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Abstract—Multi-Valued Reliability Block Diagrams 
(MVRBD) are introduced as a generalization of classical 
reliability block diagrams (RBD) commonly used in system 
analysis.  MVRBD offer the advantage of allowing systems and 
subsystem components to be modeled with arbitrary hazard 
failure rate relationships.  MVRBD are based upon a multiple-
valued discrete switching algebra that is functionally complete 
with constants thereby affording a corresponding model to be 
formulated for any system that is capable of being modeled in a 
reliability block diagram form.  The utility of this new model is 
that system failure and reliability analysis can be performed 
without restricting component hazard rate relationships to the 
binary case of either “failure” or “fully operational.”  The 
incorporation of any desired number of “degraded” states into 
the MVRBD model allows for non-parametric probability mass 
functions (pmf) to be used.  Any arbitrary number of 
intermediate system states of “degraded” may be incorporated 
into the MVRBD model without significant increase in the 
complexity of the analyses methodologies. 

Keywords—system reliability, block diagram, hazard rate, 
reliability, degraded system analysis, multi-valued algebra, non-
parametric pmf 

I. INTRODUCTION 
Reliability Block Diagrams (RBD) are commonly used for 

analysis of system reliability [1, 2].  These diagrams model 
how the combinations of system components contribute to the 
success or failure of systems.  A series combination of 
subsystems means that all such subsystems must be operational 
for overall reliability to hold.  Similarly, a parallel combination 
of subsystems infers that only one of the components needs to 
be operational for overall reliability.   The series combinations 
can be modeled by the Boolean algebraic AND operation, 
while the required parallel combinations can be modeled by the 
OR operation for reliability calculations. 

Modeling different operational modes other than just the 
binary case of failure or normal operation are critical in 
analyzing system reliability. As an example, in the 2003 
blackout of the US power grid, many complex interactions 
caused a blackout to occur in a large portion of the northeastern 
US [3]; however, it would be incorrect to state that the entire 
US power grid failed.  To address these issues, we propose the 
application of Multiple-Valued Logic (MVL) to RBDs. 

II. PREVIOUS WORK 
Other past work has claimed the use of MVL in block 

diagrams, but fell short in several key areas. Some approaches 
only used combinations of multiple binary variables in a single 
block diagram element to attempt to simulate MVL [4]. This 
allows subcomponents to be grouped together and help abstract 
lower level systems in the block diagram for a higher level 
view of the system. Since the elements themselves were not 
truly multiple-valued, MVL algebras are not used, which limits 
the information that can be gained from the block diagrams.  In 
this case, the limitations of Boolean algebra are still present 
although the radix is 2n. 

Other approaches use multistate systems, which are similar 
to MVL systems in that the system input and intermediate 
values have more than two states [5, 6, 7, 8].  However, the 
system output values are still binary, so these systems are not 
true MVL systems. 

III. BACKGROUND CONCEPTS 

A. Multiple-Valued Logic 
Multiple-valued logic is related to Boolean or binary logic 

and may be viewed as a generalization of binary switching 
theory from radix-2 to an arbitrary radix. The binary logic 
functions AND, OR, and NOT correspond with the multiple-
valued functions MIN, MAX and literal selection, {Ji}. The 
MIN function accepts two or more inputs and outputs the value 
of its lowest (or minimum) input. The MAX function accepts 
two or more inputs and outputs the value of its highest (or 
maximum) input. The literal selection gate accepts one input 
and acts as a logic level detector.  In an MVL system with a 
radix value r, there are r different unary literal selection 
functions denoted by their subscripts.  This gate outputs the 
highest radix value of the system for the selected input value. 
For example, in a ternary (r=3 or radix-3) system, a J1 (select-
1) gate outputs zero (0) for inputs of zero (0) or two (2), and 
outputs the maximum value of two (2) for an input of one (1).  
The ternary system supports literal selection gates J0, J1, and J2.  
In general, the set of supported literal selection gates {Ji} are 
{J0, J1, …, Jr-1}. 

In order to represent all possible functions, the set of gates 
used in the logic system must be functionally complete. In 
binary logic, AND, OR and NOT form a functionally complete 
set with constants {0, 1}. Likewise, in MVL, MIN, MAX and 
{Ji} form a functionally complete set with constants {0, 1, …, 



r-1} [9]. Without a functionally complete set, it is not possible 
to model all systems, limiting the applications of the algebraic 
system (binary or MVL).  Table 1 provides a definition of the 
MIN, MAX and Ji operations for the case of a ternary, r=3, or 
radix-3, system. 

Table 1: Truth Table for Ternary MVL Operators 
Variables MIN MAX Literal Selection 

x y xy x+y J0(x) J1(x) J2(x) 
0 0 0 0 2 0 0 
0 1 0 1 2 0 0 
0 2 0 2 2 0 0 
1 0 0 1 0 2 0 
1 1 1 1 0 2 0 
1 2 1 2 0 2 0 
2 0 0 2 0 0 2 
2 1 1 2 0 0 2 
2 2 2 2 0 0 2 

B. Shannon’s Decomposition Theorem 
An important theorem in a discrete switching algebra such 

as the binary Boolean algebra or its extension to a multi-valued 
algebra is the Shannon decomposition theorem.  This theorem 
allows for any discrete switching function to be expressed as a 
disjoint set of conjunctive terms.  In the binary case, each 
conjunctive term is formed using the multiplicative AND 
operation with a chosen variable of decomposition and a 
function known as a co-factor. 

Definition 1: (Binary Function Co-factor) 
Consider a binary switching function, f(x1, x2, …, xi, …, xn) 

where each of the dependent variables xi are also binary-
valued.  Because the radix is binary, there are exactly two co-
factor functions about each potential variable of 
decomposition.  The two co-factors about variable xi are 
denoted as 

 
fxi

and 
 
fxi

.  The zero co-factor with respect to xi is  

   
fxi

= f (x1,x2 ,…,xi ,…,xn )
xi=0

= f (x1,x2 ,...,0,...,xn )  

and the one co-factor with respect to xi is 

   
fxi

= f (x1,x2 ,…,xi ,…,xn )
xi=1

= f (x1,x2 ,...,1,...,xn ) .  □ 

Shannon’s decomposition Theorem is stated for the binary-
radix case without proof.  A proof is available in [9]. 

Theorem 1: (Shannon’s Decomposition) 
Consider a binary switching function, f(x1, x2, …, xi, …, xn) 

and a chosen variable of decomposition xi.  The function may 
always be expressed as 

   
f (x1,x2 ,…,xi ,…,xn ) = xi fxi

+ xi fxi
.  □ 

An important Corollary of Shannon’s decomposition 
Theorem is that the multiplicative or conjunctive terms are 
disjoint among one another meaning that it is impossible for 
two or more of the terms to simultaneously evaluate to values 
greater than zero.  For any given valuation of the dependent 
variables of f, there may be at most one conjunctive term that 
can result in a value greater than zero due to the fact that the 
conjunctive terms are disjoint. 

In terms of the algebraic operations described previously, 
the conjunctive terms for the binary case are formed with the 
AND operator and the disjunction of all the terms is formed 

with the OR operator.  The Shannon decomposition can be 
generalized and holds for higher-valued radices with the 
operators MIN, MAX, and {Ji}.  The generalized Shannon 
decomposition theorem is stated as follows. 

Theorem 2: (Generalized Shannon’s Decomposition Theorem) 
Consider a discrete function, f(x1, x2, …, xi, …, xn) and a 

chosen variable of decomposition xi. where the dependent 
variable set {xi} are radix-r variables.  The function may 
always be expressed as 

   

f (x1,x2 ,…,xi ,…,xn )

= xi
{0} f

xi
{0} + xi

{1} f
xi

{1} +!+ xi
{ j} f

xi
{ j} +!+ xi

{r−1} f
xi

{r−1} . 

□ 

The variable of decomposition is expressed as a literal 
where the jth literal is denoted as x{j}.  This provided by the 
literal selection operator Ji(x)= x{j}.  This notation is consistent 
with binary notation for the literals  x  and x and is simply a 
generalization of that notation to allow for conveniently 
expressing literals over radices greater than two (i.e., non-
binary or MVL radices).  That is,  x = x{0} and x= x{1}.  
Likewise, the conjunctive or multiplicative operations are 
provided by the MIN operation and the disjunctive or additive 
operations are provided by the MAX operation. 

C. System Block Diagrams with Binary States 
Block diagrams are commonly used to model systems and 

analyze their reliability. From a block diagram, one can create 
a reliability function or a failure function.  In general, the 
symbolic function that represents some aspect of the 
represented system in block diagram form is referred to as the 
structure function.  System structure functions may represent 
system reliability, failure, availability, or any of a variety of 
other characteristics.   

One may view the block diagram as a set of elements 
connected in series or parallel. To extract the structure function 
that models reliability, we can treat the series connections as 
logical ANDs between the elements in series. That is, both the 
elements in series are required to be functional for this overall 
portion of the system to be functional. Likewise, for those 
elements in parallel, either one or the other must be functional 
for the overall parallel structure to be functional.  Thus, parallel 
structures are modeled with a logical OR operation.   

Conversely, to create the structure function that models 
failure, we treat the series connections as logical ORs and treat 
the parallel connections as logical ANDs. Thus if any of the 
elements in series fail, the combination of those elements fail, 
and if all of the elements in parallel fail, the combination of 
those elements fail.  Mathematically, the reliability and failure 
structure functions are duals of one another. 

For example, in the block diagram in Fig. 1, elements B and 
C are in parallel and element A is in series with the parallel 
combination of B and C.  Using the techniques described 
above, we can create the reliability and failure structure 
functions. 

Reliability:   Frel = A(B +C)  
Failure: 

  
Ffail = A+ (BC)  



 
Fig. 1: Small Example System 

These functions are mathematical duals, and we can use 
DeMorgan's Theorem to show: 

 
Frel = Ffail

. 

Starting with Frel, 
Frel = A(B+C) 

next, we negate both sides, 

  Frel = A(B +C)  
and repeatedly apply DeMorgan’s law 

  Frel = A+ (B +C)  

  Frel = A+ (BC) . 
Recall definition of Ffail, 

  
Ffail = A+ (BC) . 

Thus, 

 
Frel = Ffail

. 

D. Probabilitistic Models for System Failure 
System fault tolerance analysis methods using RBD are 

well established and accepted in the community as described in 
[10] for example.  Central to this theory is the concept of the 
hazard failure rate function that is often used to model 
components, particularly electrical components, where their 
lifetime is characterized in three phases; the “burn-in” period, 
the useful lifetime period, and the “burn-out” period.  Due to 
the shape of the hazard failure rate function, h(t), it is 
colloquially referred to as the “bathtub” curve.  An illustration 
of the bathtub failure rate curve is given in Fig. 2. 

 
Fig. 2: Bathtub Curve Failure Rate Function, h(t) 

The useful lifetime period of the hazard failure rate is a 
simple function, h(t)=Pf where Pf is a constant.  Due to this 
simple relationship, subsystems can be assigned one of two 
binary states, either a state of failure or a state of being fully 
operational with corresponding constant discrete point 
probabilities of Pf or 1-Pf.  Because reliability is defined as the 
probability that a system is operational, the dual theory of 
reliability analysis is also conveniently simplified due to the 
bathtub failure curve since the reliability of a system can be 
modeled as Pr=1-Pf.  This well-known theory allows for a 
random variable (RV) X to be used based on two probabilistic 
events; when a system suffers the event of failure, X =0, and 
when the system is in the operational state, X =1.  The 
probability mass function (pmf) for X is shown in Fig. 3. 

 
Fig. 3: Probability Mass Function (pmf) for RV X 

Fig. 3 is a well-known pmf known as the Bernoulli 
distribution which is a form of the discrete binomial 
distribution with the binomial pmf parameter n set to unity, 
n=1.  Symbolically, the Bernoulli pmf for RV X as defined 
previously is 

  

FBERN ( X ; Pf ) =
Pf , X = 0

Pr = Pf −1, X = 1

⎧
⎨
⎪

⎩⎪
.  

IV. MVRBD ALGEBRAIC MODEL AND ANALYSIS 
The contribution described here is twofold.  First, we 

extend RBD to a non-binary case with a theoretically rigorous 
MVL switching algebraic model.  Our model is rigorous in the 
sense that the underlying algebra denoted as 〈{di}, MIN, 
MAX, {Ji}, 0, dr-1〉is a functionally complete algebra with 
constants.  Functional completeness with constants ensures that 
any possible system has a corresponding algebraic model.  {di} 
represents a set of values where di∈Z, r represents the radix or 
number of discrete valuations, {Ji} represents the set of r-1 
unary operators previously defined, MIN represents the 
multiplicative operator whose identity element is dr-1, and 
MAX represents the additive operator whose corresponding 
identity element is 0, and it is always the case that 0∈{di} and 
dr-1∈{di}. 

The second contribution is that the new algebraic model 
allows for a probabilistic model to be formulated in systems 
reliability, failure, or other applications that is not restricted to 
a binary case.  Classical RBD theory is typically based upon 
the binary concept of subsystem failure or fully operational 
behavior.  In many cases, such as systems composed of 
electronic devices, the binary model is sufficient since the well-
known “bathtub” curve failure rate relationship is accepted as 
being applicable.  In other systems, such a relationship may not 
be as accurate and thus we are motivated to utilize a non-binary 
pmf to model subsystem components. 

A. Multi-Valued Block Diagram Model (MVRBD) 
Thus, to supplement and extend the existing binary-based 

block diagrams, we propose extending block diagrams to create 
Multi-Valued Reliability Block Diagrams (MVRBDs). These 
MVRBDs, in general, have the same form and appearance as 
binary-based block diagrams, making them instantly familiar to 
anyone that has used traditional block diagrams.  When 
considering the reliability of system represented by a MVRBD, 
the elements in series are related by the MIN of the elements 
and the elements in parallel are related by the MAX of the 



elements. That is, the relationships between block diagram 
elements represented by AND and OR in a binary block 
diagram are represented by MIN and MAX respectively. 

However, to maintain the ability to represent any function, 
providing the ability to model any system or process, it is 
necessary to maintain the functional completeness of binary 
block diagrams. Binary block diagrams are able to represent 
logical ANDs and ORs as previously described with series and 
parallel connections and logical NOT is handled internally in 
individual blocks. Logical NOT of larger expressions can be 
modeled through applications of DeMorgan’s Theorem. 

In simple cases, even systems that only appear to use MIN 
and MAX do contain literal select although this is not initially 
obvious. We can show that literal select is in fact present 
through the use of Shannon’s decomposition, expanding the 
function into a more complex equivalent. For example, if we 
apply Shannon’s decomposition to MVRBD version of Fig. 1, 
the literal select gates become apparent. 

Frel = A(B+C) 
Frel = A{0}Frel A=0 + A{1}Frel A=1 + A{2}Frel A=2 
Frel = A{0}(A|A=0(B+C)) + A{1}(A|A=1(B+C)) + A{2}(A|A=2(B+C)) 
Frel = A{0}(0(B+C)) + A{1}(1(B+C)) + A{2}(2(B+C)) 
Frel = 0 + A{1}1(B+C) + A{2}(B+C) 
Frel = A{1}1(B+C) + A{2}(B+C) 

Clearly, with the existing capabilities of block diagrams, 
there is no direct way to represent this form of the equation. 
We propose the use of literal select as a switch or multiplexing 
structure in the block diagram. The inputs to the multiplexer 
are the different components that are conjunctively combined 
with the literal select operation in Shannon’s decomposition. 
For example, for the reliability structure function that was 
previously derived, Frel may be represented with a switching 
structure as shown in Fig. 4. 

This construct can be very useful for where certain 
subsystems are “switched in” under conditions.  For example, 
modern datacenter power distribution typically has several 
layers of redundancy.  An illustrative and simplified example 
may be a datacenter composed of three power sources that can 
be switched into operation in the event of a primary power 
failure.  Those sources being the primary utility grid power, 
short-term and rapidly available battery power, and longer-
term secondary power supplied by a petroleum-fueled 
generator.  These sources are modeled with variables U, B, and 
G in Fig. 5.  Also, the power switch S and the condition 
indicator subsystem C is shown in Fig. 5. 

In the datacenter MVRBD, the resulting system structure 
function utilizes the literal selection operator in a natural way 
since the power sources U, B, or G are only utilized one at a 
time.  The datacenter reliability structure function, DCrel, can 
be directly extracted from this diagram as 

   
DCrel = S i P i C{0}U +C{1}B +C{2}G( ) .   

In the case of the datacenter, the reliability structure 
function has two single points of failure due to the switch S 
that selects among the power sources U, B, and G and the 
power condition circuit P that produces the condition C.  For 
this reason, S and P are conjunctively related to the expression 

that selects among the sources.  Another interesting 
characteristic of DCrel, is the fact that the power condition 
subsystem P is related to the variables U, B, and G since this 
subsystem is monitoring those resources.  For this reason, it is 
inaccurate to model C with an independent Bernoulli pmf.  
Rather, this three-state subsystem should be modeled with a RV 
that is dependent upon the RVs that model the U, B, and G 
subsystems.  These observations indicate the limitations of 
traditional RBD and the resulting reliability and failure 
structure functions they represent.  To simplify the example, 
the power condition indicator P is assumed to be perfectly 
reliable, Pr(power condition subsystem fails)=0. 

 
Fig. 4: Reliability Block Diagram with Switch 

 
Fig. 5: Datacenter Power Generation Example 

B. Probabilistic Analysis of MVRBD 
As an example of the use of intermediate system states that 

represent a degraded but neither fully operational nor full 
failure state, consider a random variable Y representing three 
states; failure, degraded, and operational.  These states cause 
RV Y to take on values {0, 1, 2} respectively and the pmf of Y 
is depicted in Fig. 6 where point probabilities Pf, Pd, and Po 
correspond to each of the possible system states.  It should be 
noted that more than one intermediate degraded state is 
possible within the MVRBD framework, this example includes 
a single degraded state only for the purpose of conciseness. 

Assume that the datacenter components have the states and 
probabilities shown in Table 2.  The utility source has three 
possible states: 2↔fully operational, 1↔degraded operation 
(brownout), and 0↔non-operational (blackout).  Both the 
battery and generator are either fully operational or non-
operational, 2↔fully operational and 0↔ non-operational. 

The power condition C depends on the states of U, B, and 
G and is provided by the Power Condition subsystem P.  If 
U=2, then the datacenter has full power from the utility, so the 
condition is C=0.   However, if U=1, there is a brownout 
condition that is assumed to be temporary, so the datacenter 



receives power from the battery B, thus C=1.  If U=0, there is a 
blackout condition, so the datacenter will receive power from 
the generator G, thus C=2.  If none of the units are operational, 
then C defaults to 0.  The truth table for the switch operation C 
is shown in Table 3.  Table 3 describes the functionality of the 
power condition subsystem. 

 
Fig 6: pmf of Random Variable Y 

 
Table 2:  Datacenter power source state probabilities 

State U B G 
2 0.80 0.90 0.95 
1 0.15 - - 
0 0.05 0.10 0.05 

 
Table 3:  Truth Table for Power Condition Subsystem 

U B G C 
2 X X 0 
1 2 X 1 
1 0 2 2 
1 0 0 0 
0 X 2 2 
0 2 0 1 
0 0 0 0 

We can determine the probabilities that the datacenter is 
receiving power from U, B, or G by using the truth table and 
probability values for the power source states and other 
components.  The probability of U↔state i, B↔state j, and 
G↔state k is denoted by Pr(U, B, G).   The operational states 
of the power sources are assumed to be independent, so P(U, B, 
G)=Pr(U)×Pr(B)×Pr(G).  If we expand the truth table of Table 
3 and add the corresponding probability values, we get Table 4. 

We can determine the probability that datacenter power 
condition is in state j by adding the corresponding probability 
values Pr(U,B,G) for state j.  The probability that the datacenter 
is powered by the utility, is obtained by summing P(U,B,G) 
values where C=0 and where the values of U, B, and G are not 
0 (recall the default condition above). 

Pr(C=0)=0.684+0.036+0.076+0.004+0.00075 
     =0.80075 

Similarly, we can determine the probabilities that the 
datacenter is powered by the battery or by the generator with 
the following two calculations. 

Pr(C=1)=0.12825+0.00675+0.00225=0.13725 
Pr(C=2)=0.01425+0.04275+0.00475=0.06175 

The previous calculations focused on the datacenter power 
condition or, which power source the datacenter is powered by 
based on the condition.  To determine the probability that the 
datacenter is actually powered by the utility, battery, or 

generator, the reliabilities of the power condition subsystem 
and the power switch must be accounted for using the structure 
function DCrel.  To simplify the example, we assume that the 
power condition circuit is highly reliable and model the 
probability of failure as zero.  To illustrate the process of 
adding more detail, we assume that the power switch has 
reliability of 0.98 and is independent of the other subsystems in 
Fig. 5.  Thus the overall probabilities that the datacenter is 
receiving power from U, B, or G can be calculated as 

Pr(utility power) = 0.98×Pr(C=0)=0.784735, 
Pr(battery power) = 0.98×Pr(C=1)=0.134505, 

Pr(generator power) = 0.98×Pr(C=2)=0.060515, 

Pr(no power) = 1 - [Pr(utility power) + Pr(battery power) + 
Pr(generator power)] = 1 – (0.784735 + 0.134505 + 0.060515) 
= 0.020245. 

Table 4: Operation with Power Source Probabilities 
U B G C P(U) P(B) P(G) P(U,B,G) 
2 2 2 0 0.80 0.90 0.95 0.684 
2 2 0 0 0.80 0.90 0.05 0.036 
2 0 2 0 0.80 0.10 0.95 0.076 
2 0 0 0 0.80 0.10 0.05 0.004 
1 2 2 1 0.15 0.90 0.95 0.128 
1 2 0 1 0.15 0.90 0.05 0.00675 
1 0 2 2 0.15 0.10 0.95 0.01425 
1 0 0 0 0.15 0.10 0.05 0.00075 
0 2 2 2 0.05 0.90 0.95 0.04275 
0 2 0 1 0.05 0.90 0.05 0.00225 
0 0 2 2 0.05 0.10 0.95 0.00475 
0 0 0 0 0.05 0.10 0.05 0.00025 

 

V. EXAMPLE APPLICATION 
To demonstrate the utility of the MVRBD, we will show an 

example using the features of the MVRBD by modeling the 
reliability of the power generation for a city. Modeling the 
power in a city has clear benefits to using a MVRBD over a 
traditional binary RBD. The state of the power available to the 
city as a whole has more than two states, non-operational and 
fully operational. Instead, in addition to the states present in 
binary, the power grid can be in a state of partial operation, 
such brownouts or rolling blackouts. This example could be 
extended to have more intermediate states, representing various 
states of power grid degradation; however, we will limit the 
number of states to 3 for simplicity. Thus, each element in our 
power system can have one of the flowing functional states: 

 0 – non-operational 
 1 – partially operation (degraded operation) 
 2 – fully operational 

Clearly, 0 and 2 are the states that are possible in a binary 
RBD, and 1 is the intermediate state, possible only in the 
MVRBD. 

The power is provided by a variety of sources: two coal 
plants, three wind farms, a nuclear plant, a hydroelectric plant 
and a solar plant. Due to limitations in the grid layout, the 
power is supplied in one of the following ways: (1) using at 
least one coal plant and one wind farm, (2) using a nuclear 
plant, or (3) using a hydroelectric plant and solar plan. From 
these relationships, we determine the structure of the MVBD. 



We know that the coal plants will be in parallel with each 
other. Similarly, the wind farms will be in parallel together. 
Since both a coal plant and a wind farm is required to be a 
possible power delivery method, the parallel combinations of 
the coal plants and wind farms will in series. Likewise, the 
hydroelectric and solar plants will be in series. Finally, all three 
groups will be in parallel overall since any of the three can 
provide power. 

Next, we assign the power system elements to variables 
that appear in the corresponding MVRBD as provided in Table 
5. These variables are also used in the equation representing 
the MVRBD, which is useful in analysis of the system. 

Table 5: Variables for City Power Generation Model 
Variable Power System Element 

A Coal Plant 1 
B Coal Plant 2 
C Wind Farm 1 
D Wind Farm 2 
E Wind Farm 3 
F Nuclear Plant 
G Hydroelectric Plant 
H Solar Plant 

After assigning variables, we create the MVRBD in Fig. 7 
using the relationships we determined. 

 
Fig. 7: MVRBD for Power Generation Model 

We can observe in Fig. 7 that the MVRBD has the properties 
we described and using the MVRBD we can create the 
following equation. 

Z = [(A+B)(C+D+F)]+E+(GH) 

For analysis automated tools can quickly create the 
equation representing a system and calculate the output for a 
given set of inputs. The analysis on the systems can be used in 
a variety of manners. 

VI. CONCLUSION 
A generalization of RBD are developed based upon a 

multi-valued switching algebra.  Because the multi-valued 
switching algebra is functionally complete with constants from 
a mathematical point of view, MVRBDs are a robust model 
that allow for any system to be modeled since all possible 
functions can be represented with the algebra 〈{di}, MIN, 
MAX, {Ji}, 0, dr-1〉.  The utility of the MVRBD model is that 
subsystem components may be modeled with any arbitrary 
hazard rate relationship since corresponding random variables 
may be formulated that represent states of degraded behavior in 
addition to those of complete failure or fully operational.  The 
multi-state RVs may be characterized with any general non-
parametric pmf and the total number of chosen states defines 
the radix value r used in the multi-valued discrete algebra. 
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