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     Abstract—A method for the detection of the malicious events 
such as the SPECTRE exploit is proposed and evaluated using 
machine learning and processor core events. In this work, we use 
machine learning to implement a system based on hardware event 
counters to detect malicious exploits such as SPECTRE running in 
a process on a Linux based system. Our approach is designed to use 
existing on-chip hardware to detect a SPECTRE-based exploitation 
in real time.  Prototype architectures in both x86 and ARM-based 
SoC’s representing an embedded system with a corresponding real-
time Edge-based classifier is designed and implemented to validate 
the approach. This exploit detection architecture uses software 
agents and requires no additional hardware. In particular, a 
software agent periodically accesses the event counter register file 
during runtime. At each observation time, a feature vector is 
formulated consisting of a particular subset of event counter data. 
The event counter data used in the detection technique includes 
cache and branch prediction counts. Various different machine 
learning classifiers are implemented with a goal of predicting either 
the presence of the malicious exploit or something other than the 
malicious exploit.  Thus, the classifier outputs binary states of 
“malicious exploit present” versus “normal operation.” Many 
classifiers resulted in true positive rates in excess of 98% with 
corresponding false positive rates less than 1%. In many cases, a 
0% false positive rate is achieved. These predictive approaches are 
compared for training complexity and performance. 

 
    Keywords—Edge Processing, malicious event, SPECTRE, 
embedded system, SoC, event counter, performance counter, 
machine learning 

I. INTRODUCTION 
 SPECTRE is a security vulnerability that exploits 
speculative execution and indirect branch prediction circuitry 
that is common and present in most modern CPU cores.  The 
exploit allows access to unauthorized information by 
implementing side channel analysis of information in the data 
cache of the system [1].  SPECTRE is documented in the 
Common Vulnerabilities and Exposures (CVE) database as 
CVE-2017-5717 and CVE-2017-5753.  The general idea 
behind the attack is that the attacker uses the performance 

enhancement features of the processor, namely the cache and 
branch predictor plus speculative execution circuitry, to read 
higher privileged data. 

In this work, we use machine learning to implement a 
system based on hardware event counters to detect the 
SPECTRE exploit running in a process on Linux system. Our 
approach is designed to use existing on-chip hardware to detect 
a SPECTRE-based exploitation in real time [2][3]. We inform 
the design of our machine learning models and evaluate 
performance by creating a dataset of 16,000 samples from an 
x86 as well as ARM-based system running Linux. We 
investigate a number of machine learning algorithms, and find 
that a support vector machine classifier achieves perfect 
performance on our collected dataset (100% detection of the 
SPECTRE exploit without any false positives).  

We are motivated to consider the SPECTRE exploit 
detection problem for embedded systems and thus devise an 
approach that is real-time, requires no new hardware, and 
minimizes overall system performance degradation.  For these 
reasons, our architecture design utilizes a classifier that is 
present in the cloud and that interacts with the embedded 
system via the use of software agents that run on the embedded 
system.  The use of a cloud-based classifier is a design choice 
and is not required for our methodology to be implemented in 
other systems and environments as described in [9]. 

A diagram representing the overall architecture of our 
prototype implementation is shown in Fig. 1. Event counter 
samples are collected from the system that represent the 
runtime profiles of the active processes on the embedded 
system. In our prototype system, these samples are 
communicated to a laptop representing a cloud-resident 
processor and referred to as the “firehouse.” The firehouse 
predicts whether or not the SPECTRE exploit, denoted as the 
“ghost,” is present. If the firehouse predicts that a ghost is 
present, the process is killed in real time by another software 
agent running on the embedded system referred to as the 
“ghostbuster.” 



We analyze the sampled event counter data for its 
significance and effectiveness in the classification task.  
Likewise, we evaluate a variety of different machine learning-
based classifiers using the sampled event counter data.  
Comparisons of the performance of these classifiers is carried 
out.  We include the results of this comparison that indicates 
the support vector machine (SVM) classifier is the most 
suitable choice for implementation in the prototype.  The 
firehouse in our prototype implements the SVM classifier 
although we also provide results of our comparison of different 
classifiers. 

We evaluate the performance of this prototype real-time 
system. Out of 267 total actual exploits we observe that the 
prototype system misses only one instance of the SPECTRE 
exploit without any false positives. We conclude that using 
machine learning for detection of the SPECTRE exploit is a 
viable method in terms of performance for real time embedded 
systems. 

 

Fig 1: iMX8QM Embedded SoC used as the Exploitation Victim 
II. RELATED RESEARCH 

The use of hardware performance counters for the detection 
of malware has been investigated by other researchers.  
Surveys of the use of performance counters such as the event 
counters we use are provided in [4][5][29].  One of the first 
investigations of the use of performance counters resulted in 
the Eunomia prototype where malware including code-
injection, return-to-libc, and return-oriented programming 
attacks were considered although machine learning classifiers 
were not used [6].  Later work did incorporate performance 
counters and machine learning classifiers to detect Android 
ARM malware and Intel rootkits [7].  Research that utilizes 
performance counters in combination with the inclusion of 
specialized hardware support for malware detection includes 
that of [2][3][8]. 

The use of performance counters for malware detection in 
terms of the required computational overhead is addressed in 
[9] where a “sample-locally-analyze-remotely” and 
“compressive sensing” approach was proposed.  This allowed 
counter performance data to be collected on the target machine, 
compressed, and processed remotely resulting in decreased 
computational overhead for malware detection using counter 
data.  We use similar approaches to reduce computational 
overhead in our approach. 

A method for the detection of the Heartbleed vulnerability 
used support vector machines (SVM) to detect the Heartbleed 
vulnerability [10].  In that approach a SVM was used as a 
binary classifier to detect between regular and abnormal 

behavior and reported a 92% accuracy.  This work also 
concluded that data-oriented attacks were more difficult to 
detect than control-data exploits based on their focus on buffer 
over-reads.  An SVM is also used in [11] and a methodology is 
proposed for a generalized side-channel attack detection 
system by correlating its execution trace with a secret 
encryption key.  As described below, we also use SVM in our 
prototype after considering a variety of candidate classifiers. 

Some recent publications have used performance counters 
to detect the SPECTRE exploit [12][13][14][15] in conjunction 
with performance management unit (PMU) generated 
interrupts, however, they did not employ machine learning for 
classification as we do. 

III. SPECTRE EXPLOITATION IN ARM BASED 
SYSTEMS 

In this section, we provide details regarding how the 
SPECTRE exploit is implemented within the environment of 
an ARM-based system. We use these concepts to motivate the 
selection of processor core events that are useful in revealing 
the presence of the SPECTRE exploit when a machine 
learning algorithm is implemented as the exploit detection 
classifier.  

On ARM-based platforms, the exploit success rate is 
dependent on the victim function implementation.  Since the 
caches are relatively small (16KB for Arm/iMX and 32KB for 
x86 i6950), the evict rate is important and it has been proven 
to be preferable to avoid the load instruction in the speculative 
secret leak path. We designed an exploit to take advantage of 
the architectures of both the x86 and the iMX8 SoC. A key 
goal is to avoid memory accesses in the speculated path. 

In order to leak a user-space secret to both the attacker and 
the victim, there must be processes in user space.  The 
approach is to leak a kernel secret through a kernel victim. 
The attacker runs in unprivileged mode, interacting with the 
kernel through legal mechanisms such as syscalls.  The victim 
runs in kernel space as illustrated in Fig. 2.  We developed a 
dedicated and vulnerable kernel module named 
“SPECTRE_victim” for our proof-of-concept implementation.  
The “victim” function implementation follows the original 
SPECTRE publication [20], reproduced here in pseudocode 
form as: 

 
In this example, as long as the variable x is smaller than 

array1_size, nothing out of the ordinary happens. The code 
checks to make sure that x does not go beyond the end of 
array1, which is generally good defensive programming. 

However, this type of check does not take into 
consideration the behavior of branch prediction and 

void victim_function(size_t x) { 
    if (x < *array1_size)  
 { 
      temp & =  
     array2[array1[x] * ARRAY2_CHAR_SIZE]; 
 } 
} 

 

The FireHouse 
1. Train the model 
2. Wait for prediction queries 

The GhostBuster 
1. Identify most cpu demanding processes 
2. Collect samples of each individual process 
3. Send samples to ~Firehouse" for seeking the ghost 
4. Kill the process if identified as a ghost 



speculative execution. Many embedded processors monitor 
and record how often a branch is taken and use this 
information to predict future behavior.  In this example, if the 
prediction is that x is smaller than array1_size, then the 
embedded processor will speculatively execute the instruction 
before the condition has been evaluated.  

If array1_size is not in the cache, the time to evaluate the 
condition will be relatively high compared to the time it takes 
to speculatively execute the next instruction. It is also possible 
to “train” the branch predictor with many valid examples of 
the test and array access values. 

 
When the condition that “is x is actually greater than 

array1_size” is evaluated, the processor will determine that it 
made a mistake and attempt to throw away the pre-computed 
computation.  At this point, the content of array1[x] is located 
in memory beyond the end of the array and must be used to 
look up an element of array2 which is now located in the 
cache. The contents of array1[x] are not in the cache.  
However by finding which element of array2 is in the cache 
its easy to deduce array1[x]. To perform this deduction, all 
that is needed is to access each element of array2 and record 
the corresponding access times. In this manner, observing a 
faster access allows one to deduce that it is obviously the one 
that is present in the cache. 

IV. SELECTING RELEVANT CPU EVENTS FOR 
DETECTION 

We hypothesize that it is possible to detect the SPECTRE 
exploit by monitoring the CPU events on the ARM and x86  
processors that represent the runtime profiles of processes that 
may or may not be instrumented to contain the SPECTRE 
exploit. In this section, we explain the types of events 
available for monitoring on x86 and ARM based systems and 
provide an explanation to justify which events are more 
applicable for use in detecting the SPECTRE exploit. 

The ARM A72 processor contains a subsystem referred to 
as the Performance Monitor Unit (PMU).  The purpose of the 
PMU is to gather various statistics characterizing the runtime 
profile or operation of the processor and memory system.  
These PMU events provide information about the behavior of 
the processor during runtime that can be used for purposes 
such as debugging and profiling software [18]. The event 
counter register values are accessible through system calls 
since it is anticipated that some system and application 

software may use these data for other purposes such as 
dynamic performance tuning.  The PMU in the ARM A72 
comprises six counters. Each of these six counters can count 
any of 84 different specified events within the processor.  

For our application, we narrow this exhaustive list down to 
events that are associated broadly with timing, the L1 data 
cache, and speculative load/store executions. Six of the events 
were selected to train our classifier.  The events were chosen 
based on their ability to yield appropriate side channel 
information that is indicative of the presence of the SPECTRE 
exploit, or the presence of something other than the SPECTRE 
exploit. For instance, since the SPECTRE attack attempts to 
"massively" clean the cache many times in order to fool the 
branch predictor and thus force the malicious code to be 
executed in a speculative path, we select various event 
counters that monitor branch prediction and cache access. The 
six events we selected are: 

1. Event 0x11: CPU_cycles. We collect this event data in order to 
normalize other events by the number of active CPU cycles.  

2. Event 0x12: Predictive branch speculatively executed. We 
hypothesize this event could yield information regarding when 
branch predictions are occurring and thus, when the system is 
vulnerable. 

3. Event 0x10: Mis-predicted or not predicted branch speculatively 
executed. Like the previous event, we hypothesize this event could 
indicate when the system is vulnerable.  

4. Event 0x42: L1 data cache refill read. We hypothesize that 
monitoring this event may reveal when the data cache is being 
traversed by the SPECTRE exploit.  

5. Event 0x48: L1 data cache invalidate. Similar to the previous 
event, this event may indicate cache checking by the SPECTRE 
exploit.  

6. Event 0x72: Operation speculatively executed: load/store. This 
event may indicate vulnerability of the system because of 
speculatively executed operations involved in branch prediction.  

We collect these six hardware event counter data over time 
as described in the next section and analyze each of them with 
respect to their ability to discern the presence of the 
SPECTRE exploit, or the presence of something other than the 
SPECTRE exploit.  

For the x86 architecture, we used a similar approach.  The 
key x86 event counters used are; 

1. Event 0x41: Not taken speculative and retired mis predicted macro 
conditional branches 

2. Event 0x81: Taken speculative and retired macro-conditional 
branches 

3. Event 0x82: Taken speculative and retired macro-conditional 
branch instructions excluding calls and indirects 

4. Event 0x84: Taken speculative and retired indirect branches 
excluding calls and returns 

5. Event 0x88: Taken speculative and retired indirect branches with 
return mnemonic 

6. Event 0x90: Taken speculative and retired direct near calls 
 

V. DATA COLLECTION 
In order to inform the design of our detection algorithm, 

we collect data from the identified event counters during the 
execution of various applications. We perform data collection 
using a dual-core embedded SoC architecture.  

 

 
Fig 2: Diagram of the SPECTRE attack 

• Bounds check bypass 

• CVE-2017-5753 



A. Embedded SoC Architectures 
The SoC used for this experiment is the iMX8QM from 

NXP Semiconductors as shown in Fig. 3.  This SoC is a dual 
A72 core-based SoC with additional A53 cores, graphics, and 
video acceleration processors [19].  This device is used in 
many automotive infotainment applications.  This device has 
two A72 cores and four A53 cores.  For this experiment we 
used the two A72 cores.  The two A72 cores both use a 
1MByte shared instruction cache. 

The event measurements are taken continuously with 
measurements lasting about 2.5 seconds per measurement.  
This is long enough to eliminate any pipeline effects when 
collecting the data. Each of these event counter measurements 
are normalized per active CPU cycle by computing the ratio of 
the number of events per number of active cycles.  

We performed a similar experiment on the Intel i6950x 
processor in a Dell laptop. 

B. Selected Applications for Testing 
To build and evaluate our model, nine different application 
types were run in the user space in a Linux environment on 
two of the four A72 cores present within the iMX8QM in 
order to simplify the proof-of-concept experiment.  Eight of 
these applications were chosen to be as representative of a 
broad range of common tasks as possible.  The ninth 
application type was a process that implemented a SPECTRE 
attack.  These applications are the system idle task, I/O 
operations on the network file system using iozone which is 
a filesystem benchmark tool that generates and measures 
different types of file operations, I/O operation on a sdcard 
using iozone, graphics operations using glmark2, an 
OpenGL benchmark maintained by the Linaro Graphics 
Working group, a TCP/IP communication using iperf, a 
tool for measuring bandwidth on IP networks, I/O operation 
on nfs using fio, a tool that spawns a number of threads 
that performs user specified I/O actions, Openssl crypto 

operations that secure communications using the SSL and TLS 
protocols, a Linux benchmark application using lmbench, 
and the standard proof of concept SPECTRE attack. 

The same application use cases were also run in the same 
use scenarios on the x86 i6950 core.  Data from the event 
counters is collected for the nine application types mentioned 
above. The measurements are all started with a random delay 
so that each measurement sampling is different. The Linux 
“perf” tool is used to collect the event counter samples 
during runtime. Operational deployment of our method would 
likely use an interrupt-driven background process rather than a 
polling approach.  

 Each application is chosen at random for running on the 
test system and the selected application is logged along with its 
runtime on the system. The log enables each process to be 
labeled so that the supervised learning model can be trained. 
The system is allowed to run for approximately 12 hours in 
duration, resulting in 16,000 labeled measurements. A script is 
used to post process the 16,000 labeled samples of raw data to 
build the dataset for later processing.  

C. Test Environment 

An embedded processor is infected with the SPECTRE 
exploitation code along with instantiating the other application 
types.  Internal SoC event data is collected and used to train the 
model on the laptop acting as the firehouse in a cloud-based 
system.  When running the system, prediction queries from the 
cores (iMX8 ARM based SoC and x86 i6960) are collected.  
Data are collected showing the most demanding CPU 
processes running on the cores.  Samples are collected from 
each of the individual processes running on the two cores of 
the SoC.   

VI. ANALYSIS OF COLLECTED DATA 
A. Preprocessing and Cross Validation 

In the preliminary portion of the investigation reported 
here, prediction models were created using a variety of 
machine learning techniques. Models are trained using a large 
amount of data gathered and processed from an experimental 
environment. It was hypothesized that the processor event data, 
such as that provided in Table 1, could be used to form a 
feature vector that differentiates between the binary machine 
states of “normal operation” versus “SPECTRE” exploitation.”   

We preprocess the event counter data by applying 
normalization to the dataset by making each feature has zero 
mean and unit standard deviation. This standardization is 
common for machine learning algorithms that employ linear 
models and can help to speed convergence as well as prevent 
one feature from dominating the decision boundary [20]. 

The data collected for this experiment was used to create a 
function that maps an input to an output based on example 
input-output pairings.  This is a classic case of a supervised 
learning approach, since it is possible to annotate the collected 
dataset with responses. The supervised machine learning 
approach is attempting to determine a classification of 
“SPECTRE attack present” or “something other than 
SPECTRE attack present,” so a “classification” approach is 
used in this experiment.  Each classifier assigns new examples 
(core events) to one category or the other (SPECTRE or no 
SPECTRE). 

 
Fig. 3.  iMX8QM Embedded SoC 
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In order to determine which type of classification model to 
performs the best, we analyzed several machine learning 
models using a process called “forward chaining” cross 
validation. Forward chaining cross validation is a statistical 
technique for estimating the robustness of machine learning 
model performance with training and testing that are 
appropriately selected for time series data. As shown in Fig. 4, 
this method selects data for training a machine learning model 
from a contiguous time block of samples in the dataset. A 
smaller testing set is chosen from a contiguous block of data 
occurring after the training data. This process is repeated 
multiple times using a longer block of contiguous training data 
and a test set that occurs even further in time. This cross 
validation ensures that the analysis does not violate any time 
boundaries. For example, it would not be proper to evaluate 
the algorithm on test data when training data was sampled 
both before and after the testing data blocks. Likewise, it 
would not be proper to select testing data and training data 
that occur temporally close in time.   

B. Selected Evaluation Criteria 
Once the event counter data was collected, forward 

chaining cross validation (with four splits of the dataset as 
shown in Fig. 4) was used to assess performance of several 
machine learning algorithms for the SPECTRE event counter 
data. We chose to evaluate each model using “recall,” 
“precision,” and “F1” (which is a metric that combines the 
information given by recall and precision). The formulas for 
these metrics are given in (1) through (3). 

  (1) 

  (2) 

  (3) 

Recall or Sensitivity, measures the proportion of times the 
classifier predicted the presence of the SPECTRE exploit with 
respect to the number of times it was truly present.  Thus, a 
perfect Recall would be 100% and would occur when all the 
exploits were correctly predicted and when no predictions 
occurred indicating the exploit was present when in fact it was 
not.  In a more general sense, Recall provides a quantitative 
answer to the question “How many relevant items are 
selected?” 

Precision is a measure of the proportion of times that the 
classifier correctly predicted the presence of the SPECTRE 
exploit with respect to the total number of times it predicted 
the exploit was present whether they were correct or not.  
Thus, a perfect accuracy of 100% would result if the classifier 
always predicted when the exploit was truly present and never 
predicted that the exploit was present when in fact, it was not 
present.  In general, Precision answers the question: “How 
many selected items are relevant?” 

F1 is an overall measurement of a classifier's effectiveness 
and considers both Recall and Precision.  At a F1 score of 1, 
the system is performing ideally with respect to Recall and 
Precision. 

C. Performance Across Machine Learning Algorithms 
We chose a variety of different machine learning algorithms 
that could be implemented in the prototype system.  Fig. 5 
shows the cross-validation results of several machine learning 
classifiers including Decision Trees (DT) using gini index 
and no pruning applied, Gaussian Naïve Bayes (GaussNB), 
Random Forests (RF) with 100 trees, K-nearest neighbors 
(KNN) with K=3 and Euclidean distance, Support Vector 
Machines (SVM) with radial basis function kernel, C=1, and 
gamma=0.001 and Multilayer Perceptron, with one hidden 
layer of ten neurons (MLP-10) and sigmoid activation 
functions. 

All classifiers were implemented using the open-source 
python machine learning toolkit, scikit-learn [24]. The 
Support Vector Classifier (SVC) was trained using LIBSVM, 
an open-source library for SVMs. Unless stated otherwise, all 
other hyper-parameters of the machine learning algorithms 
were chosen to be default parameters.  

The bar chart in Fig. 5 shows the mean recall, precision 
and F1-score averaged across all testing folds. Error bars are 
also shown that indicate the “95% prediction interval” of all 
the folds in the dataset. The prediction interval is defined as 
μ±1.96σ for each metric, calculated from the four train/test 
separations. Notice that all machine learning methods perform 
well, as the vertical axis of Fig. 5 is zoomed, ranging from 
0.98 up to a perfect score of 1.00.  Two methods perform 
perfectly on the training and test sets: KNN and SVM.  

We prefer the SVM as compared to KNN because of the 
time it takes to predict when the model is deployed. KNN 
involves an exhaustive search over the training data for every 
prediction, which can be time consuming for a deployed 
machine learning algorithm with real time constraints. In 
accordance with these results, SVM is selected as the machine 
learning model to use for further analysis. A SVM trained 
with a radial basis function is optimized by maximizing a 
decision boundary margin in a large dimensional space [22] 
[23] [24]. Because we use a radial basis function kernel, the 
theoretical dimensional space is infinite. This means the SVM 

 
Recall = TP

TP + FN( )

 
Precision = TP

TP + FP( )

F1=
2 Precision× Recall( )
Precision+Recall( )

 
Fig 4:  Forward chaining cross validation example showing training and 
test data separation for four splits. 

Forward Chaining Cross Validation 

Split One 

Split Two 

Split Three 

Split Four 

- Training Data 

- Test Data 

Unused Data 



can achieve arbitrary decision boundaries based on the feature 
data. 

D. Amount of Training Data Analysis 
While an SVM is able to provide superior performance 

using cross validation, we wanted to understand the 
performance of the SVM as a function of the amount of 
training data provided. We analyzed the event counter data  

using SVM with increasing amounts of training data from 
our 16,000 instance dataset.  

We used contiguous train and test separation options and 
performed an analysis on the amount of training examples 
required to achieve perfect true positive rate without any false 
positives (Fig. 6). Fig. 6 shows a split vertical axis with the 

percentage of positive SPECTRE exploits found on the left 
axis and the total number of false positives on the right axis. 
The horizontal axis shows the amount of data points in the 
training set, ranging from 2,000 up to 10,000 instances. As 
shown, using about 6000 data points for training achieves 
excellent true positive rate, without any false positives.  

 
Fig. 7 shows the results of the analysis on test data for the 

SVM when the model is trained with 6,000 data points. The 
output of the classifier is shown over approximately 7.5 hours, 
along with ground truth for when the SPECTRE exploit was 
active. As shown in Fig. 7, the predictions correlate perfectly 
with ground truth. Each of the seven times that the SPECTRE 
exploit is active, the SVM almost immediately detects it. 
 

E. Relevant Feature Analysis 
We also performed an analysis of the feature importance in 

the training data. For this analysis, we chose to analyze the 
feature importance as identified using a random forest (RF) 
classifier. We chose the RF classifier for feature importance 
analysis because it has been shown to be highly consistent and 
has less bias than other methods [25]. To investigate 
importance, we use the feature permutation method as 
described in [25]. Intuitively, one can think of this method as 
measuring importance by randomly permuting each feature 
into the random forest and observing the degradation in 
performance from this permutation. Highly relevant features 

 
Fig. 9: Software Architecture for SPECTRE proof of concept 

 
 

Fig. 8: Feature Importance from the Random Forest Classifier 

 
Fig. 5;  Time series validated performance of machine learning models 
based on K-fold cross validation 

 
Fig. 6: False positives and true positives versus test sample size for SVM 
classifier.  

 
Fig. 7  Ground truth versus predicted test data comparison 
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result in large performance degradations.  
Fig. 8 shows the relative importance of features for 

this method (higher indicated more importance). In this 
case, the features are the normalized event counter data.  
As observed in Fig. 8, the “data cache invalidate” (r48) 
event counter is a dominant feature in this experiment, as 
well as “data cache refill read “(r12) and “Predictive branch 
speculatively executed “ (r42). We note that none of the 
features have an importance near zero indicating that all 
features contribute to the performance of the classifier. 
Therefore all features are used in further analysis. 

 
IIX. REAL-TIME SYSTEM ARCHITECTURE 

Given the performance of the SVM on our collected 
dataset, we implement a prototype real time SPECTRE exploit 
detection system using this model.  The software architecture 
for the real-time system is shown in Fig. 9.  The perf process 
is used to collect the hardware event counter data. These 
samples are sent to the laptop (Firehouse) to identify the 
SPECTRE exploit (ghost).  If identified, the process is killed 
in real time. We therefore refer to the process as Ghostbuster. 
We developed the Firehouse to run on a cloud machine and 
the GhostBuster process was responsible for detecting the 
SPECTRE attacks on the embedded iMX8 device.  
GhostBuster collects samples from the applications running on 
iMX and sends them to the Firehouse server requesting a 
classification.  If Firehouse predicts that there is a SPECTRE 
attack running within a process, it will kill or suspend the 
process. 

ProtonPack is the server class responsible for machine 
learning training and classification. This class can be easily 
inherited for further experimentation.  In order to demonstrate 
the SPECTRE attack, a patch was added to route the PMU 
counters to the ARM A72 cores instead of the A53 cores.  A 
SPECTRE victim kernel module, which is the SPECTRE 
gadget module designed to have a vulnerable driver, is 
implemented in the kernel and is used to demonstrate the 
SPECTRE attack against the kernel space.  Additional kernel 
modifications were made to grant access to the PMU counters 
from user space since the SPECTRE proof of concept uses the 
PMU counters as a timing measurement method. 

IX. EXPERIMENTAL RESULTS 
Testing was conducted on two machines, a laptop running 

Linux 4.14 and an iMX8QM running Linux 4.14 built as an 
embedded Yocto distribution.  Specifically, the Linux laptop 
machine is a Dell Latitude with a 1.3GHz Intel® i5 processor 
and 4GB of main memory and the iMX8 SoC is a dual ARM 
A72 processor running at 1.6 GHz with 1Mbyte of shared I2 
memory. 

ProtonPack is used to train the model and determine 
model performance. A test suite is created that consists of a 
total of 4,105 trials running for about 2.5 hours. During the 2.5 
hour runtime, the SPECTRE exploit was randomly made 
active 227 times. Other applications were also run during the 
2.5 hour runtime. In many circumstances, another application 
was running when the SPECTRE exploit was activated in an 
attempt to provide a realistic environment.  

A confusion matrix is computed as one of the means 
to determine the performance of our classification model.  The 
confusion matrix, or error matrix, allows a determination of 
the performance of a supervised learning algorithm such as 
ours that predicts a binary classification and is provided in 
Table I. Values in Table I are in the format “percentage 
(absolute number).”   The confusion matrix contains four key 
values; the number of times a predicted presence of the 
SPECTRE attack was correct or not, and the number of times 
a predicted non-presence of the SPECTRE attack was present 
or not.  In Table I, the topmost sub-table is a key for 
interpreting the measured values in the bottommost sub-table.  
Data is shown for both Arm and x86 ISA’s. 

 
In the topmost part of Table II, the legend for the 

bottommost part, we use TP to denote “true positive,” the 
number of observations where the SPECTRE attack was 
present and the SVM prediction was correct.  TN denotes “true 
negative” and is the number of times the SVM classified the 
exploit as being present when it actually was not present.  FP 
denotes “false positive,” and is the number of times the SVM 
predicted that the SPECTRE exploit was present when it 
actually was not present.  Finally, FN denotes “false 
negative,” the number of times the classifier did not predict 
the exploit was present when it actually was present. In the 
entire experiment, FN occurred only once out of the 227 
SPECTRE exploits experimented.  

While the confusion matrix is a fundamental measure of 
the performance of a binary prediction or classification 
implementation in an experimental environment, we also 
report the recall, precision, and F1 score for the real time 
experiment in Table II.   

 
Because our experiments were conducted under the 

framework of a supervised machine learning model, the choice 
of the training data is a crucial aspect of the method.  It is 
important to craft a learning phase that is capable of 
characterizing SPECTRE payload behavior even when the 
actual exploit may be in the form of a zero-day exploit.   

TABLE I.  TABLE I. CONFUSION MATRIX FOR SPECTRE 
EXPERIMENT 

 P (predicted) N (predicted) 
P (actual) TP FN 
N (actual) FP TN 

 
Arm  P (predicted) N (predicted) 
P (actual) 94.47% (3878) 0.024% (1) 
N (actual) 0 5.51% (226) 

 
X86 P (predicted) N (predicted) 
P (actual) 86.16% (31784) 0.01% (6) 
N (actual) 0.01% (6) 13.80% (5093) 

 

TABLE II.  TABLE II. RECALL, PRECISION, AND F1 FOR 4105 
TRIALS 

METRIC VALUE 
Recall 99.97% 
Precision 100% 
F1 99.98% 

 



X. CONCLUSIONS 
A method for the detection of SPECTRE is devised and 

experimentally verified. The technique is based upon 
monitoring on-board, hardware event counters rather than 
characteristics of the targeted data. The technique requires a 
minimal amount of modification to hosting computer systems 
since it uses pre-existing event counters and supporting 
circuitry and associated system software assets with no 
additional hardware required.  The disclosed SPECTRE 
detection technique has been experimentally shown to be 
effective for Linux based operating systems in a real time 
embedded system based on our prototype implementation and 
associated experimental results. 

Our experimental results use a polling or sampling method 
where the operational phase of the detection method would 
periodically query the event counters to obtain recent values.  
This approach may suffer from potential aliasing problems if 
the SPECTRE exploit were to be implemented in a manner 
such that it occurred between adjacent event counter polling 
observation times.  In the future, we intend to investigate the 
use of an interrupt-driven technique whereby event counter 
readings are sampled on demand. Additionally, the interrupt-
driven approach should also reduce the computational 
overhead. 
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