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Abstract—Physical sensors present in modern Systems-on-a-
Chip (SoC) provide a rich source of side channel information
that can be exploited to detect and characterize processes running
concurrently on the device. Sensor data is periodically collected
and machine learning classifiers are employed that predict the
types of processes running under a variety of processor load
conditions. Experimental results evaluate a number of different
classifier models and identify the best types of classifiers for four
different general process types; i) file I/O, ii) CPU/ALU intensive,
iii) network I/O, and iv) virtualization. The process characteri-
zation classifiers are evaluated under a range of processor load
conditions varying from light loads to heavy loads to ascertain
their effectiveness in the presence of other concurrent and benign
processes. Our results indicate that some process classes are
less sensitive to background load conditions versus others and
our suggested classifier architectures are devised to account
for this variability. The detection of file I/O and CPU/ALU-
intensive processes are shown to exhibit very high efficiency
and robustness with respect to background load conditions.
Virtualization process detection is shown to exhibit high accuracy
under light loads with moderate degradation observed as load
conditions increase. Network I/O detection is shown to have the
lowest accuracy due to the relatively small number of sensors
present in the network interface card (NIC) of the system under
evaluation.

Index Terms—side channel, physical sensors, malware detec-
tion and characterization

I. INTRODUCTION

The ability to detect and characterize processes running
within the working set of a computer system via side channels
enables a variety of applications including malware detection,
process classification, and white- and black-list adherence [1].
The use of side channels for general process detection likewise
allows for such processes to be identified and characterized
in a manner that is difficult to spoof since the physical
characteristics of the process are used rather than signatures
or other means [2].

While this work focuses on a method of using physical
sensor side channels in detecting any arbitrary target process
our previous work in this area was designed for the detection
of a specific process such as ransomware [3]. In this past work
certain physical sensors present in modern System-on-Chips
(SoC) that comprise one or more CPU cores were used to
gather real-time data that is provided as input to a machine
learning classifier to determine if an instance of ransomware

was present. This past approach involved training the classifier
with instances of processes that exhibited ransomware behav-
ior. Specifically, many ransomware processes can be generally
characterized as first identifying victim files for encryption
followed by a phase where the identified files underwent
encryption [4]–[6]. From a general process point of view, one
can view these activities as first comprising a phase of file
I/O activity followed by a phase of CPU-intensive operations
when the encryption algorithms are run.

The objective of this work is to perform general process
detection at a finer-grained level such that sensor data can indi-
cate and discriminate between processes such as those that are
heavily biased toward file I/O activity or CPU/ALU-intensive
activity. If a suitable set of general processes could be detected,
then the sequence described by the ransomware process would
involve first detecting file I/O intensive activity followed by
the detection of CPU/ALU-intensive activity. Thus, given the
sequential behavior of any type of application, whether it is an
instance of malware or not, the ability to detect the sequence
and type of processes running on a CPU-based system could
represent a set of basic building blocks that allow for arbitrary
types of applications to be detected via physical side channels
by characterizing an application of interest as a sequence of
activities that are dominated by a particular type of process.
For example, when a process is identified as first consisting
of file I/O activity followed by bursts of heavy CPU/ALU
activity then the overall process can be detected that is first
searching for target files followed by processing them through
heavy computation, such as an encryption phase, as is the case
for many instances of ransomware. Such a capability greatly
generalizes the approach taken for ransomware detection de-
scribed in [3] and furthermore does not require customized
training of process classifiers for each different instance of
applications to be detected. Rather, the system administrator
can specify a particular sequence of processes to characterize
a process of interest, and when such a sequence is detected,
an alert can be issued that indicates a particular process
sequence has been detected, with an associated probability
value. Another benefit of this research is the evaluation of the
effectiveness of using physical sensor side channels (PSSC)
for different types of general processes.

The efficacy of the use of PSSC-based detection and char-



acterization is largely dependent upon the presence, or lack of
presence, of appropriate sensors in the host architecture [7].
For example, if a particular host architecture does not have
sensors present inside or near the network interface circuitry
(NIC), then the detection of a process that comprises signifi-
cant amounts of communication with the external network is
more difficult to achieve with the PSSC-based approach.

Another contribution of this work is the incorporation of
models that account for sensor output due to other processes
concurrently running on a system. From a signal processing
point of view, a particular sensor can be viewed as a data
collector whose output is due to the composite set of processes
that are instantiated at any instance. An analogous concept is
the presence of unintentional in-band jamming signals in the
same band as a signal of interest. It is thus of high interest
to account for and to incorporate means to allow the PSSC-
based approach to be effective in SoCs where a plurality of
processes are concurrently executing. While it is the case that
operating systems generally use temporal sequencing of mul-
tiple processes to provide the illusion of concurrent execution,
the time slices are very small and modern architectures have
significant levels of concurrency due to clever architectural
features.

As an example of the presence of concurrent processes
within an SoC, a file I/O intensive process may be accessing
memory through use of a direct memory access (DMA) core
while the CPU/ALU is concurrently engaged in heavy number-
crunching activities. Furthermore, these two activities may
have originated from different processes altogether. Addition-
ally, the relatively low sample rates of many on-board physical
sensors as related to the operating system context switching
rate effectively causes the physical sensors to be viewed as
supplying a low-pass filtered version of a composite signal
representative of more than one process executing at the same
time. For these reasons, the sensor is effectively providing
composite information regarding the environment within the
system. We have devised our classifier models to account for
the presence of such background loads.

We chose four general classes of processes to consider and
we report on the ability of a PSSC detection and charac-
terization approach for each process category. These are: i)
file I/O, ii) CPU/ALU intensive, iii) network I/O, and iv)
virtualization instantiation. Our results indicate varying levels
of detection ability for these classes of processes. Classes i)
and ii) are shown to have high accuracy over all background
load conditions whereas class iii) can be reasonably detected
under low load conditions and class iv) has very good detection
capabilities for low load conditions but accuracy decreases
as load conditions increase. The worst performing process
detection case was that for network I/O. We attribute this
poorest performing network I/O class to the fact that the NIC
in our system under evaluation did not comprise a suitable set
of physical sensors. NIC’s that contain more sensors or for
cases where the NIC is physically located adjacent to other
sensor-rich subsystems would perform better. This indicates
that alternative side channels for detecting network I/O may

be desirable in our target architecture such as the use of
network traffic patterns [8], [9] or the use of programmed
event monitors [10], [11].

A. Physical Sensor Side Channels

Modern computing devices often include many different
sensors that monitor the device’s physical state in order to
avoid damage or to control resources such as cooling fans and
power sources. These sensor readings are often considered to
be innocuous and can be easily accessed via system OS calls.
Individually, accessing these sensors would not pose much of
a security risk. However, access to all of the sensors within
the system enables behavioral patterns to emerge that can
yield detailed information regarding the nearly-instantaneous
operation of the system.

B. Detection Models

Our detection models utilize multi-modal machine learning
(ML) algorithms that receive a fused set of sensor readings
allowing for the generation of a binary-valued prediction
metric that indicates whether a target process is, or is not,
currently executing within the system [12]. In the context of
this study a “Detection Model” (DM) is an obfuscation of
a machine learning model that, when provided a vector of a
system’s current physical sensor readings, provides a binary
output representing whether the target process is currently
running on a system. We note that our models could easily be
extended to also provide a confidence factor associated with
each binary prediction metric. Once a DM has been trained and
implemented, the resources required to perform the resulting
predictions is minimal as there are no complex behavioral or
computational analyses being necessary. Additionally, as all
of the data that is used for process detection is side-channel
data, there is minimal risk to privacy and user data leakage.

C. Contributions

Our prototype implementation and accompanying experi-
mental results demonstrate the viability of detecting arbitrary
target processes by measuring the physical state of a system
through the use of existing system sensors. Previous work
has shown that process detection often requires complex
behavioral analysis that can be to be very accurate, but often
at the cost of performance and incurring significant delay thus
causing these approaches to not be viable for real-time usage
[13]. In applying our technique to malware detection, our
new detection model presented here is meant to serve as an
initial rapid indication of a target process that could trigger the
activation of safety measures to be taken until such time as
more traditional behavioral analyses can be performed. In this
way the detection method presented in this paper is meant to
act in tandem with existing methods of process detection in an
effort to augment their performance and to serve as a second
line of defense. Because our approach can model threats as a
sequence of basic and common process tasks, it is applicable
to zero-day vulnerabilities as well as known instances of
malware. Other applications could include an ability to report



the state of a system for system administration purposes
using physical sensors that are based upon the computational
environment rather than characteristics or knowledge of the
actual working set. Thus, an alternative and difficult-to-spoof
means for providing information to system administrative tools
for event management comprises another viable application for
this approach.

II. TRAINING AND BUILDING DETECTION MODELS

A. Experimental Environment and Setup

We utilized an Apple Mac Mini MGEM2LL/A with a 1.4
Ghz Intel Core i5 processor, 4 GB of LPDDR3 RAM, and a
500 GB HDD as our evaluation platform. Using a software
application named “Hardware Monitor,” we can access the
current sensor readings for 50 different system sensors through
the command line [14]. The system’s sensors comprised 16
temperature sensors, 6 voltage sensors, 12 current sensors, 15
power sensors, and 1 sensor for the exhaust fan RPMs. Testing
scripts and automated data collection are implemented using
the Continuum Anaconda Python 3 package and its associated
libraries [15], [16]. The Scikit-learn library is used to trans-
form data, create prediction models, and to perform target
process predictions [17], [18]. In order to create additional
CPU loads for training, the Go programming language was
installed in order to run the Go script called ”go-cpu-load”
[19]. This script maintains a desired CPU load by instantiating
a continuous loop that allows for adjusting a delay period after
each loop body execution in order to adjust CPU usage. To
create additional CPU loads for testing and evaluation, we
use the Stress-ng project package that is capable of creating
a number of different system stressors with a high level of
control [20]. We created the resulting CPU load by using over
70 different methods that are included in Stress-ng. All of the
different load tasks differ as compared to the methods used
during DM training with the ”go-cpu-load ” script.

This experiment was carried out with four different target
processes that represent different types of processes that are
likely to be seen by users. The first target process involves
heavy file I/O and utilizes the Iozone filesystem benchmarking
tool in [21]. The second target process involves heavy CPU
resource usage and utilizes the FFmpeg multimedia framework
[22] containing a significant amount of ALU-intensive instruc-
tions. The third target process involves heavy network I/O and
utilizes the Nmap network discovery and security auditing tool
[23]. The final target process involves launching and running
a virtual machine (VM) on the host system and utilizes the
commercial version of the VMware Fusion 10 Pro desktop
hypervisor [24].

B. Experimental Process

To perform the evaluations of our process detection tool,
experiments were specified using a python script that performs
a series of training data collection tasks and DM training
activities followed by a series of performance evaluation data
collection tasks for each process being considered. Prior to
beginning the data collection for a new process, the system

is power-cycled in order to free all resources. After every
individual training and test cycle, a comma-separated data file
is stored on the test system until all testing ends and the data
can be collected. Once the training and test data are collected
the training data is used to create all of the necessary DMs
for the various combinations of machine learning algorithms,
test processes, and DM types. Once all of the models are
created, data is collected for each test process and is used
to generate the detection predictions for each time interval.
The same test data is used for all created DMs for each test
process in order to directly compare their performance with a
controlled data set. Once all of the detection prediction vectors
have been generated, performance metrics are computed in
order to analyze and draw conclusions about the new detection
method.

C. Collecting Training Data

Based on the findings from [3], we use a 2 hour window to
characterize classification performance. In [3], it was reported
that models trained with 2 hours of sensor data were equally
effective as models trained with up to 24 hours of data. Due
to this knowledge, training data for each additional CPU load
level was collected for two hours. Additional system loads
ranged from 0% to 100% with one data set being collected
at each interval of 10%. The additional load is achieved by
creating a process on all hyper-threads which run an empty
loop at a dynamic rate that maintains the desired overall CPU
load. Maintaining the desired additional load level relative to
each hyper-thread ensures that the additional load is balanced
over the system’s total CPU resources.

During each two hour training cycle, three threads are
created. The first thread controls the operation of the process
being tested, the second thread adds a desired additional CPU
load onto the system, and the third thread runs a data logger.
The test process control thread starts by running the test
process for an entire cycle and recording the amount of time
that it requires to complete. Afterward, the test process control
thread waits 2 minutes for the system sensors to re-stabilize
and then it sets a Boolean variable that indicates that the data
logging thread should begin recording data. The test process
control thread then begins a loop which first waits for the
amount of time previously recorded for the test process to
complete, then the test process is run, and finally the test
process control thread waits again for the amount of time
previously recorded for the test process to complete. The test
process control thread then waits 2 minutes for the system
sensors to re-stabilize and if the total time has met or exceeded
the desired total training time the loop halts execution. This
data collection routine results in two hours of data comprising
a 2:1 ratio of the test process not running to the test process
running. This ratio is not a realistic representation of what is
likely to be experienced in a real-world environment; however,
for the purposes of training the detection models this ratio is
more beneficial.



D. Training Machine Learning Models

DMs are trained with a known additional system CPU load
level present while the test process is both running and not
running. Each DM is a ML model trained for one of the test
processes and includes all of the training data collected at
various additional CPU load levels.

III. EVALUATING PROCESS DETECTORS (DM)

A. Collecting Evaluation Data

Evaluation data is collected using the same method as that
for the training data. However, the target process is not initially
timed and there is no loop present for running the target
process until the desired time has elapsed. Instead, the target
process controls thread wait times as a random amount of
time between 10 and 40 minutes, runs a single instance of the
target process, and then waits for the remainder of the desired
evaluation time. This method results in data that is collected
over a very short amount of time whereas the target process
is actively running and it is occurring at a random time.

1) Simple Random Additional Load: Evaluation data is col-
lected with a randomly selected additional CPU load preset on
the system beyond what is present due to regular background
processes. Each target process is run a single time over the
course of one hour at a randomly determined time. Prior to
performing each evaluation run, an additional CPU load level
is randomly selected from a specific range of values and is
applied to the system using the same method implemented in
training. Four values are selected from a range of ten (10)
values before moving to the next range of ten (10) values
starting with one through ten and ending with 91 through
100. This results in a data set comprising 40 evaluations
with equal representation of random additional load levels
at intervals between where training data was collected with
known additional CPU loads. This data set allows for the
possibility of randomly selected additional load levels to be
the same as the known load levels used during training.

2) Advanced Random Additional Load: Test data is col-
lected with a randomly selected additional CPU load present
on the system beyond what is present due to regular back-
ground processes. Each targeted process is run a single time
over the course of one hour at a randomly determined time.
Prior to performing each evaluation run, an additional CPU
load level is randomly selected from a specific range of values
and is applied to the system using a different method in
comparison to those implemented during DM training. The
randomly selected load level is further randomly divided into
unbalanced load levels maintained on each hyper-thread that
cumulatively applies the overall desired additional system
CPU load level. The method of maintaining the load level
on each hyper-thread is randomly selected from 70 different
CPU stress methods that do not include the empty loop method
utilized in training. Four values are selected from a range of
nine (9) values before moving to the next range of nine (9)
values, skipping those used during training, starting with one
through nine and ending with 91 through 99. This results in

a data set of 40 tests with equal representation of random
additional load levels at intervals between where training data
was collected with known additional CPU loads. This data
set does not allow for the possibility of randomly selected
additional load levels that are the same as the known load
levels used during training.

B. Target Process Detection Methodology

1) Process Detection With Unknown Additional Loads:
Section III-A details test data collection with two different
types of loads present on the system which are both unknown
to the detector. The data set collected from each type of
unknown additional load implementation is used for a separate
test of process detector’s performance ability.

Simple random additional load test data is realistic for
testing the process detectors. However, the implementation of
the same method of applying the additional balanced CPU
load as well as allowing for the possibility of selecting random
load levels which are the same as those used during training
incorporate some favorable aspects for process detection. The
test on this data set is used for showing the ability of the
process detectors when the system is likely in an unseen
state from what was used for training, but the system exhibits
similar patterns of behavior. Analysis of detection ability with
this data set allows for identifying process detectors which are
capable of performing in the most basic realistic scenarios.

Advanced random additional load test data is much more
realistic and rigorous for testing the process detectors than the
simple random additional load data sets. The implementation
of multiple unseen methods of applying the additional unbal-
anced CPU load as well as not allowing for the possibility of
selecting random load levels which are the same as those used
during training truly tests the detection predictors in a scenario
where obvious behavioral similarities are not present. The test
on this data set is used for showing the ability of the process
detectors when the system is in an unseen state from what
was used for training with comparable system states achieved
through completely different methods. Analysis of detection
ability with this data set allows for identifying process de-
tectors which are capable of performing in unfavorable and
unseen realistic scenarios.

C. Performance Evaluation Methodology

1) Binary Classification Evaluation: In this evaluation ex-
periment machine learning algorithms are individually used
to make a prediction concerning the binary indication that a
target process is running on a system. The final prediction
vector of a model and the actual system state vector are
compared to obtain the distribution of the four types of binary
classification. The distribution of the four classifications are
used to compute five metrics that offer more insight into pre-
diction performance. These metrics are sensitivity, precision,
specificity, fallout, and accuracy [25].

2) Matthews Correlation Coefficient (MCC): The Matthews
correlation coefficient (MCC) is a measure of the correlation
between true and predicted values [26]. MCC values range



between -1 and +1. A coefficient of +1 represents a perfect
predictor, 0 represents the same as random prediction, and -
1 indicates total disagreement. The MCC is also symmetric
which means the positive and negative binary metrics can be
reversed and the result will be the same MCC. This is useful
in cases with a large imbalance between positive and negative
system states during evaluation such as the evaluation data in
this experiment. The MCC values provided in the experimental
results serve as a reference for how well the DMs perform
purely as binary classifiers without accounting for the context
or purpose of the DMs implementation.

3) Rate of Process Detection (RPD): During predictor
evaluation, an actual target process’s time of presence is in the
form of a time series that defines the time periods during which
the target process is actually running on the system. Target
process runs start when a labeled system state of “normal
operation” transitions to a labeled state of “process running.”
Conversely, a target process run ends when a labeled system
state of “process running” transitions to a labeled state of
“normal operation”. If a positive prediction exists during the
period of time representing a target process run, then the target
process is considered detected. Ideally there should exist at
least one positive prediction during each target process run
that would result in a 1.0 or perfect rate of process detection.

4) Time to Process Detection (TPD): The initial labeled
system state of “process running” for each target process
run in the actual process presence time series represents the
time interval at which the target process run began. The
first instance of a positive prediction in the corresponding
prediction time series at or after this initial “process running”
state and before the next “normal operation” system state
represents the initial target process detection. Ideally the initial
“process running” state itself would be a positive prediction,
but in practice it is more likely that the sensors would need a
small amount of time to reach the values at which positive
prediction occurs. This metric counts the number of time
intervals until the first positive prediction is recorded for
every target process run which was successfully recognized.
Afterward, all values are averaged to determine the time to
process detection.

5) Detector Performance Score (DPS): Our new detection
model is designed to rapidly detect a target process while
maintaining a low fallout. In other words we are most con-
cerned with three aspects of the detector’s performance. The
first aspect is to maintain a low TPD which would mean the
detector is able to quickly identify when the target process
begins running on a system. Based on previous work we note
that in order for our model to be effective, it must have a
TPD of no more than 60 seconds [13]. The second aspect of
performance, most important for our new DM, is that DMs
should maintain a low fallout during operation. This would
mean that the DM is not creating so many false positive
detection alerts that it becomes a detriment to operation. In
a 2020 report by Neustar Security Solutions it was found that
on average 26% of security alerts experienced by organizations
were deemed false positives [27]. Therefore, we infer that, in

order for our model to be effective, it must have a fallout
of no more than 0.26. The final aspect of performance, most
important for our new DM, is that it should miss minimal
test instances of a target process. We determined that if
the detection model misses an instance of the target process
during DM evaluation, it should be heavily penalized during
assessment of its performance. Taking into account the three
most important aspects of performance we devise and use a
new metric called “Detection Performance Score” (DPS) in
order to more appropriately assess our DM’s performance in
addition to the more traditional binary classification metrics
outlined above.

DPS = 1−
TPD
60 + fallout

0.26

2

IV. EXPERIMENTAL RESULTS

The results for each of the four target processes are com-
pared using the two different tests described in III-B. The
results for the simple random additional load evaluation ex-
periment and the advanced random additional load evaluation
experiment are computed for each algorithm.

Fig. 1. Top Detector DPS for Each Process

A. File I/O Process

For this target process we are aiming to create a significant
amount of file I/O on the system in order to determine if the
new method is capable of detecting a specific pattern of file
I/O with a random amount of CPU usage occurring at the
same time. We implemented the filesystem benchmarking tool
IOzone to act as our file I/O process. IOzone generates and
measures a variety of file operations in order to measure a
system’s file I/O performance. The actual process we ran is
given as follows:

$ iozone -a



1) File I/O Process Evaluation Results: The results of the
simple random additional load test and the advanced random
additional load test are present at the top of Table I. During the
advanced random load evaluation, the detector that was trained
using the logistic regression ML model exhibited the best
performance. The detector correctly predicted all instances
of the target process during evaluation within an average of
0.275 seconds of detection latency. All instances of the target
process were correctly predicted by all ML algorithms with
an average detection latency of less than half a second. These
results indicate that our new method of process detection is
highly successful when the process was mostly performing file
I/O tasks.

While these results are encouraging, we anticipated high
performance from the detection models during this experiment.
The CPU is the component of the system that has an additional
load placed on it. During the file I/O testing very little of
the system’s CPU resources are required, particularly for SoC
that utilize DMA channels for file I/O operations. This type of
target process demonstrates a situation where the target process
predominantly utilizes an infrequently used system resource.
These results demonstrate the viability of utilizing the new
DMs for target processes that fall within this category.

B. CPU Intensive Process

For this target process our goal is to create a significant
amount of CPU usage on the system to determine if the new
method can detect a CPU intensive process with an additional
random amount of CPU usage occurring at the same time. The
actual target process comprised the multimedia tool ffmpeg to
convert a video in .mov format to a video in .mp4 format. The
target process uses ffmpeg to re-encode an entire sample video
file thus using a large amount of ALU-intensive operations.
We used a sample video that is 100 MB in size, 3 minutes in
length, and with high definition resolution. The actual target
process is as follows:

$ ffmpeg -i video.mov -c:v libx264 -crf
10 video.mp4

This command requires roughly 6 minutes to complete on
the Mac Mini system used in our evaluation.

1) CPU Intensive Process Evaluation Results: The results
of the CPU intensive evaluation process are shown in the
second section from the top of Table I. In observing the results
of the random additional load test, it can be seen that the
detector that was trained using the random forest machine
learning algorithm performed the best with all target process
instances being detected with an average latency of 1.275
seconds.

The results from this test are very encouraging as we had
anticipated a drop-off in detection performance. We postulate
that the high performance for this case is due to the CPU
having a random additional load placed on it while also
running a CPU intensive process. When we analyzed the
feature importance scores determined by the ML algorithms,
we found that CPU measurements are given less weight

than measurements for the system memory. Due to the tar-
get process frequently utilizing a large portion of the CPU
resources, patterns were discovered in the operation of the
system memory that indicated the target process was currently
running. This experiment demonstrates a situation where the
target process predominantly utilizes a frequently used system
resource. This experiment also demonstrates the viability of
utilizing the new DMs for target processes which fit this
category.

C. Network I/O Process

For this target process, our objective is to create a significant
amount of network traffic on the system to determine if the
new method can detect a process which generates heavy
network traffic with an additional random amount of CPU
usage occurring at the same time [28]. The actual process we
ran utilized the network discovery and testing tool NMAP to
carry out a full port scan of every IP address in the subdomain
of the evaluation systems very quickly. We ran the actual
process four consecutive times during each test cycle and is
specified as follows:

$ sudo nmap -Pn -T4 10.10.10.0/24

This command required roughly 5 minutes to complete on
the evaluation Mac Mini system.

1) Network I/O Process Evaluation Results: The results for
the network I/O test process are present in the third section
from the top of Table I. It is observed that the performance
is significantly lower than either of the previously tested
processes. The highest performing machine learning algorithm
for the advanced random load test was K-nearest neighbor
(KNN). Using the KNN algorithm, all instances of the target
process were detected with an average detection latency time
of only 1.95 seconds. However, the fallout for this detector was
0.472 which makes implementation undesirable as it would
result in far too many false positives for most applications.
This same trend is observed with the other ML algorithms
that were considered.

Upon further analysis, the Mac Mini evaluation system did
not have any physical sensors that directly monitored the
network interface in the system. Instead, the only way to
measure this part of the system involved using the physical
sensors present on the main board. It is likely that this
lack of resolution in measurements lead to the diminished
performance for this target process. This target process demon-
strates a situation where the target process predominantly
utilizes a system resource that does not have a means of
direct measurement through the system’s physical sensors. Not
surprisingly given the lack of physical sensors on the NIC, this
experiment demonstrates the limited viability of utilizing the
new DMs for target processes that fit this category.

D. Virtualization Process

For this target process, our goal is to launch a virtual
machine (VM) using a type 2 hypervisor with a simulated
user load running on the virtual machine to determine if



the new method can detect a VM instance running with an
additional random amount of CPU usage occurring at the
same time on the host system [29]. We utilized VMware
Fusion 10 Pro as the type 2 hypervisor running on the Mac
Minis. VMware Fusion includes a command line tool called
vmrun that allows a virtual machine to be controlled and
interacted with on the host system through the command line.
We implemented commands to start and display, run a Bash
script, and shutdown and close a specific VM. We use a VM
that is running Xubuntu, an Ubuntu Linux OS variant that
uses the XFCE desktop environment that is lighter weight and
requires fewer resources. The VM is allocated one of the Mac
Mini’s processing cores, 2 GB of memory out of a total of
4 GB, and a pre-allocated virtual hard drive of 100GB. The
command used to launch and display the virtual machine is:

$ vmrun start process.vmx gui

After initiating Xubuntu, we pass a command to the VM
that includes a path to the Bash interpreter and a path to a
script that we created to add a simulated user load to the VM.
The command to run the bash script is:

$ vmrun -gu <USERNAME> -gp <PASSWORD>
runScriptInGuest process.vmx -
interactive "" "/bin/bash usersim 5"

The script creates one CPU stressor, one mixed I/O stresser,
and one hard drive stressor. The usersim script is run for 5
minutes each time after the VM has fully started. Once the
usersim script has completed the 5-minute run, the VM is
shut down using the following command:

$ vmrun stop process.vmx soft

Instantiating and starting the VM, running the usersim
script, and shutting down the VM requires approximately 7
minutes.

1) Virtualization Process Evaluation Results: The results
for the virtualization test process are provided in the last
section of Table I. Both the simple random load test and the
advanced random load test resulted in a DPS higher than 0.9
for all machine learning algorithms except for one. The highest
performing ML algorithm is KNN as it has the highest DPS
for the advanced random load test and the second highest DPS
for the simple random load test. The detection model that
uses KNN detected all instances of the target process during
the advanced random load test yielding an average detection
latency time of 0.425 seconds while maintaining an average
fallout of only 0.0065. It is important to note that the highest
MCC score during the advanced random load test was only
0.6735 by the detector using the SVC ML algorithm. This
result indicates that the new DM is very successful at quickly
detecting the target process as well as keeping fallout very low
which is the goal in the context of this experiment. However,
for this target process the DMs had difficulty with continuing
to correctly identify the process after the initial detection.
The low MCC scores are a result of symmetric evaluation

as the positive system state, which is very small relative to
the negative system state, is incorrectly classified frequently
after the initial positive prediction. In other words the DMs
trained for detecting the VM are less than ideal in terms of
being purely implemented for binary classification. Although,
when considering their performance in the context of rapid
process detection the negative aspects of their performance as
pure binary classifiers are mitigated. This result is reflected in
the DPS metric that is 0.9839 for KNN.

V. CONCLUSION

The results we describe in this paper demonstrates that
the PSSC-based ransomware detection approach devised and
evaluated in our previous research can be successfully ex-
tended for the general case of arbitrary process detection. Our
new DM exhibits a high level of performance when trained
to detect processes that predominately use resources that are
directly monitored by a subset of the system’s sensors. Not
surprisingly, we show that the approach is less effective when
the hardware directly involved in supporting a target process
has no physical sensors as direct monitors. We hypothesize that
as system complexity inevitably increases, there will likely be
a corresponding increase in the number of physical system
sensors present to monitor and regulate subsystem operation.
The need to monitor system components with a higher level of
resolution will almost also certainly increase the performance
of the new DM and allow for additional use cases.
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TABLE I
RANDOM UNKNOWN ADDITIONAL LOAD TEST RESULTS

Average
Algorithm DPS MCC RPD Fall TPD

File I/O Process

Si
m

pl
e

SVC 0.996 0.9955 1.0 0.0013 0.175
Rand Forest 0.9951 0.9943 1.0 0.0017 0.2
Extra Tree 0.9944 0.9919 1.0 0.0019 0.25
Log Reg 0.9926 0.9899 1.0 0.0032 0.15
N Bayes 0.9897 0.9848 1.0 0.0042 0.275
KNN 0.9865 0.9809 1.0 0.0064 0.15
MLP 0.9857 0.9777 1.0 0.0069 0.125
Dec Tree 0.9001 0.8785 1.0 0.051 0.225

A
dv

an
ce

d

Log Reg 0.9968 0.9982 1.0 0.0005 0.275
Rand Forest 0.9964 0.9984 1.0 0.0004 0.35
KNN 0.9956 0.9972 1.0 0.0008 0.35
Extra Tree 0.9952 0.995 1.0 0.001 0.35
SVC 0.9949 0.9948 1.0 0.0014 0.275
N Bayes 0.9948 0.9946 1.0 0.0011 0.375
Dec Tree 0.9921 0.9963 1.0 0.0007 0.775
MLP 0.6588 0.5639 1.0 0.3586 0.175

CPU Intensive Process

Si
m

pl
e

Dec Tree 0.9988 0.9987 1.0 0.0002 0.1
KNN 0.9987 0.999 1.0 0.0001 0.125
Log Reg 0.9986 0.9991 1.0 0.0002 0.125
SVC 0.9983 0.9989 1.0 0.0002 0.15
Rand Forest 0.9983 0.9983 1.0 0.0004 0.1
Extra Tree 0.9974 0.9951 1.0 0.0007 0.15
MLP 0.9972 0.9944 1.0 0.001 0.1
N Bayes 0.9267 0.8958 1.0 0.0844 0.25

A
dv

an
ce

d

Rand Forest 0.989 0.7878 1.0 0.0002 1.275
Dec Tree 0.9875 0.7613 1.0 0.0004 1.4
Extra Tree 0.9861 0.5901 1.0 0.0005 1.55
KNN 0.9776 0.6876 1.0 0.0008 2.5
N Bayes 0.7896 0.6577 1.0 0.3329 0.6
MLP 0.5484 0.4717 0.55 0.0003 0.2273
Log Reg 0.4988 0.4756 0.5 0.0001 0.25
SVC 0.4738 0.4738 0.475 0.0001 0.2632

Network I/O Process

Si
m

pl
e

SVC 0.8363 0.3751 0.95 0.046 3.6842
MLP 0.7829 0.2976 1.0 0.1874 0.975
KNN 0.7641 0.1906 1.0 0.1234 0.875
Log Reg 0.7568 0.2759 0.875 0.0492 4.0571
Extra Tree 0.7296 0.1318 0.975 0.1662 3.3333
Dec Tree 0.6966 0.1754 1.0 0.1725 1.8
N Bayes 0.4965 0.0479 0.775 0.4243 2.8065
Rand Forest 0.4318 0.1693 0.5 0.0327 2.9

A
dv

an
ce

d

KNN 0.5484 0.017 1.0 0.472 1.95
Dec Tree 0.5114 0.0114 1.0 0.4957 3.7
Log Reg 0.5103 0.0094 1.0 0.8753 0.2
MLP 0.4888 -0.0636 1.0 0.8323 1.65
SVC 0.4811 0.015 0.975 0.906 1.1795
Extra Tree 0.3904 -0.0756 0.775 0.5175 5.129
N Bayes 0.3625 -0.0337 0.725 0.7077 0.0
Rand Forest 0.3354 0.0135 0.575 0.3946 2.7826

Virtualization Process

Si
m

pl
e

Log Reg 0.9896 0.9402 1.0 0.004 0.325
KNN 0.9865 0.9375 1.0 0.006 0.225
SVC 0.9863 0.9365 1.0 0.0061 0.225
Rand Forest 0.9753 0.884 1.0 0.0106 0.525
Extra Tree 0.9721 0.8756 1.0 0.0136 0.2
MLP 0.9609 0.8591 1.0 0.0194 0.225
Dec Tree 0.9481 0.8228 1.0 0.0259 0.25
N Bayes 0.8566 0.6393 1.0 0.1339 0.8

A
dv

an
ce

d

KNN 0.9839 0.6658 1.0 0.0065 0.425
SVC 0.9836 0.6735 1.0 0.0071 0.325
Rand Forest 0.9822 0.6697 1.0 0.0081 0.275
MLP 0.9753 0.5257 1.0 0.0073 1.275
Extra Tree 0.9566 0.5926 1.0 0.021 0.375
Log Reg 0.9386 0.6506 1.0 0.037 0.425
N Bayes 0.9029 0.5785 1.0 0.0772 0.3
Dec Tree 0.7266 0.2298 1.0 0.2829 0.2


