TBS synthesis produces an average
circuit complexity of 15,698.5. This increase in circuit complexity is likely explained by ESOP’s ability to take
advantage of incompletely-specified functions, which TBS currently cannot. As implemented in EXORCISM-4,
the process of .pla table conversion to ESOP form can take advantage of “-” symbols to produce a minimal
ESOP representation, which reduces the number of gates—and thus the circuit complexity—produced by ESOP
synthesis.?® TBS synthesis does not have this advantage, since it requires fully-specified .pla representations,
which we obtain via the RTT method. Specifically, RTT preprocessing results in fully expanded and assigned
.pla representations, meaning “-” symbols present in the inputs are removed, and every output—including
those where all functional values are 0—is represented explicitly. Figure 8 further supports this hypothesis by
illustrating that the circuit complexity is significantly higher (on average, 6,981.6) when ESOP is applied after
RTT preprocessing than when ESOP is applied without RTT preprocessing. This again suggests that function
expansion is one cause of TBS’ higher circuit complexities.

Fully-explicit function representations not only result in increased circuit complexity, but also in increased
time-to-synthesis, which is again higher for TBS than for ESOP. (See Figure 9.) On average, synthesis time was
2.15€9 microseconds for TBS, while it was 7.72e4 microseconds for ESOP. (Note that the average for ESOP does
not consider the outlier of apex4, which was too large for synthesis with TBS.) Additionally, as with circuit
complexity, ESOP synthesis with RTT preprocessing exhibits higher synthesis times than for ESOP alone; the
average time-to-synthesis becomes 7.23e6 microseconds, which is two orders of magnitude higher than ESOP’s
average, and three orders of magnitude lower than TBS’.

The trend is different, however, when comparing qubit count: TBS synthesis is the clearly preferred method
here, regardless of whether RTT preprocessing is used with ESOP synthesis or not. (See Figure 10.) Rounding
upward to the nearest qubit, TBS synthesis produces oracle circuits with 10 qubits, while those of ESOP synthesis
have 22 or 23 qubits, with and without RTT preprocessing, respectively. This is a reduction of over 56% in terms

© ESOP 4 TBS

& ESOP+RTT
+
®
* P 4
/ +-—-4
z 0t . \
Z 10 xS T >
3 / +
=) ’ “
£ / \ ®
9] + ¢ \
= p |
g |
S \
g \
]
210 + ®
B4 1 .
I3 ® ® ®
]
? ¥
S3 55 L E S5 um S5 YD um S5 L3 wm L&
s o5 55 S5 55 35 55 55 £5 55 SF 5%
5 56 ¢85 58 58 $5 85 58 5 8 g5 S8
fg £2 52 S 5§52 Sg 2 S5z f£2 T2 S Bz
w50 E £5 =5 £5 55 =3 £5 .78 25 .55 £5
~ ~ © - 2
S T R A T W R
o g S S I8 25 = I g &8 S
5§ 55 g5 B5 35 55 25 85 55 S5 F5 o8
§5§ §F "5 §5 S5 0§ FE§ S5 §5 55 g5 &58
fo Vo o N v e T Sx TS S g

Benchmark Function

Figure 8. The circuit complexity of twelve .pla functions when synthesized using ESOP synthesis (red circles), ESOP
synthesis with non-required RTT processing (purple diamonds), and TBS synthesis (blue crosses). Some functions were
too large to be expanded during RT'T or to be addressed with TBS, which has an exponential algorithmic complexity; for

these functions, Mustang@ timed out before completion, so no data point is shown.

© ESOP Time to Synthesis 4 TBS Time to Synthesis

ESOP+RTT Time to Synthesis

<&

L | L e ¥ +
10’
2 10°
8
=
g Py . o
g _ .
élo ¢ & Py @
& & P
s ’
510
'Y
10° 23 e,
| IS G ¢ ®

Benchmark Function

Figure 9. The time-to-synthesis (in microseconds) of twelve .pla functions when synthesized using ESOP synthesis (red

circles), ESOP synthesis with non-required RTT processing (purple diamonds), and TBS synthesis (blue crosses). Some
functions were too large to be expanded during RTT or to be addressed with TBS, which has an exponential complexity;

for these functions, Mustang@ timed out before completion, so no data point is shown.

of qubit count. Thus, we see that—in their current forms—the algorithms provide different advantages: TBS
synthesis improves qubit count, while ESOP synthesis improves circuit complexity and synthesis time. As we
hypothesize the the current benefits of ESOP lie in its ability to leverage incompletely-specified functions, we are
exploring modifications of TBS that would preserve the minimal qubits while also reducing circuit complexity
and synthesis time. Specifically, we are working on modifying TBS synthesis such that it can work with of
incompletely-specified .pla representations, thus avoiding the table expansion and assignment that seems to
increase circuit complexity and certainly increases synthesis time.

©® EsopP % TBS
ESOP+RTT

Number of Qubits
'S
]
@

Benchmark Function

Figure 10. The qubit count of twelve .pla functions when synthesized using ESOP synthesis (red circles), ESOP synthesis
with non-required RTT processing (purple diamonds), and TBS synthesis (blue crosses). Some functions were too large
to be expanded during RTT or to be addressed with TBS, which has an exponential complexity; for these functions,
Mustang(@ timed out before completion, so no data point is shown.

6. CONCLUSION AND FUTURE WORK

This work presents and illustrates two methods for the automatic synthesis of quantum oracles. One method
is based upon minimizing the total number of required qubits, and the other preserves the function domain.
We implemented both methods within the Mustang@ quantum synthesis and compiler tool, and we provide
experimental results illustrating the strengths of both methods. There are at least three ways that we could
further develop this work.

First, as mentioned earlier in the paper, there are a number of ways that functions could be preprocessed
to satisfy the synthesis method constraints. Several methods are described in Ref. 18, and we could explore
how applying different methods affects the circuit complexity of resulting synthesized circuits. Second, the TBS
synthesis method can be enhanced to make use of more compact function representations that might improve
the circuit complexity, the speed of processing, or both. We are actively developing such improvements to be
added and tested in Mustang@. Third and finally, the techniques described in this work utilize a particular form
of quantum data encoding referred to as “basis encoding,” which uses a qubit to represent each conventional bit
of information.?? It is known that alternative methods of data encoding can be employed in quantum circuits;
for example, a non-binary value can be encoded into a probability amplitude or a phase angle. As we have shown
in other work, such alternative forms of data encoding can result in quantum circuits that comprise fewer qubits
or lower circuit complexity than those utilizing basis encoding.?? Therefore, future work ought to investigate the
use of alternative forms of data encoding within oracle synthesis algorithms to explore the possibility of further
qubit and circuit complexity reduction.

REFERENCES

[1] Feynman, R. P., “Simulating physics with computers,” in [Feynman and computation], 133-153, CRC Press
(2018).

[2] Deutsch, D., “Quantum theory, the Church-Turing principle and the universal quantum computer,” Pro-
ceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400(1818), 97-117 (1985).

[3] Deutsch, D. E., “Quantum computational networks,” Proceedings of the Royal Society of London. A. Math-
ematical and Physical Sciences 425(1868), 73-90 (1989).

[4] Preskill, J., “Quantum computing in the nisq era and beyond,” Quantum 2, 79 (2018).

[5] Li, L., Voichick, F., Hietala, K., Peng, Y., Wu, X., and Hicks, M., “Verified compilation of quantum oracles,”
Proceedings of the ACM on Programming Languages 6(OOPSLA2), 589-615 (2022).

[6] Microsoft Azure, “Dirac notation.” https://docs.microsoft.com/en-us/azure/quantum/
concepts-dirac-notation (2022). Accessed: December 15, 2022.

[7] Nielsen, M. A. and Chuang, I. L., [Quantum Computation and Quantum Information], Cambridge University
Press (2010).

[8] Deutsch, D. and Jozsa, R., “Rapid solution of problems by quantum computation,” Proceedings of the Royal
Society of London. Series A: Mathematical and Physical Sciences 439(1907), 553-558 (1992).

[9] Cleve, R., Ekert, A., Macchiavello, C., and Mosca, M., “Quantum algorithms revisited,” Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454(1969), 339-354
(1998).

[10] Bernstein, E. and Vazirani, U., “Quantum complexity theory,’
ACM symposium on Theory of computing], 11-20 (1993).

[11] Grover, L. K., “A fast quantum mechanical algorithm for database search,” in [Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing], 212-219 (1996).

[12] Simon, D. R., “On the power of quantum computation,” SIAM journal on computing 26(5), 1474-1483
(1997).

[13] Shor, P. W., “Algorithms for quantum computation: discrete logarithms and factoring,” in [Proceedings
35th annual symposium on foundations of computer science], 124-134, IEEE (1994).

[14] Brayton, R. K., Hachtel, G. D., McMullen, C., and Sangiovanni-Vincentelli, A., [Logic minimization algo-
rithms for VLSI synthesis], vol. 2, Springer Science & Business Media (1984).

[15] Bryant, R. E., “Graph-based algorithms for boolean function manipulation,” Computers, IEEE Transactions
on 100(8), 677-691 (1986).

[16] Miller, D., Wille, R., and GW, D., “Synthesizing reversible circuits for irreversible functions,” in [12th
EUROMICRO Conf. on Digital System Design], 749-756 (2009).

[17] Gabrielson, E. and Thornton, M. A., “Minimizing ancilla and garbage qubits in reversible function spec-
ifications,” tech. rep., Technical report, Southern Methodist University, Darwin Deason Institute for ...
(2018).

[18] Miller, D. M., Wille, R., and Dueck, G. W., “Synthesizing reversible circuits for irreversible functions,” in
[2009 12th Euromicro Conference on Digital System Design, Architectures, Methods and Tools], 749756,
IEEE (2009).

[19] Cross, A. W., Bishop, L. S., Smolin, J. A., and Gambetta, J. M., “Open quantum assembly language,”
arXiv preprint arXiv:1707.03429 (2017).

[20] Cross, A. W., Bishop, L. S., Smolin, J. A., and Gambetta, J. M., “OpenQASM 3.x Live Specification.”
https://openqgasm.com/ (2020).

[21] Miller, D. M., Maslov, D., and Dueck, G. W., “A transformation based algorithm for reversible logic
synthesis,” in [Proceedings 2003. design automation conference (IEEE cat. no. 08¢h37451)], 318-323, IEEE
(2003).

[22] Soeken, M., Dueck, G. W., Rahman, M. M., and Miller, D. M., “An extension of transformation-based
reversible and quantum circuit synthesis,” in [2016 IEEE International Symposium on Circuits and Systems
(ISCAS)], 2290-2293, IEEE (2016).

[23] Miller, D. and Dueck, G., “A preliminary study of transformation based synthesis of reversible circuits with
positive and negative controls,” in [14th International Workshop on Boolean Problems], (2020).

)

in [Proceedings of the twenty-fifth annual

https://docs.microsoft.com/en-us/azure/quantum/concepts-dirac-notation
https://docs.microsoft.com/en-us/azure/quantum/concepts-dirac-notation
https://openqasm.com/

[24] Fazel, K., Thornton, M. A., and Rice, J. E., “ESOP-based Toffoli gate cascade generation,” in [2007 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing], 206-209, IEEE (2007).

[25] Mishchenko, A. and Perkowski, M., “Fast heuristic minimization of exclusive-sums-of-products,” (2001).

[26] Smith, K. N. and Thornton, M. A., “Mustang-q: A technology dependent quantum logic synthesis and
compilation tool (poster),” in [Design Automation for Quantum Computers Workshop, IEEE International
Conference on Computer Aided Design (ICCAD)], (2017).

[27] Smith, K. N. and Thornton, M. A., “A quantum computational compiler and design tool for technology-
specific targets,” in [Proceedings of the 46th International Symposium on Computer Architecture], 579-588
(2019).

[28] Smith, K. N. and Thornton, M. A., “Quantum logic synthesis with formal verification,” in [2019 IEEE 62nd
International Midwest Symposium on Circuits and Systems (MWSCAS)], 7376, IEEE (2019).

[29] Sinha, A., Henderson, E. R., Henderson, J. M., and Thornton, M. A., “Automated quantum memory
compilation with improved dynamic range,” in [Third International Workshop on Quantum Computing
(Supercomputing 2022)], (2022).

[30] Miller, D. M. and Thornton, M. A., “QMDD: A decision diagram structure for reversible and quantum
circuits,” in [36th International Symposium on Multiple-Valued Logic (ISMVL’06)], 30-30, IEEE (2006).

[31] Smith, K. N. and Thornton, M. A., “Quantum logic synthesis with formal verification,” in [2019 IEEE 62nd
International Midwest Symposium on Circuits and Systems (MWSCAS)], 73-76, IEEE (2019).

[32] Maslov, D. and Miller, D. M., “Comparison of the cost metrics for reversible and quantum logic synthesis,”
arXiv preprint quant-ph/0511008 (2005).

7. APPENDIX: TABLES OF BENCHMARK DATA

Table 2. Results for a set of benchmark functions with ESOP synthesis (and with no RT'T method preprocessing).

Function | Inputs | Outputs | Qubits | Gate Count | Circuit Complexity | Time-to-Synthesis (us)
squard 5 8 13 52 150 3.20e4
Z9sym 9 1 10 157 530 4.95e4

inc 7 9 16 118 441 3.24e4
Z5xpl 7 10 17 100 291 4.16e4
dist 8 5 13 220 918 9.80e4
f51m 8 8 16 88 239 3.74e4
mlp4 8 8 16 147 615 6.30e4
clip 9 5 14 188 824 6.09e4
addm4 9 8 17 219 942 1.34eb
b1l 8 31 39 132 517 5.14e4
apex4 9 19 28 5565 35393 2.38e7
exb 8 63 71 756 4374 2.49eb

Table 3. Results for a set of benchmark functions with ESOP synthesis and RTT method preprocessing. Asterisks (*)

denote a function that failed to synthesize due to too many inputs for explicit .pla expansion.

Function | Inputs | Outputs | Qubits | Gate Count | Circuit Complexity | Time-to-Synthesis (us)
squarb 5 8 18 176 778 7.18e6
Z9sym 9 1 20 1255 8431 8.18e6

inc 7 9 28 773 6936 1.55e7
Z5xpl 7 10 20 587 3150 2.63e6
dist 8 5 20 1189 7186 6.99e6
f51m 8 8 16 88 239 3.25e6
mlp4 8 8 26 1092 8613 1.15e7
clip 9 5 22 1306 8645 8.08e6
addm4 9 8 26 2480 18856 1.77e6
b1l 8 31 * * * *
apex4 9 19 * * * *
ex5 8 63 * * * *

Table 4. Results for a set of benchmark functions with TBS synthesis, which requires fully-specified bijective .pla repre-
sentations that we obtain via RT'T method preprocessing. Asterisks (*) denote a function that failed to synthesize due
to either too many inputs for explicit .pla expansion or too many required qubits/gates for TBS synthesis (more than

50,000 gates).

Function | Inputs | Outputs | Qubits | Gate Count | circuit complexity | Time-to-Synthesis (us)
squard 5 8 9 1463 3714 2.15e9
Z9sym 9 1 10 6028 17589 2.15¢e9

inc 7 9 * * * *
75xpl 7 10 10 5983 14924 2.15e9
dist 8 5 10 5737 14845 2.15e9
f51m 8 8 8 426 992 2.15e9
mlp4 8 8 * * * *
clip 9 5 11 15396 42127 2.16e9
addm4 9 8 * * * *
b1l 8 31 * * * *
apex4 9 19 * * * *
exb 8 63 * * * *

	Introduction
	Background
	Quantum Circuits and Oracles
	Examples of Quantum Algorithms with Oracles
	Quantum Oracles with Minimal Qubits
	Quantum Oracles that Preserve the Domain Qubits

	Function Embedding
	Embedding Functions with Minimal Qubits
	Embedding Functions that are Mathematically Onto
	Embedding Functions with Preserved Domain Qubits

	Oracle Synthesis Methods
	Minimal Qubit Quantum Oracle Synthesis
	Oracles that Preserve the Variable Values

	Experimental Results
	Starting Simple: Oracles for Searching a Deck of Cards
	Oracles for benchmark functions

	Conclusion and Future Work
	Appendix: Tables of Benchmark Data

