
Automated Markov-chain based Analysis for Large 

State Spaces 
 

Kaitlin N. Smith, Michael A.Taylor, Anna A. Carroll, Theodore W. Manikas, Mitchell A. Thornton 

Darwin Deason Institute for Cyber Security 

Southern Methodist University 

Dallas, Texas, USA 

{knsmith, taylorma, aacarroll, manikas, mitch}@smu.edu 

 
Abstract—Modeling the dynamic, time-varying behavior of 

systems and processes is a common design and analysis task in 

the systems engineering community.  A popular method for 

performing such analysis is the use of Markov chains.  

Additionally, automated methods may be used to automatically 

determine new system state values for a system under 

observation or test.  Unfortunately, the state-transition space of a 

Markov chain grows exponentially in the number of states 

resulting in limitations in the use of Markov chains for dynamic 

analysis.  We present results in the use of an efficient data 

structure, the algebraic decision diagram (ADD), for 

representation of Markov chains and an accompanying 

prototype analysis tool.  Experimental results are provided that 

indicate the ADD is a viable structure to enable the automated 

modeling of Markov chains consisting of hundreds of thousands 

of states.  This result allows automated Markov chain analysis of 

extremely large state spaces to be a viable technique for system 

and process modeling and analysis.  Experimental results from a 

prototype implementation of an ADD-based analysis tool are 

provided to substantiate our conclusions. 

Keywords—Markov chain, Algebraic Decision Diagram, ADD, 

reliability analysis tool, dynamic system analysis 

I. INTRODUCTION 

Markov chain models are commonly used to analyze 
reliability and other system characteristics. Markov chains 
have also been used to model processes wherein the process is 
composed of a discrete set of potential steps in some order of 
application.  Recent Markov chain applications include fault 
analysis of solar array systems [1], communication network 
analysis [3], energy usage prediction for cellular base stations 
[4] and prediction of cascading failures in power grids [5].   
Markov chains allow prediction of dynamic system 
performance through various states [2].  Markov analysis 
examines a sequence of events and determines the tendency of 
one event to be followed by another event.  A Markov chain 
assumes that the system behavior can be modeled as a set of 
discrete states and an accompanying discrete time parameter. 

A transition matrix represents transitions between the states 
of a Markov chain model for a system.  Various analysis 
methods are applied to the transition matrix to determine 
system reliability.  However, there is an issue with scalability 
of this modeling approach.  As the number of system states 
increases in the Markov chain, the size of the matrix will also 
increase.  For N states, the matrix size is N2.  For example, if 10 
states are included in a model, the corresponding transition 

matrix contains 100 elements (i.e., a 10×10 transition matrix).  
This causes the computational complexity of analyzing the 
transition matrix to grow rapidly with respect to the number of 
states in the Markov chain.   

While the use of Markov chains in systems engineering is a 
well-known and commonly used method, a chief limitation on 
the use of Markov chain analysis is the large computational 
complexity involved in their representation and manipulation.  
In particular, Markov chains that are constructed and 
manipulated with automated methods can rapidly grow in size 
and require unacceptably large amounts of computer memory 
storage accompanied with unacceptably large computation 
times for extracting analysis results from the chain.  In the past, 
this complexity has limited the usage of Markov chains to 
systems and processes that can be modeled with relatively few 
states and has prevented their use for applications, particularly 
automated applications, wherein the Markov chain is 
constructed through automatic system state discovery and 
analysis. 

A related limitation is the inability to efficiently add newly 
discovered states to an existing Markov chain.  When new 
states are determined or discovered in an automatic manner, it 
is desirable to use a data structure that allows for the new state 
to be added to an existing Markov chain without completely re-
constructing the existing chain.  Therefore, it is desirable to 
utilize a data structure that allows for efficient addition of a 
new state while also having the ability to be easily manipulated 
such that metrics of interest can be extracted in a timely 
manner. 

In this paper, we present an approach for representing 
Markov chains that significantly reduces the memory 
requirements for modeling a system or process and also allows 
the performance of various analyses methods to improve in 
terms of computation time.   Our experimental results indicate 
that the approaches described here do provide significant 
improvements in both computational storage requirements and 
performance of various algorithms for prediction of system 
characteristics. 

II. MARKOV CHAIN AND ADD BACKGROUND  

A. Markov Chains 

A Markov chain is a model that can be used to represent a 

discrete stochastic process. The processes that Markov chains 



model are memoryless, meaning that the future status of the 

system is only dependent upon the system’s present state and 

is independent of the history of previous events. Markov 

chains can theoretically contain an infinite set of states 

although for practicality, the state set is limited to a finite state 

space.   

A common method for representing a Markov chain is the 

use of a directed graph, sometimes referred to as a state 

diagram, where the vertices represent a system state and the 

directed edges represent transitions among the state set.  The 

directed edges are thus annotated with the transition 

probabilities from the transition matrix and each graph vertex 

corresponds to a transition matrix row (or column) index.  The 

states or vertices that comprise the diagram are interconnected 

by transition probabilities that describe the likelihood that the 

system will transition from one state to another leading to the 

notion of a ‘current state’ and a ‘next state,’ respectively.  

All of the transition probabilities that correspond to exiting 

a current state, Zo = i, and transitioning into one of a set of 

potential next states, Z1 = j, must sum to unity in a discrete-

time Markov stochastic process within the state space, S [6]. 

This relationship is described by Equation (1) below: 

∑ 𝑃( 𝑍0 = 𝑖

𝑗∈𝑆

 | 𝑍1 = 𝑗) = 1 , 𝑖 ∈ 𝑆        (1) 

In a Markov chain, next-state transitions back to a current 

state, or self-loops, are possible and often assumed, even if not 

annotated on the state diagram. States that are only able to 

self-loop, or that are characterized by a transition probability 

of Pi,i = 1, are known as absorbing states.  Once an absorbing 

state is reached, the Markov chain remains in that state 

indefinitely and can never leave that state.  Absorbing states 

are useful for modeling phenomena such as a non-recoverable 

failure. 

Due to the ability of a Markov chain to capture time-

varying behavior, such as system component failure or repair, 

Markov chains are useful for modeling how dynamic systems 

evolve over time. Markov chains can be represented in 

numerous ways with state diagrams and transition matrices 

being among the most common methods. In order to produce 

time-sensitive metrics for a system represented with a Markov 

chain model, the state diagram paths can be traversed in order 

to determine the probability of the current state evolving 

through a series of states during a future interval of time. 

Additionally, linear algebra operations can be performed on 

the transition matrix in order to derive other system 

information or metrics of interest.  

As an illustrative example, Markov Chains are useful in 

applications involving reliability analysis. Fig. 1 models a 

portion of a communications network as a simplified block 

diagram and describes corresponding states of availability at 

any given instant in time.  

The example in Fig. 1 was first presented in [7], and it 

features states that indicate a fully operational communication 

system, a partially operational communication system, and a 

communication system that fails to connect node x with node 

y. Gradual degradation or repair causes the states to move 

from one extreme to another. The Markov chain model that 

represents the Fig. 1 communication network is illustrated in 

Fig. 2 while the transition matrix, P, comprised of the 

transition probability values for the system states is given in 

Table I. 

 
Fig. 1 Example communication network and associated states 

 

TABLE I. TRANSITION MATRIX, P, OF EXAMPLE COMMUNICATION 
NETWORK IN FIG. 1 

  A1 A2 A3 F1 F2 

 A1 0.998 0.002 0 0 0 

P = A2 0 0.798 0.2 0.002 0 

A3 0.004 0 0.994 0 0.002 

 F1 0 0 0 1 0 

 F2 0 0 0 0 1 

 

 
Fig.2. Markov chain state diagram of example communication network in 

Fig.1 

The vertices of the state diagram in Fig. 2 represent the 

system states in Fig. 1 and the directed edges indicate the 

available transitions from the current state to the next state. 



Within the transition matrix, the rows represent the current 

state of the system while the columns represent the next state. 

The probability of transitioning from one state, i, to another, j, 

can easily be determined by referencing matrix element P(i,j). 

For example, the probability of transitioning from state A1 to 

A2 would be 0.002. It should be noted that because Markov 

chains represent stochastic processes, the sum of each row in 

the transition matrix must equal 1 as in agreement with 

Equation (1) above.  

The transition matrix is a useful tool for predicting 

behavior and other metrics regarding a system such as that in 

the Fig. 1 communication system after multiple transitions 

have occurred. For example, if the system is currently in state 

A1 and the probability of ending in state A2 after 3 transitions 

is desired, matrix P must be cubed. After this computation is 

performed, the solution can be found in matrix element 

P3(A1,A2). The point that the system reaches a steady state can 

also be determined by increasing the power of the transition 

matrix, P, until probability values stabilize and cease to 

fluctuate. Examples of different methods used for calculating 

more detailed information about a Markov chain from the 

transition matrix can be found in [6]. 

B. Algebraic Decision Diagrams 

Algebraic Decision Diagrams, or ADDs, are directed 

acyclic graphs based on the concepts of reduced ordered 

Binary Decision Diagrams, or BDDs that were introduced in 

[8].  

A BDD represents a discrete-valued function that is 

dependent upon binary-valued (or switching) variables and 

consists of a vertex set wherein the vertices are classified as 

either terminal or non-terminal nodes.  A non-terminal node 

represents a function variable and has two exiting directed 

edges that are each annotated or labeled with one of the 

possible valuations of the particular variable that is 

represented by the non-terminal node.  The terminal nodes 

represent function values and have no exiting directed edges.  

One of the non-terminal nodes has no edges pointing to it and 

is designated as the initial or root node.  A particular valuation 

of the represented function is then obtained by following a 

path from the initial node to a terminal node wherein the path 

is indicated by a set of variable valuations.   

Due to the reduction rules provided in [8], BDDs can 

represent a switching function in a very compact manner 

(typically) as compared to a binary tree that contains 2n 

vertices for a switching function of n variables.  When the 

reduction rules are applied to a BDD, the total number of 

required vertices ranges from O(n) in the best case to O(2n) in 

the worst case.  For many functions of interest, the required 

number of BDD vertices is not exponential in number, 

allowing the BDD to be a very compact and convenient means 

for discrete function representation. 

ADDs, like BDDs, are also directed acyclic graphs that are 

comprised of an initial root vertex (or node) and a set of non-

terminal nodes that represent the variables of a discrete 

function. Also, like the BDD, ADD nodes or vertices are 

connected by directed edges. For BDDs, the diagrams are 

structured to represent binary, or two-valued, variables, and 

each non-terminal vertex has exactly two exiting edges 

representing a variable valuation of one of two possible values 

(usually 0 or 1).  Reduction rules are likewise applicable to 

ADDs that result in removing redundant nodes and sharing 

isomorphic sub-graphs.  These reduction rules allow ADDs to 

be very efficient data structures in terms of the required 

amount of memory or storage as long as the number of 

terminal nodes stays finite [9]. The size of the diagram can 

also be further reduced if a proper variable ordering for the 

non-terminal nodes is selected.  

BDDs are further restricted to binary-valued functions as 

well as dependent upon binary-valued variables.  Thus, BDDs 

have terminal nodes typically annotated with either 0 or 1.  

ADDs are a generalization of BDDs in that they allow for the 

representation of discrete functions with more than two 

values.  Thus, ADDs provide more flexibility as compared to 

BDDs since they represent functions that are not limited to 

only two terminal node values. For example, the ADD 

representation of a switching function with multiple outputs 

could use integer-valued terminal nodes to indicate the 

function value in radix-10 form.  As an example, a pair of 

binary-valued functions that depend upon the same set of 

binary-valued variables could be represented with a single 

ADD instead of two BDDs and the terminal nodes could be 

labeled with ‘0,’ ‘1,’ ‘2,’ or ‘3’ corresponding to the ordered 

pairs of binary function values ’00,’ ’01,’ ’10,’ or ’11.’ 

Additionally, the terminal nodes of an ADD can be real values 

labeled with a floating point representation that directly 

represent the elements within a transition matrix for a Markov 

chain.  In this case, the non-terminal vertices of the ADD do 

not represent function values, rather they represent the 

position of a probability value within a transition matrix.  

Because the non-terminal vertices of an ADD have only two 

exiting edges, each row and column index of a transition 

probability matrix is represented as a binary value and each bit 

in the row and column index is assigned a non-terminal 

vertex.  

Our motivation for using an ADD to represent a Markov 

chain transition matrix is based upon the following 

observations: 

1) Many transition matrices of interest contain a significant 

degree of sparseness thereby causing the reduction rules 

to have a large degree of freedom resulting in a 

relatively small data structure. 

2) In an automated environment where new system of 

process states may be iteratively discovered, it is 

relatively easy to add a new state to an existing ADD 

representing a transition matrix without reformulating 

the entire structure. 

3) Extracting a particular probability is accomplished 

through a single traversal of one path within the ADD 

from the initial to the terminal node. 



4) Extracting an m-step probability that corresponds to m 

transitions of the Markov chain is accomplished 

through m single path traversals of the ADD 

representing the transition matrix. 

5) Other Markov chain computations of interest are 

implemented as directed graph algorithms over the 

ADD wherein the ADD is often a very compact 

structure. 

As an illustrative example, consider the Markov chain 

represented by the state transition diagram in Fig. 3 and the 

probability transition matrix in Equation (2). 

 
Fig.3. Markov chain state diagram of example  

 

 

Representing a matrix with an ADD requires that the row 

and column indices of the matrix are in the form of binary 

identifiers that can be represented as variables with ADD non-

terminal nodes. Then, graph traversal can be accomplished by 

traversing a path of the row and column index values in order 

to retrieve the matrix element represented by a terminal node. 

When the matrix has some degree of sparseness or repetition 

in the elements it contains, the reduction rules offered by 

ADDs allow the matrix to be represented in a compact form 

requiring a significantly reduced amount of memory as 

compared to other more common data structures for sparse 

matrix representations.  

To illustrate the compactness, consider the Markov chain 

represented in Fig. 3 and by Equation (2).  The row indices of 

the matrix have values ranging from zero to four with the 

topmost row corresponding to zero and the bottommost 

corresponding to four.  Because the ADD utilizes binary-

valued non-terminal vertices, the row index variables are 

expressed in binary as 0002, 0012, 0102, 0112, and 1002 from 

the top to the bottom row.  We utilize a subscripted value to 

indicate that the base or radix of the values is two (binary).  

The ADD variable representing the row index values are 

denoted as the triplet (a,b,c) where a is the most significant bit 

and c is the least significant bit.  As an example, the index 

value for row 3 (i.e., the fourth row from the top of the 

transition matrix) is abc=0112.  Likewise, the column indices 

increase in value from left to right, range from 0002 through 

1002, and are represented by the triplet of variables (d,e,f).  

Fig. 4 contains a graphical illustration of the ADD 

representing the example Markov chain that corresponds to 

the state transition diagram in Fig. 3 and the probability 

transition matrix of Equation (2). 

It should be noted that a particular ADD corresponds to a 

particular variable order.  While the particular variable order is 

irrelevant regarding the Markov chain that is represented, 

certain variable orders allow for the reduction rules to be more 

effective than others.  In the example ADD shown in Fig. 4, 

the variable order a→b→c→d→e→f is used and may not 

necessarily result in the absolute minimally-sized ADD.  It is 

also the case that some of the non-zero transition probabilities, 

represented symbolically as Pij in Fig. 4, may have equivalent 

numeric values.  In the case where the Pij do have the same 

Fig.4. ADD representation of example Markov chain 

 

(2) 



values, additional reduction in the size of the ADD will result. 

An ADD representation is more compact when the Markov 

chain transition probability matrix it represents is sparse.  

Many Markov chains do have sparse, or at least banded, 

transition probability matrices thus enhancing the compactness 

of the ADD data structure. 

III. MC PROTOTYPE ANALYSIS TOOL 

A. Data Structure Considerations 

Markov chain reliability analysis, when performed using an 
explicitly represented transition matrix, becomes costly both in 
terms of required space and computation time.  This is 
especially true whenever the system state space becomes 
extremely large in size. As the number of states in the Markov 
chain increases, the corresponding transition matrix grows 
exponentially in size. While using the transition matrix to 
evaluate a system may be feasible for a state-space less than 
1000 states, an efficient method of storing more massive 
Markov chains for analysis is desired. Our results indicate that 
storage of the transition matrix information within an ADD 
data structure is advantageous.  Furthermore, in a system where 
new states are found or discovered in an iterative fashion, the 
ADD is likewise advantageous due to the existence of 
specialized ADD algorithms for vertex insertion, deletion, and 
translation. 

The Markov chain representation of the example 
communication network, as depicted in Fig. 2, can easily be 
transformed into an ADD. First, each of the states must be 
assigned a binary identifier. Many efficient algorithms exist for 
this process in the form of state encoding techniques that were 
initially developed in the field of digital circuit design 
automation algorithms.  Since five total states exist, each 
binary identifier must be at least three bits long. The number of 
bits needed for each state’s binary identifier for a total amount 
of states, S, in a state-space can be found with Equation (3):  

  
ID

length
= log

2
(S)éê ùú

   (3) 

The IDs for the states in this example are the following: 

 A1  => 0002 

 A2  =>  0012 

 A3  =>  0102 

 F1  =>  0112 

 F2  =>  1002 

The length of a string of bits representing a transition from 
present state to next state is equal to twice the IDlength. To create 
a bit stream that represents a transition, the present state ID and 
the next state ID should be concatenated. For example, the bit 
stream indicating a transition from state A1 to A2 would be 
0000012. Once binary identifiers have been assigned, variables 
for the ADD nodes must be determined. In this example, X1, 
X2, X3 will hold the present state bits while X4, X5, X6 will 
hold the next state bits. The resulting ADD for the 
communication system from Fig. 1 is pictured in Fig. 5.  

In Fig. 5, the zero terminal node and paths leading to it 

have been omitted. Transition probabilities are obtained by 

traversing the paths in the diagram using the binary values of 

the row and column indices. Using the ADD, only seven 

floating point terminal nodes must be saved in memory for the 

Markov chain rather than the 25 elements that would be 

required if the entire transition matrix was explicitly stored.  

It is common to occasionally optimize the ADD through 

use of various procedures that permute the non-terminal ADD 

vertex orders in an attempt to minimize the ADD.  Certain 

vertex or ADD variable orders, cause the reduction rules to be 

applied more effectively which, in turn, allow the ADD to be 

represented with fewer non-terminal vertices.  This is 

incorporated into the Markov chain analysis algorithms by 

permuting the bitstrings that represent the state transitions in 

accordance with the current vertex permutations before a path 

traversal is executed. 

As the number of distinct states in a Markov chain 

increases, the sparsity of the corresponding transition matrix 

also usually tends to increase due to more zero-valued 

transition probabilities being present in the represented 

transition matrix.  Additionally, the transition matrices tend to 

be banded, as can be seen with the example matrix in Table I. 

These two characteristics help to further reduce the size of the 

ADD representation of the transition matrix. Additional 

reduction methods can also be put into place such as limiting 

the number of terminal nodes. For example, if a reliability 

analysis only requires a resolution of 0.005 for the probability 

values, a maximum of only 200 terminal nodes is required for 

the Markov chain ADD. Transition probabilities from the 

original transition matrix could be rounded to the nearest 

0.005, and in a 1,000+ state system, the resulting directed 

graph would only require a fraction of the memory of the 

original full matrix when the probability resolution is 

arbitrary. 



 
Fig.5. ADD representation of Fig. 1 communication network 

B. Markov Chain Analysis Methods in the Prototype Tool 

After determining that the ADD is a desirable structure 

for storing and representing large Markov chains, an analysis 

library was developed. We identified and implemented 13 

different metrics that are computed by our prototype system.  

These 13 metrics were deemed critical for ascertaining 

important characteristics of a Markov chain as well as 

evaluating predictions based upon the Markov chain model. 

High-performance algorithms for the following calculations 

were implemented in Python: 

1) Probability distribution at convergence 

2) Probability distribution after a set number of transitions 

3) Probability of a state after a set number of transitions 

from any starting state 

4) Probability of a state after a set number of transitions 

from a specific starting state 

5) Transitions to convergence 

6) Transitions required for state probability to reach a 

threshold percentage 

7) Transitions until state probability changes by given 

percentage 

8) Reachability between two states 

9) Percentage of reachable states from specific starting 

state 

10) Percentage of reachability between all states 

11) Expected number of transitions until each absorbing 

state is reached 

12) Probability of a transient start state being absorbed 

after a set number of transitions 

13) Probability of an absorption state being reached after 

a set number of transitions from any transient state  

These 13 analysis options, coupled with an efficient 

storage and submatrix extraction system resulted in a high-

performance dynamic system analysis tool that performs rapid 

calculations while also minimizing the amount of storage 

required for very large Markov chains.  This system is 

amenable to both a human-centered interface where a 

graphical user interface could be implemented as a front-end 

data entry mechanism, or it could be used in an automated 

setting where Markov chain states are iteratively discovered 

and provided to the ADD engine for the purpose of updating 

the internal ADD data structure. 

IV. EXPERIMENTAL RESULTS 

Our implementation was evaluated by using randomly 

generated right stochastic square matrices ranging in 

dimension from 5×5 to 10000×10000 in size.  Each matrix 

size consisted of one sparse, one banded, and one dense 

matrix.  Creation of the matrices was performed utilizing a 

pseudo-random number generator for determining position, 

count, and value of each of non-zero element.  For each 

matrix, the sum of each row was determined and all elements 

in the corresponding row were divided by the sum to ensure 

the matrix was right stochastic.  Rows in sparse and banded 

matrices were generated with a random number of non-zero 

elements at or below the designated level of sparseness.  Non-

zero elements in the banded matrices radiate out from the 

corresponding diagonal value while sparse matrices randomly 

assign each non-zero value a column position. 

Markov chain models created in practice are generally 

sparse in that each state only has the possibility of 

transitioning to a small number of other states.  Traditionally, 

matrices that are expected to exhibit sparse connectivity are 

represented in ways that take advantage of the implicit zero 

values found within them.  One of the most common methods 

of sparse matrix representation is the row-compressed sparse 

matrix format. Each row is iterated through in order from top 

to bottom where every column is then checked in order from 

left to right. Each time a non-zero value is encountered the 

current column position is added to an indexing vector and the 

corresponding value is added to the same position in a 

separate vector of values. Additionally, each time the first 

non-zero value is found in a row the vector index position of 

the column and value is added to a row-indexing vector. The 

result is that three vectors that can accurately reproduce a 

sparse matrix without the need to explicitly store zero values 

or redundant row index values. Given that such data structures 

are the standard method of storage for sparse matrices, testing 

was conducted with ADDs and row-compressed sparse 

matrices. 

Row-compressed sparse matrices were tested with the 

NumPy and SciPy Python scientific computation packages. 

The two packages work together to perform linear algebra 

computations that are capable of directly handling sparse-

matrix formatted data. Basic Linear Algebra Subprograms 



(BLAS) and Linear Algebra Package (LAPACK) provided the 

low level C and Fortran functions that NumPy and SciPy 

utilize for quick and efficient computation.  The popularity of 

the Python packages along with their highly reputable 

underlying C and Fortran packages were chosen in an attempt 

to ensure that the sparse matrix formatted data was tested with 

current industry standards in terms of linear algebra 

algorithms.  

The algebraic decision diagrams used in our prototype tool 
were implemented with the University of Colorado Decision 
Diagram Package (CUDD) [10]. CUDD is a high-performance 
decision diagram package written in C that is capable of 
building, manipulating, and performing computations with 
various decision diagrams, including ADDs. The package 
contains the necessary basic functions to read in a sparse 
matrix in the form of row and column coordinates and the 
corresponding element value. The sparse matrix data is used to 
iteratively construct an algebraic decision diagram. The 
provided function was designed to process any general form of 
matrix and as such was altered to more efficiently build ADDs 
that are restricted to the right stochastic and square transition 
matrices. Additionally, using the row-compressed sparse 
matrix format allowed for additional increased efficiency since 
accounting for coordinate pair input in any possible order was 
no longer necessary. 

Initial testing indicated that the reduction benefits of 

using ADDs were diminished for the case where the transition 

matrix elements collectively consisted of many different and 

unique values and hence caused a large number of ADD 

terminal vertices to be present. In constructing the ADD, we 

restricted the terminal nodes to represent a finite number of 

integers that represent equally sized intervals over the range 

[0, 1]. The intervals were found to contain comparable 

numbers of values both above and below the median value of 

the interval. This relationship allowed the median of each 

interval to be used for computation with minimal sacrifice in 

the resulting output resolution of our computational results. 

The utilization of interval terminals rather than unique 

floating-point terminals was found to result in a much more 

efficient data structure without sacrificing accuracy, as shown 

in Table II.  Table II contains the amount of storage required 

to represent a 1000×1000 (i.e., 1000 Markov chain states) 

Markov chain transition probability matrix for sparse, banded, 

and dense transition matrices.  

TABLE II. FLOATING POINT TERMINALS VS. INTERVAL TERMINALS 
COMPARISON (1000×1000) 

 Floating Point 
Terminals 

(Bytes) 

10 Interval 
Terminals 

(Bytes) 

Size 
Reduction 

Similarity 
After 

Squaring 

Sparse 1099064 280456 74.48% 99.55% 

Banded 2095032 109160 94.79% 99.49% 

Dense 27785976 400968 98.56% 99.98% 

Table III shows the comparison between the memory 

required (bytes) to build each test transition matrix using the 

NumPy and SciPy structures versus the CUDD ADDs. Table 

IV provides details about the matrix build times for the 

traditional matrix representations versus ADD data structures. 

TABLE III. BUILD SIZE COMPARISON (BYTES) BETWEEN 
NUMPY/SCIPY MATRICIES AND CUDD ADDS 

 

 

TABLE IV. BUILD TIME COMPARISON BETWEEN NUMPY/SCIPY 
MATRICIES AND CUDD ADDS 

 

Experimentation shows the savings in memory that occurs 

when large Markov chains are stored as interval-terminal 

ADDs. If fewer significant digits are needed to represent the 

transition probability values, less ADD terminal nodes are 

necessary and a more compact ADD structure results. Table V 

provides details about the memory requirements of Markov 

chains and their corresponding ADD representations with 

varying levels of precision. The Markov chains in Table V are 

all banded transition matrices ranging from 100 to 10,000 

states.  The ADD precision levels in the table include full 

floating point precision (with no limit on the number of 

terminal nodes), one significant digit of precision, two 

significant digits of precision, and three significant digits of 

precision. Although CUDD functions exist for performing 

matrix computations on ADDs, such as multiplication and 

squaring operations, these functions were not found to result 

in the highest performance in terms of required computation 

time.  

NumPy and SciPy CUDD (10 Interval Terminals)

5x5 204 2376

50x50 2592 15208

100x100 5168 31336

1000x1000 51524 280456

10000x10000 634064 3423048

NumPy and SciPy CUDD (10 Interval Terminals)

5x5 180 2312

50x50 2580 13768

100x100 6332 26920

1000x1000 596804 109160

10000x10000 59293004 1294632

NumPy and SciPy CUDD (10 Interval Terminals)

5x5 200 2376

50x50 20000 4936

100x100 80000 12136

1000x1000 8000000 400968

10000x10000 800000000 24526408

Sparse Matrices

Banded Matrices

Dense Matrices

NumPy and SciPy CUDD (10 Interval Terminals)

5x5 < 1 < 1

50x50 < 1 < 1

100x100 < 1 < 1

1000x1000 6 30

10000x10000 70 1080

NumPy and SciPy CUDD (10 Interval Terminals)

5x5 < 1 < 1

50x50 < 1 < 1

100x100 < 1 < 1

1000x1000 67 460

10000x10000 6974 91270

NumPy and SciPy CUDD (10 Interval Terminals)

5x5 < 1 < 1

50x50 3 < 1

100x100 13 30

1000x1000 1175 8510

10000x10000 222829 2330620

Sparse Matrices

Banded Matrices

Dense Matrices



TABLE V. ADD MEMORY REQUIREMENTS VS PRECISION FOR 100, 
1000, AND 10,000 STATE BANDED TRANSITION MATRIX  

 

Our experimentation indicated that timing performance 

during the linear algebra computations was best when 

submatrix blocks are extracted from the ADD as needed 

during the computations and NumPy and SciPy are used for 

the actual computation. This process shortens computation 

time while maintaining the memory benefits of the transition 

matrix information being saved as an ADD.  Based on this 

experimentation, we chose to use the ADD to represent the 

transition matrices, but to use NumPy and SciPy with 

submatrix extraction for the computations rather than 

implementing the computations as graph algorithms that 

directly process the ADDs.  However, we did also implement 

the computations as ADD-based graph algorithms as well in 

our testing and evaluation process.  Timing information for the 

13 Markov analysis algorithms as described in Section III B is 

provided in Table VI.  

TABLE VI. TIMING DATA FOR MARKOV CALCULATIONS USING 10, 
100, 1000, AND 10,000 STATE TRANSITION MATRICIES (ms) 

 
In Table VI, measurement readings for calculation duration 

are provided in units of milliseconds. Transition matrices 

representing 10, 100, 1000, and 10,000 state Markov chains 

are used with the 13 analysis options to generate the reported 

timing data. 

V. CONCLUSION 

Representing a Markov chain as an ADD proves to be an 
efficient alternative as opposed to storing information in a 
traditional transition matrix that is large and dense or other 
more efficient and common data structures for storing matrices. 
This method has been shown to outperform more common data 
structures for representing matrices, including both dense and 
banded matrices. Due to the space-saving characteristic of 
ADDs, it is possible to store extremely large Markov chains in 
a much more compact manner.  Also, very importantly for our 
application, use of the ADD allows states to be added to an 
existing Markov chain in a very efficient manner that avoids 
the reconstruction of the entire structure. 

In conclusion, we have developed a high-performance 
analysis tool that is implemented by extracting submatrices 
from an ADD structure and use the basic linear algebraic 
operators from the NumPy and SciPy libraries to implement 

13 different analysis options over a Markov chain model. 
Coupling the spatial savings provided by ADDs with the 
efficient linear algebraic operations of NumPy and SciPy 

resulted in an automated analysis prototype tool that can 
efficiently store and process extremely large Markov chains 
while also providing the capability to efficiently add newly 
discovered states to an existing chain. 

REFERENCES 

 

[1] M. Ammar, K. A. Hoque and O. A. Mohamed, "Formal analysis of fault 
tree using probabilistic model checking: A solar array case study," 2016 

Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, 2016, 

pp. 1-6. 
[2] Graham, C. Markov Chains: Analytic and Monte Carlo Computations. 

Somerset: Wiley, 2014. 

[3] M. K. Ishak, G. Herrmann and M. Pearson, "Performance evaluation 
using Markov model for a novel approach in Ethernet based embedded 

networked control communication," 2016 Annual IEEE Systems 

Conference (SysCon), Orlando, FL, 2016, pp. 1-7. 
[4] J. Leithon, T. J. Lim and S. Sun, "Renewable energy management in 

cellular networks: An online strategy based on ARIMA forecasting and 

a Markov chain model," 2016 IEEE Wireless Communications and 
Networking Conference, Doha, 2016, pp. 1-6. 

[5] M. Rahnamay-Naeini and M. M. Hayat, "Cascading Failures in 
Interdependent Infrastructures: An Interdependent Markov-Chain 

Approach," in IEEE Transactions on Smart Grid, vol. 7, no. 4, pp. 1997-

2006, July 2016. 
[6] N. Privault, Understanding Markov Chains: Examples and Applications, 

Singapore: Springer Singapore, 2013 

[7] J. B. DeMercado, “Reliability Prediction Studies of Complex Systems 
Having Many Failed States,” in IEEE Trans. on Reliability, vol. R-20, 
no. 4 pp. 223-230, Nov. 1971 

[8] R. E. Bryant, “Graph-Based Algorithms for Boolean Function 
Manipulation,” IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677-
691, Aug. 1986 

[9] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. 
Pardo, F. Somenzi, “Algebraic Decision Diagrams and Their 
Applications,” in IEEE/ACM Int. Conf. on CAD, 1993, pp. 188-191. 

[10] F. Somenzi, “CUDD: CU Decision Diagram Package Release 3.0.0,” 
Department of Electrical, Computer, and Energy Engineering, 
University of Colorado at Boulder, Dec. 2015. 

 

100 States 

Banded

1000 States 

Banded

10000 States 

Banded

Full 

Precision
Floating Point

39864, 1223, 

1266

2095032, 65447, 

65508

107146008, 

3348290, 3348375

One Sig. 

Fig.
10 Term. Inter. 26920, 816, 858

1738848, 3386, 

3445

8038432, 40432, 

40523

Two Sig. 

Fig.
100 Term. Inter.

39576, 1189, 

1232

3627680, 20600, 

20600

8038432, 40432, 

40523

Three Sig. 

Fig.
1000 Term. Inter.

55736, 1469, 

1512

5674304, 35542, 

35602

62972288, 837580, 

837664

DATA = (bytes, nodes, peak nodes)

5 Iters 10 Iters 5 Iters 10 Iters 5 Iters 10 Iters 5 Iters 10 Iters

Test 1[a] 6.14 7.96 277.76 85058.56

Test 2 5.11 5.15 5.97 6.25 49.81 58.13 28692.09 43639.91

Test 3 5.11 5.36 6.05 6.24 46.32 56.29 29577.83 40276.04

Test 4 5.12 5.21 5.91 5.95 47.28 60.14 27160.34 37067.94

Test 5[a] 9.11 44.65 4631.79 1266425.46

Test 6[b] 7.89 30.97 1600.16 129846.39

Test 7[c] 8.07 32.21 1559.09 131800.06

Test 8[d] 0.04 5.97 149.06 23294.28

Test 9 5.54 7.35 274.18 86666.18

Test 10 0.12 1.12 573.87 86414.47

Test 11[e] 5.58 13.86 69.19 16080.84

Test 12 5.05 5.14 6.15 6.29 51.89 64.75 28641.25 28641.25

Test 13 5.12 5.17 6.42 6.53 48.87 60.75 27510.52 37607.48

Notes:

a convergence, no set number of iterations

b longer of the two times between rise above 50% and fall below 50%

c using 10%

d 2 random states chosen, stops at states being reachable or convergence 

e 1 random state is converted to absorbing state

10 States 100 States 1000 States 10000 States

of system


