

Real-Time Edge Processing Detection of
Malicious Attacks Using Machine Learning and

Processor Core Events

Rob Oshana
Vice President, Software R&D

NXP Semiconductors
Austin, Texas, USA

robert.oshana@nxp.com

Mitchell A. Thornton
Darwin Deason Institute for Cybersecurity

Southern Methodist University
Dallas, Texas, USA

mitch@smu.edu

Eric C. Larson
Darwin Deason Institute for Cybersecurity

Southern Methodist University
Dallas, Texas, USA
eclarson@smu.edu

Xavier Roumegue
Senior Engineer

NXP Semiconductors
Austin, Texas, USA

xavier.roumegue@nxp.com

 Abstract—A method for the detection of the malicious events
such as the SPECTRE exploit is proposed and evaluated using
machine learning and processor core events. In this work, we use
machine learning to implement a system based on hardware event
counters to detect malicious exploits such as SPECTRE running in
a process on a Linux based system. Our approach is designed to use
existing on-chip hardware to detect a SPECTRE-based exploitation
in real time. Prototype architectures in both x86 and ARM-based
SoC’s representing an embedded system with a corresponding real-
time Edge-based classifier is designed and implemented to validate
the approach. This exploit detection architecture uses software
agents and requires no additional hardware. In particular, a
software agent periodically accesses the event counter register file
during runtime. At each observation time, a feature vector is
formulated consisting of a particular subset of event counter data.
The event counter data used in the detection technique includes
cache and branch prediction counts. Various different machine
learning classifiers are implemented with a goal of predicting either
the presence of the malicious exploit or something other than the
malicious exploit. Thus, the classifier outputs binary states of
“malicious exploit present” versus “normal operation.” Many
classifiers resulted in true positive rates in excess of 98% with
corresponding false positive rates less than 1%. In many cases, a
0% false positive rate is achieved. These predictive approaches are
compared for training complexity and performance.

 Keywords—Edge Processing, malicious event, SPECTRE,
embedded system, SoC, event counter, performance counter,
machine learning

I. INTRODUCTION
 SPECTRE is a security vulnerability that exploits
speculative execution and indirect branch prediction circuitry
that is common and present in most modern CPU cores. The
exploit allows access to unauthorized information by
implementing side channel analysis of information in the data
cache of the system [1]. SPECTRE is documented in the
Common Vulnerabilities and Exposures (CVE) database as
CVE-2017-5717 and CVE-2017-5753. The general idea
behind the attack is that the attacker uses the performance

enhancement features of the processor, namely the cache and
branch predictor plus speculative execution circuitry, to read
higher privileged data.

In this work, we use machine learning to implement a
system based on hardware event counters to detect the
SPECTRE exploit running in a process on Linux system. Our
approach is designed to use existing on-chip hardware to detect
a SPECTRE-based exploitation in real time [2][3]. We inform
the design of our machine learning models and evaluate
performance by creating a dataset of 16,000 samples from an
x86 as well as ARM-based system running Linux. We
investigate a number of machine learning algorithms, and find
that a support vector machine classifier achieves perfect
performance on our collected dataset (100% detection of the
SPECTRE exploit without any false positives).

We are motivated to consider the SPECTRE exploit
detection problem for embedded systems and thus devise an
approach that is real-time, requires no new hardware, and
minimizes overall system performance degradation. For these
reasons, our architecture design utilizes a classifier that is
present in the cloud and that interacts with the embedded
system via the use of software agents that run on the embedded
system. The use of a cloud-based classifier is a design choice
and is not required for our methodology to be implemented in
other systems and environments as described in [9].

A diagram representing the overall architecture of our
prototype implementation is shown in Fig. 1. Event counter
samples are collected from the system that represent the
runtime profiles of the active processes on the embedded
system. In our prototype system, these samples are
communicated to a laptop representing a cloud-resident
processor and referred to as the “firehouse.” The firehouse
predicts whether or not the SPECTRE exploit, denoted as the
“ghost,” is present. If the firehouse predicts that a ghost is
present, the process is killed in real time by another software
agent running on the embedded system referred to as the
“ghostbuster.”

We analyze the sampled event counter data for its
significance and effectiveness in the classification task.
Likewise, we evaluate a variety of different machine learning-
based classifiers using the sampled event counter data.
Comparisons of the performance of these classifiers is carried
out. We include the results of this comparison that indicates
the support vector machine (SVM) classifier is the most
suitable choice for implementation in the prototype. The
firehouse in our prototype implements the SVM classifier
although we also provide results of our comparison of different
classifiers.

We evaluate the performance of this prototype real-time
system. Out of 267 total actual exploits we observe that the
prototype system misses only one instance of the SPECTRE
exploit without any false positives. We conclude that using
machine learning for detection of the SPECTRE exploit is a
viable method in terms of performance for real time embedded
systems.

Fig 1: iMX8QM Embedded SoC used as the Exploitation Victim
II. RELATED RESEARCH

The use of hardware performance counters for the detection
of malware has been investigated by other researchers.
Surveys of the use of performance counters such as the event
counters we use are provided in [4][5][29]. One of the first
investigations of the use of performance counters resulted in
the Eunomia prototype where malware including code-
injection, return-to-libc, and return-oriented programming
attacks were considered although machine learning classifiers
were not used [6]. Later work did incorporate performance
counters and machine learning classifiers to detect Android
ARM malware and Intel rootkits [7]. Research that utilizes
performance counters in combination with the inclusion of
specialized hardware support for malware detection includes
that of [2][3][8].

The use of performance counters for malware detection in
terms of the required computational overhead is addressed in
[9] where a “sample-locally-analyze-remotely” and
“compressive sensing” approach was proposed. This allowed
counter performance data to be collected on the target machine,
compressed, and processed remotely resulting in decreased
computational overhead for malware detection using counter
data. We use similar approaches to reduce computational
overhead in our approach.

A method for the detection of the Heartbleed vulnerability
used support vector machines (SVM) to detect the Heartbleed
vulnerability [10]. In that approach a SVM was used as a
binary classifier to detect between regular and abnormal

behavior and reported a 92% accuracy. This work also
concluded that data-oriented attacks were more difficult to
detect than control-data exploits based on their focus on buffer
over-reads. An SVM is also used in [11] and a methodology is
proposed for a generalized side-channel attack detection
system by correlating its execution trace with a secret
encryption key. As described below, we also use SVM in our
prototype after considering a variety of candidate classifiers.

Some recent publications have used performance counters
to detect the SPECTRE exploit [12][13][14][15] in conjunction
with performance management unit (PMU) generated
interrupts, however, they did not employ machine learning for
classification as we do.

III. SPECTRE EXPLOITATION IN ARM BASED
SYSTEMS

In this section, we provide details regarding how the
SPECTRE exploit is implemented within the environment of
an ARM-based system. We use these concepts to motivate the
selection of processor core events that are useful in revealing
the presence of the SPECTRE exploit when a machine
learning algorithm is implemented as the exploit detection
classifier.

On ARM-based platforms, the exploit success rate is
dependent on the victim function implementation. Since the
caches are relatively small (16KB for Arm/iMX and 32KB for
x86 i6950), the evict rate is important and it has been proven
to be preferable to avoid the load instruction in the speculative
secret leak path. We designed an exploit to take advantage of
the architectures of both the x86 and the iMX8 SoC. A key
goal is to avoid memory accesses in the speculated path.

In order to leak a user-space secret to both the attacker and
the victim, there must be processes in user space. The
approach is to leak a kernel secret through a kernel victim.
The attacker runs in unprivileged mode, interacting with the
kernel through legal mechanisms such as syscalls. The victim
runs in kernel space as illustrated in Fig. 2. We developed a
dedicated and vulnerable kernel module named
“SPECTRE_victim” for our proof-of-concept implementation.
The “victim” function implementation follows the original
SPECTRE publication [20], reproduced here in pseudocode
form as:

In this example, as long as the variable x is smaller than

array1_size, nothing out of the ordinary happens. The code
checks to make sure that x does not go beyond the end of
array1, which is generally good defensive programming.

However, this type of check does not take into
consideration the behavior of branch prediction and

void victim_function(size_t x) {
 if (x < *array1_size)
 {
 temp & =
 array2[array1[x] * ARRAY2_CHAR_SIZE];
 }
}

The FireHouse
1. Train the model
2. Wait for prediction queries

The GhostBuster
1. Identify most cpu demanding processes
2. Collect samples of each individual process
3. Send samples to ~Firehouse" for seeking the ghost
4. Kill the process if identified as a ghost

speculative execution. Many embedded processors monitor
and record how often a branch is taken and use this
information to predict future behavior. In this example, if the
prediction is that x is smaller than array1_size, then the
embedded processor will speculatively execute the instruction
before the condition has been evaluated.

If array1_size is not in the cache, the time to evaluate the
condition will be relatively high compared to the time it takes
to speculatively execute the next instruction. It is also possible
to “train” the branch predictor with many valid examples of
the test and array access values.

When the condition that “is x is actually greater than

array1_size” is evaluated, the processor will determine that it
made a mistake and attempt to throw away the pre-computed
computation. At this point, the content of array1[x] is located
in memory beyond the end of the array and must be used to
look up an element of array2 which is now located in the
cache. The contents of array1[x] are not in the cache.
However by finding which element of array2 is in the cache
its easy to deduce array1[x]. To perform this deduction, all
that is needed is to access each element of array2 and record
the corresponding access times. In this manner, observing a
faster access allows one to deduce that it is obviously the one
that is present in the cache.

IV. SELECTING RELEVANT CPU EVENTS FOR
DETECTION

We hypothesize that it is possible to detect the SPECTRE
exploit by monitoring the CPU events on the ARM and x86
processors that represent the runtime profiles of processes that
may or may not be instrumented to contain the SPECTRE
exploit. In this section, we explain the types of events
available for monitoring on x86 and ARM based systems and
provide an explanation to justify which events are more
applicable for use in detecting the SPECTRE exploit.

The ARM A72 processor contains a subsystem referred to
as the Performance Monitor Unit (PMU). The purpose of the
PMU is to gather various statistics characterizing the runtime
profile or operation of the processor and memory system.
These PMU events provide information about the behavior of
the processor during runtime that can be used for purposes
such as debugging and profiling software [18]. The event
counter register values are accessible through system calls
since it is anticipated that some system and application

software may use these data for other purposes such as
dynamic performance tuning. The PMU in the ARM A72
comprises six counters. Each of these six counters can count
any of 84 different specified events within the processor.

For our application, we narrow this exhaustive list down to
events that are associated broadly with timing, the L1 data
cache, and speculative load/store executions. Six of the events
were selected to train our classifier. The events were chosen
based on their ability to yield appropriate side channel
information that is indicative of the presence of the SPECTRE
exploit, or the presence of something other than the SPECTRE
exploit. For instance, since the SPECTRE attack attempts to
"massively" clean the cache many times in order to fool the
branch predictor and thus force the malicious code to be
executed in a speculative path, we select various event
counters that monitor branch prediction and cache access. The
six events we selected are:

1. Event 0x11: CPU_cycles. We collect this event data in order to
normalize other events by the number of active CPU cycles.

2. Event 0x12: Predictive branch speculatively executed. We
hypothesize this event could yield information regarding when
branch predictions are occurring and thus, when the system is
vulnerable.

3. Event 0x10: Mis-predicted or not predicted branch speculatively
executed. Like the previous event, we hypothesize this event could
indicate when the system is vulnerable.

4. Event 0x42: L1 data cache refill read. We hypothesize that
monitoring this event may reveal when the data cache is being
traversed by the SPECTRE exploit.

5. Event 0x48: L1 data cache invalidate. Similar to the previous
event, this event may indicate cache checking by the SPECTRE
exploit.

6. Event 0x72: Operation speculatively executed: load/store. This
event may indicate vulnerability of the system because of
speculatively executed operations involved in branch prediction.

We collect these six hardware event counter data over time
as described in the next section and analyze each of them with
respect to their ability to discern the presence of the
SPECTRE exploit, or the presence of something other than the
SPECTRE exploit.

For the x86 architecture, we used a similar approach. The
key x86 event counters used are;

1. Event 0x41: Not taken speculative and retired mis predicted macro
conditional branches

2. Event 0x81: Taken speculative and retired macro-conditional
branches

3. Event 0x82: Taken speculative and retired macro-conditional
branch instructions excluding calls and indirects

4. Event 0x84: Taken speculative and retired indirect branches
excluding calls and returns

5. Event 0x88: Taken speculative and retired indirect branches with
return mnemonic

6. Event 0x90: Taken speculative and retired direct near calls

V. DATA COLLECTION
In order to inform the design of our detection algorithm,

we collect data from the identified event counters during the
execution of various applications. We perform data collection
using a dual-core embedded SoC architecture.

Fig 2: Diagram of the SPECTRE attack

• Bounds check bypass

• CVE-2017-5753

A. Embedded SoC Architectures
The SoC used for this experiment is the iMX8QM from

NXP Semiconductors as shown in Fig. 3. This SoC is a dual
A72 core-based SoC with additional A53 cores, graphics, and
video acceleration processors [19]. This device is used in
many automotive infotainment applications. This device has
two A72 cores and four A53 cores. For this experiment we
used the two A72 cores. The two A72 cores both use a
1MByte shared instruction cache.

The event measurements are taken continuously with
measurements lasting about 2.5 seconds per measurement.
This is long enough to eliminate any pipeline effects when
collecting the data. Each of these event counter measurements
are normalized per active CPU cycle by computing the ratio of
the number of events per number of active cycles.

We performed a similar experiment on the Intel i6950x
processor in a Dell laptop.

B. Selected Applications for Testing
To build and evaluate our model, nine different application
types were run in the user space in a Linux environment on
two of the four A72 cores present within the iMX8QM in
order to simplify the proof-of-concept experiment. Eight of
these applications were chosen to be as representative of a
broad range of common tasks as possible. The ninth
application type was a process that implemented a SPECTRE
attack. These applications are the system idle task, I/O
operations on the network file system using iozone which is
a filesystem benchmark tool that generates and measures
different types of file operations, I/O operation on a sdcard
using iozone, graphics operations using glmark2, an
OpenGL benchmark maintained by the Linaro Graphics
Working group, a TCP/IP communication using iperf, a
tool for measuring bandwidth on IP networks, I/O operation
on nfs using fio, a tool that spawns a number of threads
that performs user specified I/O actions, Openssl crypto

operations that secure communications using the SSL and TLS
protocols, a Linux benchmark application using lmbench,
and the standard proof of concept SPECTRE attack.

The same application use cases were also run in the same
use scenarios on the x86 i6950 core. Data from the event
counters is collected for the nine application types mentioned
above. The measurements are all started with a random delay
so that each measurement sampling is different. The Linux
“perf” tool is used to collect the event counter samples
during runtime. Operational deployment of our method would
likely use an interrupt-driven background process rather than a
polling approach.

 Each application is chosen at random for running on the
test system and the selected application is logged along with its
runtime on the system. The log enables each process to be
labeled so that the supervised learning model can be trained.
The system is allowed to run for approximately 12 hours in
duration, resulting in 16,000 labeled measurements. A script is
used to post process the 16,000 labeled samples of raw data to
build the dataset for later processing.

C. Test Environment

An embedded processor is infected with the SPECTRE
exploitation code along with instantiating the other application
types. Internal SoC event data is collected and used to train the
model on the laptop acting as the firehouse in a cloud-based
system. When running the system, prediction queries from the
cores (iMX8 ARM based SoC and x86 i6960) are collected.
Data are collected showing the most demanding CPU
processes running on the cores. Samples are collected from
each of the individual processes running on the two cores of
the SoC.

VI. ANALYSIS OF COLLECTED DATA
A. Preprocessing and Cross Validation

In the preliminary portion of the investigation reported
here, prediction models were created using a variety of
machine learning techniques. Models are trained using a large
amount of data gathered and processed from an experimental
environment. It was hypothesized that the processor event data,
such as that provided in Table 1, could be used to form a
feature vector that differentiates between the binary machine
states of “normal operation” versus “SPECTRE” exploitation.”

We preprocess the event counter data by applying
normalization to the dataset by making each feature has zero
mean and unit standard deviation. This standardization is
common for machine learning algorithms that employ linear
models and can help to speed convergence as well as prevent
one feature from dominating the decision boundary [20].

The data collected for this experiment was used to create a
function that maps an input to an output based on example
input-output pairings. This is a classic case of a supervised
learning approach, since it is possible to annotate the collected
dataset with responses. The supervised machine learning
approach is attempting to determine a classification of
“SPECTRE attack present” or “something other than
SPECTRE attack present,” so a “classification” approach is
used in this experiment. Each classifier assigns new examples
(core events) to one category or the other (SPECTRE or no
SPECTRE).

Fig. 3. iMX8QM Embedded SoC

Multimedia
GPU

1 __ ~~!~~z _ ~ t ~ --~ii~!ur~: _ !
Video:h.265dec4K/2K
h.264dec/enc1080p

Display

OisplayProceslorwthSa1eAsaureC'

DiSplly Proee&SO(wth SafeAssure

1x HiFi40SP
4

3
:::~ 64KBTCM

OisplayandCameralfO

1 xMIPIOSI
(4-lanes)

1xMIPI0$I
(4-lanes)

CoreComplex2

NANO (SLCIMLC) - BCH62

Security

System Control

CoreComplex3 CoreComplex4

Connectivity

1 xSATA3andPHY1-lane
(orPClewithL1substate1•Iane)

US83dual-roleandPHY

USB20TGandPHY
USB2Host/HSIC

1 xS/PDIFTxfRx,1 xASRC

2xESAl,4xPS/SAI

5xPCHigh-SpeedwithDMA

6x~:~d~.~~A)

2x 12-bitAOC(16-Channel)

In order to determine which type of classification model to
performs the best, we analyzed several machine learning
models using a process called “forward chaining” cross
validation. Forward chaining cross validation is a statistical
technique for estimating the robustness of machine learning
model performance with training and testing that are
appropriately selected for time series data. As shown in Fig. 4,
this method selects data for training a machine learning model
from a contiguous time block of samples in the dataset. A
smaller testing set is chosen from a contiguous block of data
occurring after the training data. This process is repeated
multiple times using a longer block of contiguous training data
and a test set that occurs even further in time. This cross
validation ensures that the analysis does not violate any time
boundaries. For example, it would not be proper to evaluate
the algorithm on test data when training data was sampled
both before and after the testing data blocks. Likewise, it
would not be proper to select testing data and training data
that occur temporally close in time.

B. Selected Evaluation Criteria
Once the event counter data was collected, forward

chaining cross validation (with four splits of the dataset as
shown in Fig. 4) was used to assess performance of several
machine learning algorithms for the SPECTRE event counter
data. We chose to evaluate each model using “recall,”
“precision,” and “F1” (which is a metric that combines the
information given by recall and precision). The formulas for
these metrics are given in (1) through (3).

 (1)

 (2)

 (3)

Recall or Sensitivity, measures the proportion of times the
classifier predicted the presence of the SPECTRE exploit with
respect to the number of times it was truly present. Thus, a
perfect Recall would be 100% and would occur when all the
exploits were correctly predicted and when no predictions
occurred indicating the exploit was present when in fact it was
not. In a more general sense, Recall provides a quantitative
answer to the question “How many relevant items are
selected?”

Precision is a measure of the proportion of times that the
classifier correctly predicted the presence of the SPECTRE
exploit with respect to the total number of times it predicted
the exploit was present whether they were correct or not.
Thus, a perfect accuracy of 100% would result if the classifier
always predicted when the exploit was truly present and never
predicted that the exploit was present when in fact, it was not
present. In general, Precision answers the question: “How
many selected items are relevant?”

F1 is an overall measurement of a classifier's effectiveness
and considers both Recall and Precision. At a F1 score of 1,
the system is performing ideally with respect to Recall and
Precision.

C. Performance Across Machine Learning Algorithms
We chose a variety of different machine learning algorithms
that could be implemented in the prototype system. Fig. 5
shows the cross-validation results of several machine learning
classifiers including Decision Trees (DT) using gini index
and no pruning applied, Gaussian Naïve Bayes (GaussNB),
Random Forests (RF) with 100 trees, K-nearest neighbors
(KNN) with K=3 and Euclidean distance, Support Vector
Machines (SVM) with radial basis function kernel, C=1, and
gamma=0.001 and Multilayer Perceptron, with one hidden
layer of ten neurons (MLP-10) and sigmoid activation
functions.

All classifiers were implemented using the open-source
python machine learning toolkit, scikit-learn [24]. The
Support Vector Classifier (SVC) was trained using LIBSVM,
an open-source library for SVMs. Unless stated otherwise, all
other hyper-parameters of the machine learning algorithms
were chosen to be default parameters.

The bar chart in Fig. 5 shows the mean recall, precision
and F1-score averaged across all testing folds. Error bars are
also shown that indicate the “95% prediction interval” of all
the folds in the dataset. The prediction interval is defined as
μ±1.96σ for each metric, calculated from the four train/test
separations. Notice that all machine learning methods perform
well, as the vertical axis of Fig. 5 is zoomed, ranging from
0.98 up to a perfect score of 1.00. Two methods perform
perfectly on the training and test sets: KNN and SVM.

We prefer the SVM as compared to KNN because of the
time it takes to predict when the model is deployed. KNN
involves an exhaustive search over the training data for every
prediction, which can be time consuming for a deployed
machine learning algorithm with real time constraints. In
accordance with these results, SVM is selected as the machine
learning model to use for further analysis. A SVM trained
with a radial basis function is optimized by maximizing a
decision boundary margin in a large dimensional space [22]
[23] [24]. Because we use a radial basis function kernel, the
theoretical dimensional space is infinite. This means the SVM

Recall = TP

TP + FN()

Precision = TP

TP + FP()

F1=
2 Precision× Recall()
Precision+Recall()

Fig 4: Forward chaining cross validation example showing training and
test data separation for four splits.

Forward Chaining Cross Validation

Split One

Split Two

Split Three

Split Four

- Training Data

- Test Data

Unused Data

can achieve arbitrary decision boundaries based on the feature
data.

D. Amount of Training Data Analysis
While an SVM is able to provide superior performance

using cross validation, we wanted to understand the
performance of the SVM as a function of the amount of
training data provided. We analyzed the event counter data

using SVM with increasing amounts of training data from
our 16,000 instance dataset.

We used contiguous train and test separation options and
performed an analysis on the amount of training examples
required to achieve perfect true positive rate without any false
positives (Fig. 6). Fig. 6 shows a split vertical axis with the

percentage of positive SPECTRE exploits found on the left
axis and the total number of false positives on the right axis.
The horizontal axis shows the amount of data points in the
training set, ranging from 2,000 up to 10,000 instances. As
shown, using about 6000 data points for training achieves
excellent true positive rate, without any false positives.

Fig. 7 shows the results of the analysis on test data for the

SVM when the model is trained with 6,000 data points. The
output of the classifier is shown over approximately 7.5 hours,
along with ground truth for when the SPECTRE exploit was
active. As shown in Fig. 7, the predictions correlate perfectly
with ground truth. Each of the seven times that the SPECTRE
exploit is active, the SVM almost immediately detects it.

E. Relevant Feature Analysis
We also performed an analysis of the feature importance in

the training data. For this analysis, we chose to analyze the
feature importance as identified using a random forest (RF)
classifier. We chose the RF classifier for feature importance
analysis because it has been shown to be highly consistent and
has less bias than other methods [25]. To investigate
importance, we use the feature permutation method as
described in [25]. Intuitively, one can think of this method as
measuring importance by randomly permuting each feature
into the random forest and observing the degradation in
performance from this permutation. Highly relevant features

Fig. 9: Software Architecture for SPECTRE proof of concept

Fig. 8: Feature Importance from the Random Forest Classifier

Fig. 5; Time series validated performance of machine learning models
based on K-fold cross validation

Fig. 6: False positives and true positives versus test sample size for SVM
classifier.

Fig. 7 Ground truth versus predicted test data comparison

l
~
"' a:

"' > ..,
·;;;
0

c,.

"' :,

i=

Time Series Validated Performance

L0000
Across Machine Learning Algorithms

0.9975

0.9950

0.9925

[: 0.9900

0.9875

0.9850

0.9825

0.9800
DT GaussN8 RF KNN SVM MLP-10

100

80

60

40

20

0

2000 3000 4000 5000 6000 7000 8000 9000 10000

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Number of Training Examples

Feature Importances from Random Forest Classifier

rl0 rl2 r42 r48 r72

LO
£
2

Recall I-

Fl "O 0.5
C

Precision
:,

e
(.?

0.0

LO

N u 0.5 '6 .,
~

0.0

6

5"'
~
E

4"'
~ .,
"' J;ij
u..
~

0

2.:;
"' E
:,

1Z

0

Test Data Performance

u I Lil
0 2000 4000 6000

u I Lil
0 2000 4000 6000

lime

Firehouse "cloudn server
Trained model

t -- l --

~
8000 10000

~
8000 10000

result in large performance degradations.
Fig. 8 shows the relative importance of features for

this method (higher indicated more importance). In this
case, the features are the normalized event counter data.
As observed in Fig. 8, the “data cache invalidate” (r48)
event counter is a dominant feature in this experiment, as
well as “data cache refill read “(r12) and “Predictive branch
speculatively executed “ (r42). We note that none of the
features have an importance near zero indicating that all
features contribute to the performance of the classifier.
Therefore all features are used in further analysis.

IIX. REAL-TIME SYSTEM ARCHITECTURE

Given the performance of the SVM on our collected
dataset, we implement a prototype real time SPECTRE exploit
detection system using this model. The software architecture
for the real-time system is shown in Fig. 9. The perf process
is used to collect the hardware event counter data. These
samples are sent to the laptop (Firehouse) to identify the
SPECTRE exploit (ghost). If identified, the process is killed
in real time. We therefore refer to the process as Ghostbuster.
We developed the Firehouse to run on a cloud machine and
the GhostBuster process was responsible for detecting the
SPECTRE attacks on the embedded iMX8 device.
GhostBuster collects samples from the applications running on
iMX and sends them to the Firehouse server requesting a
classification. If Firehouse predicts that there is a SPECTRE
attack running within a process, it will kill or suspend the
process.

ProtonPack is the server class responsible for machine
learning training and classification. This class can be easily
inherited for further experimentation. In order to demonstrate
the SPECTRE attack, a patch was added to route the PMU
counters to the ARM A72 cores instead of the A53 cores. A
SPECTRE victim kernel module, which is the SPECTRE
gadget module designed to have a vulnerable driver, is
implemented in the kernel and is used to demonstrate the
SPECTRE attack against the kernel space. Additional kernel
modifications were made to grant access to the PMU counters
from user space since the SPECTRE proof of concept uses the
PMU counters as a timing measurement method.

IX. EXPERIMENTAL RESULTS
Testing was conducted on two machines, a laptop running

Linux 4.14 and an iMX8QM running Linux 4.14 built as an
embedded Yocto distribution. Specifically, the Linux laptop
machine is a Dell Latitude with a 1.3GHz Intel® i5 processor
and 4GB of main memory and the iMX8 SoC is a dual ARM
A72 processor running at 1.6 GHz with 1Mbyte of shared I2
memory.

ProtonPack is used to train the model and determine
model performance. A test suite is created that consists of a
total of 4,105 trials running for about 2.5 hours. During the 2.5
hour runtime, the SPECTRE exploit was randomly made
active 227 times. Other applications were also run during the
2.5 hour runtime. In many circumstances, another application
was running when the SPECTRE exploit was activated in an
attempt to provide a realistic environment.

A confusion matrix is computed as one of the means
to determine the performance of our classification model. The
confusion matrix, or error matrix, allows a determination of
the performance of a supervised learning algorithm such as
ours that predicts a binary classification and is provided in
Table I. Values in Table I are in the format “percentage
(absolute number).” The confusion matrix contains four key
values; the number of times a predicted presence of the
SPECTRE attack was correct or not, and the number of times
a predicted non-presence of the SPECTRE attack was present
or not. In Table I, the topmost sub-table is a key for
interpreting the measured values in the bottommost sub-table.
Data is shown for both Arm and x86 ISA’s.

In the topmost part of Table II, the legend for the

bottommost part, we use TP to denote “true positive,” the
number of observations where the SPECTRE attack was
present and the SVM prediction was correct. TN denotes “true
negative” and is the number of times the SVM classified the
exploit as being present when it actually was not present. FP
denotes “false positive,” and is the number of times the SVM
predicted that the SPECTRE exploit was present when it
actually was not present. Finally, FN denotes “false
negative,” the number of times the classifier did not predict
the exploit was present when it actually was present. In the
entire experiment, FN occurred only once out of the 227
SPECTRE exploits experimented.

While the confusion matrix is a fundamental measure of
the performance of a binary prediction or classification
implementation in an experimental environment, we also
report the recall, precision, and F1 score for the real time
experiment in Table II.

Because our experiments were conducted under the

framework of a supervised machine learning model, the choice
of the training data is a crucial aspect of the method. It is
important to craft a learning phase that is capable of
characterizing SPECTRE payload behavior even when the
actual exploit may be in the form of a zero-day exploit.

TABLE I. TABLE I. CONFUSION MATRIX FOR SPECTRE
EXPERIMENT

 P (predicted) N (predicted)
P (actual) TP FN
N (actual) FP TN

Arm P (predicted) N (predicted)
P (actual) 94.47% (3878) 0.024% (1)
N (actual) 0 5.51% (226)

X86 P (predicted) N (predicted)
P (actual) 86.16% (31784) 0.01% (6)
N (actual) 0.01% (6) 13.80% (5093)

TABLE II. TABLE II. RECALL, PRECISION, AND F1 FOR 4105
TRIALS

METRIC VALUE
Recall 99.97%
Precision 100%
F1 99.98%

X. CONCLUSIONS
A method for the detection of SPECTRE is devised and

experimentally verified. The technique is based upon
monitoring on-board, hardware event counters rather than
characteristics of the targeted data. The technique requires a
minimal amount of modification to hosting computer systems
since it uses pre-existing event counters and supporting
circuitry and associated system software assets with no
additional hardware required. The disclosed SPECTRE
detection technique has been experimentally shown to be
effective for Linux based operating systems in a real time
embedded system based on our prototype implementation and
associated experimental results.

Our experimental results use a polling or sampling method
where the operational phase of the detection method would
periodically query the event counters to obtain recent values.
This approach may suffer from potential aliasing problems if
the SPECTRE exploit were to be implemented in a manner
such that it occurred between adjacent event counter polling
observation times. In the future, we intend to investigate the
use of an interrupt-driven technique whereby event counter
readings are sampled on demand. Additionally, the interrupt-
driven approach should also reduce the computational
overhead.

REFERENCES
[1] Thomas M. Conte, Erik P. DeBenedictis, Avi Mendelson, and Dejan

Milojičić, “Computers to Avoid SPECTRE and Meltdown,” IEEE
Computer , vol. 51, iss. 4, April 2018.

[2] Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A.,
Sethumadhavan, S., and Stolfo, S., “On the Feasibility of Online
Malware Detection with Performance Counters,” in proc. 40th Annual
Int. Symposium on Comp. Arch, pp. 559-570, June 2013.

[3] Tang, A., Sethumadhavan, S., and Stolfo, S., “Unsupervised Anomaly-
based Malware Detection using Hardware Features,” in proc. Int.
Symposium on Research in Attacks, Intrusions, and Defenses, pp. 109-
129. Sept. 2014.

[4] Foreman, J.C., “A Survey of Cyber Security Countermeasures Using
Hardware Performance Counters,” arXiv:1807.10868v1 [cs.CR], July
28, 2018.

[5] Das, S., Werner, J., Antonakakis, M., Polychronakis, M., and Monrose,
F., “SoK: The Challenges, Pitfalls, and Perils of Using Hardware
Performance Counters for Security, in proc. IEEE Symp. on Security and
Privacy, 2019.

[6] Yuan, L., Xing, W., Chen, H., and Zang, B., “Security Breaches as PMU
Deviation: Detecting and Identifying Security Attacks using
Performance Counters” in proc. ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys), pp. 6.1 – 6.5, July 2011.

[7] Ozsoy, M., Donovick, C., Gorelick, I., Abu-Ghazaleh, N., and
Ponomov, D., “Malware-Aware Processors: A Framework for Efficient
Online Malware Detection,” in proc. IEEE Int. Symp. on High
Performance Computer Architecture (HPCA), pp. 651 - 661, 2015.

[8] Kazdagli, M., Reddi, V.J., and Tiwari, M., “Quantifying and Improving
the Efficiency of Hardware-based Mobile Malware Detectors,” in proc.
IEEE/ACM Int. Symp. on Microarchitecture (MICRO), pp. 1 - 13, 2016.

[9] Wang, X., Chai, S., Isnardi, M., Lim, S., and Karri, R., “Hardware
Performance Counter-Based Malware Identification and Detection with
Adaptive Compressive Sensing,” ACM Trans. on Architecture and Code
Optimization, vol. 13, no. 1, art. 3, March 2016.

[10] Torres, G. and Liu, C., “Can Data-Only Exploits be Detected at Runtime
Using Hardware Events?: A Case Study of the Heartbleed
Vulnerability,” in proc. Hardware and Architectural Support for
Security and Privacy (HASP), Article 2, 2016.

[11] Alam, M., Bhattacharya, S., Mukhopadhyay, D., and Bhattacharya, S.,
“Performance Counters to Rescue: A Machine Learning based safeguard
against Micro-architectural Side-Channel Attacks,” in proc. Cryptology
ePrint Archive, Report 2017/564, 2017.

[12] Pierce, C., “Detecting Spectre and Meltdown using Hardware
Performance Counters,” online EndGame BLOG, January 2018.

[13] Herath, N. and Fogh, A., “These are Not Your Grand Daddy’s CPU
Performance Counters,” in proc. BlackHat Conf., 2015.

[14] Pierce, C., Spisak, M., and Fitch, K., “Capturing 0day Exploits with
PERFectly Placed Hardware Traps,” in proc. BlackHat Conf., 7 pages,
2016.

[15] Depoix, J. and Altmeyer, P., “Detecting Spectre Attacks by Identifying
Cache Side-Channel Attacks using Machine Learning,” in proc. 4th
Wiesbaden Workshop on Advanced Microkernel Operating Systems
(WAMOS), pp. 75 - 86, August 2018.

[16] Prakhar Kaushik and Rana Majumdar, “Timing attack analysis on AES
on modern processors,” in proc. 2017 6th International Conference on
Reliability, Infocom Technologies and Optimization (ICRITO), Sept. 20
– 22, 2017.

[17] Conte, T. M., DeBenedictis, E. P., Mendelson, A., and Milojičić, D.,
“Computers to Avoid SPECTRE and Meltdown,” IEEE Computer , vol.
51, iss. 4, April 2018.

[18] ARM Ltd, Technical Reference Manual ARM® Cortex®-A72 MPCore
Processor, Revision: r0p3,chapter 11.

[19] iMX 8 Applications Processors Family Fact Sheet, NXP
Semiconductors, September 2016.

[20] Hao, Z., Liu, B.,Yang, X.-W., A Comparison of Multiclass Support
Vector Machine Algorithms, in proc. Int. Conf. on Machine Learning
and Cybernetics, 2006, Pages 4221-4226.

[21] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and
Vanderplas, J., “Scikit-learn: Machine learning in Python,” Journal of
machine learning research, Oct. 12, pp. 2825 - 2830, 2011.

[22] Kajale, R., Das, S., and Medhekar, P., “Supervised machine learning in
intelligent character recognition of handwritten and printed nameplate,”
in proc. 2017 Int. Conf. on Advances in Computing, Communication and
Control (ICAC3), December 2017.

[23] Saha, S.S., Siraj, M.S., and Habib, W.B., “FoodAlytics: A formal
detection system incorporating a supervised learning approach,” in proc.
2017 IEEE Region 10 Humanitarian Technology Conference (R10-
HTC), December 2017.

[24] Ma, S. and Ji, C. “Performance and efficiency: recent advances in
supervised learning,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1519-
1535, 1999.

[25] Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5-3

