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Abstract— A geometrically-adaptable cooperative unmanned 

aerial system (UAS) array provides enhanced localization 

accuracy in radio frequency (RF) emitter localization over that of 

a stationary array. We investigate such an array in simulated 

urban settings, where atmospheric scattering and building 

multipath impacts localization accuracy. The research leverages 

the time difference of arrival (TDOA)-based Location on a Conic 

Axis (LOCA) algorithm to estimate emitter locations, 

demonstrating improved accuracy through iterative updates to 

the geometry of the UAS sensor array. The research analyzes 

dynamic repositioning approaches for the UAS array, showing 

how an array that adapts to changing environmental conditions 

with new sensor geometries will reduce localization error over 

successive searches. Further, we show that using environmental 

feedback and exploiting the LOCA geometry to adapt the UAS 

geometry at a large distance facilitates remote localization as an 

improvement over traditional received signal strength (RSS) 

based methods that require physical convergence of the UAS to 

the emitter. Our results demonstrate that optimal UAS placement 

and dynamic repositioning are viable opportunities to improve 

localization performance in dense urban settings. 

Keywords— Cooperative UAS, TDOA, multipath propagation, 

localization, adaptive geometry arrays 

I. INTRODUCTION

Unmanned aerial systems (UAS) equipped with passive RF 
sensors, such as represented in Fig. 1, are increasingly being 
deployed in complex environments for emitter localization. 
These UAS networks leverage wireless ad hoc connectivity to 
form cooperative arrays that can adapt their sensor geometries 
and optimize mission performance. For instance, in a search and 
rescue operation in a challenging environment, such as a dense 
urban area, the UAS array can reconfigure its geometry to 
improve the geolocation estimate of an unknown-location 
emergency beacon. Further, in hostile environments where the 
UAS array cannot physically converge on the emitter, such as 
tactical regions or due to fire or other harsh conditions, an 
accurate localization capability is required from a remote or 

“standoff” distance. In these settings, subgroups of elements of 
the UAS array can cooperatively and independently localize the 
emitter, such that the localization accuracy depends on both the 
accuracy of the full cooperative UAS array and/or the 
independent UAS subarrays, thus increasing the effectiveness of 
a large array of UAS by exploiting the subarray operation.  

In this work, we evaluate the impact of challenging 
environments, such as dense urban settings that are subject to 
multipath and atmospheric impacts, to emitter localization with 
cooperative UAS systems and consider the analysis of local 
hardware errors from [1] to evaluate an accumulated localization 
error. To assess the environmental impacts, this study utilizes 
stochastic models of urban propagation loss from International 
Telecommunication Union (ITU) Recommendation P.1411-12 
[2] and demonstrates that the mobility of a cooperative UAS
network improves emitter localization accuracy through
dynamic repositioning.

The UAS repositioning approach extends beyond traditional 
localization approaches such as that performed by fixed-wing 
aircraft, and it can only be performed by a highly mobile UAS 
network. The availability of a practical repositioning method 
could potentially reduce UAS mission planning while enabling 
operations in more complex environments. Our repositioning 
scheme is informed by both UAS array and subarray emitter 
localization estimates, using a time difference of arrival (TDOA) 
algorithm, combined with measurements of emitter received 
signal strength (RSS). The approach herein differentiates itself 
from other UAS localization approaches that reposition based 
on emitter RSS or focus on optimizing sensor geometry [3]-[7], 
because these other methods do not utilize real-time feedback 
from environmental conditions. Furthermore, RSS-based 
optimization methods assume conditions that allow physical 
convergence to an emitter. We present a method that does not 
require such convergence and its ability to overcome 
environmentally-sourced errors while physically remote.

Fig. 1. UAS Emitter Localization System Representative Functional Block Diagram. 



The contributions of this work include a detailed analysis of 
environmental error contributions in complex urban scenarios 
for cooperative UAS array emitter localization, considerations 
of practical limitations with hardware and environmental 
constraints, and a geometrically adaptable UAS system that 
improves localization performance even at standoff distances. 

II. RELATED WORK

The authors in [1] examined UAS sensor hardware errors on 
emitter localization accuracy, focusing on cooperative UAS 
sensor positioning and time-of-arrival (TOA) errors, while 
assuming environmental effects like atmospheric refraction and 
multipath scattering to be negligible. However, quantifying 
environmental impacts is needed in complex environments like 
dense urban areas where building interiors and tree canopies 
create multipath effects that significantly impact localization 
accuracy. In these scenarios, assuming constant signal 
propagation velocity overlooks the impact of atmospheric 
refraction and multipath due to metallic and other reflective 
structures. While incorporating dynamic signal propagation 
models could mitigate these effects, this study assumes these 
resources are not available and integrates multipath impacts 
directly into the localization process. Thus, we provide an 
extensive error analysis and model for these scenarios to 
evaluate operational suitability. 

 In consideration of UAS repositioning methods, in [3],[4], 
the authors optimize the geometric configuration of the UAS to 
improve the accuracy of the localization based on the RSS. We 
implement the notion of this RSS-based approach and extend it 
by quantifying the capability with a robust environmental error 
model. However, these RSS methods and related ones either rely 
on pre-defined optimized geometries that do not consider the 
dynamics of a complex RF signal environment [4], [5], they are 
computationally complex utilizing low-rank optimization and 
trajectory planning [5], [6], or they consider only RSS [3]-[5], 
which may not be useful in geography-constrained situations.  

The authors of [5] utilize RSS and add a complex algorithm 
to perform collaborative processing within the UAS to improve 
the inter-UAS positioning estimates. They combine these 
measurements with angle of arrival data and implement super 
multidimensional scaling with patch dividing/merging 
techniques. In a similar level of complexity, the authors of [6] 
perform a dynamic repositioning approach utilizing semidefinite 
programming and alternating convex optimization to determine 
the emitter location and the UAS iterative geometry via pre-
determined waypoints. Further, approaches such as [6] and [7] 
consider trajectory planning with a single UAS and do not 
consider a cooperative UAS array.  

While effective, many of these methods are computationally 
demanding and require physical convergence on the emitter. Our 
study examines similar approaches, yet we differentiate our 
work by showing that utilizing a localization algorithm while 
remaining at a distant range and incorporating real-time 
environmental feedback to inform iterative updates to the sensor 
geometry provides a continuous refinement of localization 
estimates. We utilize a low-complexity and computationally 
efficient localization algorithm and offer a practical, real-time 
approach, based on geometry and timing, with omnidirectional 
antennas, allowing for distributed processing at the individual 

UAS, so that the system is adaptable in complex environments 
with scaling UAS array sizes.  

III. PATH LOSS MODELS

In a sensing scenario where the RF transmitting power of the 
emitter is unknown, a given sensor 𝑠𝑖 of 𝑖 = 1…𝑁 sized array
will receive a power level that is the radiated power of the 
emitter, 𝑃𝑒 , reduced by the loss in that sensor 𝐿𝑠𝑖  and
environmental path loss from the emitter to the sensor. With an 
omnidirectional antenna, this is the RSS of 𝑠𝑖, 𝑅𝑆𝑆𝑖 , and can be
expressed as (1): 

𝑅𝑆𝑆𝑖 = 𝑃𝑒 − 𝐿𝑠𝑖 − ∑𝐿𝑃𝐿𝑖, (1) 

where ∑𝐿𝑃𝐿𝑖  is the total environmental path loss from the
emitter to the sensor. For the purposes of this effort, we assume 
that 𝐿𝑠𝑖 is known and therefore will be neglected.

Determining ∑𝐿𝑃𝐿𝑖  requires an understanding of the
scattering mechanisms present in the propagation environment, 
including free space path loss 𝐿𝑓𝑠𝑖 , contributions from the

moisture in the atmosphere 𝐿𝑎𝑡𝑚, and local scatterers 𝐿𝑟𝑒𝑓 such

as the landscape, roads, buildings, and other structures. The path 
loss is defined by the total contribution of each of these sources: 

Σ𝐿𝑃𝐿𝑖(𝑑𝐵) = 𝐿𝑓𝑠𝑖 + 𝐿𝑟𝑒𝑓 + 𝐿𝑎𝑡𝑚. (2) 

In a scattering-free environment, 𝐿𝑓𝑠𝑖 is:

𝐿𝑓𝑠𝑖(𝑑𝐵) = 20 log10 (
4𝜋𝑅𝑖𝑓

𝑐
), (3) 

where 𝑅𝑖 is the distance from the emitter to sensor 𝑠𝑖, 𝑓 is the
transmitting frequency of the RF signal, and 𝑐 is the speed of 

light. For a given 𝐿𝑃𝐿𝑖  the estimated distance �̂�𝑖  between a
sensor and emitter pair could be found by transforming the free 
space equation into terms of 𝑅𝑖 , and the signal transmit time

across the path can be found by dividing �̂�𝑖 by 𝑐

�̂�𝑖 =
�̂�𝑖

𝑐
=

λ

4π𝑐
10∑ 𝐿𝑃𝐿𝑖/20. (4) 

In the presence of scatterers, ∑𝐿𝑃𝐿𝑖  will be greater than 𝐿𝑓𝑠𝑖 ,

leading to inaccuracies in �̂�𝑖. 

A. Urban Environment Path Loss

In [8], path loss profiles are surveyed for a variety of UAS-
to-emitter scenarios. In this text it was discussed that a best fit 
for an urban environment with a number of scatterers is a dual-
slope path loss model that changes as 𝑅𝑖 increases. The ITU-R
P.1411-12 [2] formulates a stochastic dual-slope path loss model
incorporating height-dependent scenarios in urban
environments. In Section 4 of [2], the effects of streets and
buildings are examined with a single-bounce geometry to
provide expected path loss in both line-of-sight (LoS) and non-
line-of-sight (NLoS) conditions between the transmitter and
receiver. The model considers transmitters and receivers
operating below- and above-building rooftops, assuming that
building heights follow a Rayleigh distribution. Further, the
model parameters of average building height, average street and
building widths, and average number of buildings in given land
area, can be modified for the type of physical operating



environment: urban high-rise, urban low-rise, suburban, and 
residential. Finally, for each scenario, both a generalized 
statistical model and a site-specific model are provided for 3-
dimensional urban profiles. 

The median loss for a given urban scenario is found by [2]: 

𝐿𝑏(𝑑𝐵) = 10𝛼lo𝑔10(𝑅𝑖) + 𝛽 + 10𝛾lo𝑔10(𝑓) + 𝐿σ (5)

where 𝛼 is a coefficient associated with the increase of basic 
transmission loss with distance, 𝛽  is a coefficient associated 
with the offset value of the basic transmission loss, 𝛾  is a 
coefficient associated with the increase of the basic transmission 
loss with frequency, and 𝐿σ  is a zero mean Gaussian random
variable, 𝒩(0, 𝜎2), with standard deviation, 𝜎(𝑑𝐵), defined for 
specific scenarios. For NLoS urban environments, the model 
states that there will be an excess loss with respect to free space 
that will not exceed: 

𝑁𝐿𝑜𝑆𝑒𝑥𝑐𝑒𝑠𝑠  (𝑑𝐵) = (100.1𝐴 + 1), (6) 

where 𝐴  is a Gaussian random variable, 𝑁(𝜇, 𝜎2),  with 𝜎 
defined above and mean given by: 

𝜇(𝑑𝐵) = 𝐿𝑏 − 𝐿𝑓𝑠𝑖 . (7) 

In [2], Tables 4 and 8 provide the values of the above 
coefficients (𝛼, 𝛽 , 𝛾, 𝜇 , 𝜎) that are relevant to the simulations 
herein. For the propagation height, “Below Rooftop” is a 
scenario where both the transmitter and receiver are below the 
height of the roofs of the buildings in the range, whereas “Above 
Rooftop” refers to the scenario where either of the transmitter or 
receiver are located above the rooftop. In the “Above Rooftop” 
case, it is assumed the link can be described with 𝐿𝑓𝑠𝑖. Because

the model statistically formulates loss profiles, shadowing 
effects of buildings are incorporated into coefficients such as 𝐿σ,
so the associated loss increases more than free space loss with 
increasing 𝑅𝑖. The model claims validity for frequencies of 300
MHz to 100 GHz and the coefficients in [2] are valid for the 
ranges specified.  

For this analysis, MATLAB is used to model the signal 
interactions, however, because MATLAB does not offer a direct 
implementation of ITU-R P.1411, the models were custom-
programmed. To ensure that the model would be effective over 
the full ranges in this study, the coefficient values were 
extrapolated to distances approximately 15% outside the model 
specified ranges. 

B. Multipath Fading

The reflections of a signal against local scatterers will cause
multipath fading depending on the geometry and characteristics 
of the environment. Two fading models, Rician and Rayleigh, 
are widely used to statistically model fading for LoS and NLoS 
conditions, respectively. Multipath fading is modeled according 
to the path loss profile of the propagation channel, the path delay 
between the primary and multipath component, and the Rician 
K-factor which is the ratio of the dominant channel component
to the sum of all other components. A Rician distribution is
usually appropriate to model the small-scale amplitude fading
formed from an airborne UAS system to a stationary ground-
based emitter [8].

The multipath K-factor is scenario-dependent, and values of 
28 dB have been found to be appropriate for a UAS mission in 
an urban area [9], [10]. For this analysis, the MATLAB 
Communications Toolbox [11] was utilized to generate the 
multipath fading characteristics, using the empirical path delay 
spread and path loss models from [2]. For the “Below Rooftop” 
scenario described previously, the impact of scatterers in 
different geometries and environments is accounted for using 
Gaussian random variables with mean and standard deviation 
determined by coefficients defined in Table 12 of [2] for 
different scenarios of the model. Similarly, for the “Above 
Rooftop” scenario, the median “RMS Delay Spread” is 
determined with scenario-specific coefficients found in Table 10 
of [2].  

Fig. 2 represents the delay spread profiles from [2] over a 
fixed distance and compares the mean delay spreads for the 
above and below rooftop conditions from the signal delay value 
determined by (4). The mean delay spread for the below rooftops 
condition not only exceeds the delay spread for the above 
rooftops condition due to building and ground scattering, but 
this difference spread could vary significantly. As the distance 
from the emitter to the sensor is increased to 1 km, the path loss 
is found both by 𝐿𝑓𝑠𝑖  and 𝐿𝑏  determined by [2]. By using (4)

alone, the median signal strength in an urban environment could 
cause ambiguities in sensor-emitter range determination. 
Therefore, the use of the time delay from the signal to sensors in 
various positions could resolve this uncertainty and potentially 
inform characteristics of the scattering environment. 

C. Atmospheric Path Loss

As a signal travels through the atmosphere, it is attenuated
according to the geometry and density of moisture, such as rain 
or water vapor (fog), in its path. The ITU Recommendation 
P.838-3 [12] offers an empirically-derived signal attenuation
model for determining the impact of rainfall on signal
attenuation using a statistical rain rate to determine the signal
loss at a specific frequency over a specified range. Further, the
ITU Recommendation P.676-10 [13] considers ambient
temperature, pressure, and atmospheric water vapor density to
determine the signal loss at a specific frequency over a specified

Fig. 2. Comparison of delay spread profiles in height-specific geometries.  



range. The MATLAB Communications Toolbox [11] provides, 
among other capabilities, implementations of the above water 
vapor model and the rain model, extended with the work in [14], 
for atmospheric path loss, and those models are used in the 
simulations in this study.  

Other atmospheric models were not utilized because they fell 
outside the parameters of this study. For example, ionospheric 
and tropospheric models consider a signal propagating at an 
altitude much greater than the 500m height that is considered in 
this analysis. Models for fog are generally valid for frequencies 
greater than 10 GHz, while this analysis considers a 5 GHz 
signal with the assumption that the UAS array is likely to be 
processing 5G New Radio (NR) signals [15]. Modeling a 
“severe” moisture condition for a 5 GHz signal, rain dominates 
the environmental impact; however, the accumulated 
atmospheric loss is only approximately 0.5dB at 1km.  

IV. LOCALIZATION AND REPOSITIONING ALGORITHMS

A. Localization Algorithm and Collective Estimate Radius

The study in [1] considered timing-based localization
algorithms, i.e. multilateration and Location on a Conic Axis 
(LOCA), that did not require phase coherent receivers for each 
UAS. The LOCA algorithm, originally formulated by Schmidt 
[16] [17], employs the TDOA of signals across a triad of sensors
to determine the emitter's location. The algorithm determines an
emitter location by calculating a straight line through an axis of
a conic section, where the sensors are positioned along the
perimeter of this conic and the emitter at its focus. An example
of this geometry in two-dimensions is shown in Fig. 3.

LOCA considers the difference in estimated range to the 
target for a triad of sensors 𝑖, 𝑗, 𝑘: 

𝛴 =  ∆𝑅𝑖𝑗 + ∆𝑅𝑗𝑘 + ∆𝑅𝑘𝑖. (8) 

where ∆𝑅𝑚𝑛 represents the difference in range to the target from
sensors 𝑚 and 𝑛. Using 𝑎𝑖  to represent the absolute range of
sensor 𝑖 to the origin of the coordinate system,   

𝑎𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2, (9) 

the algorithm implements these range differences in a set of 
linear equations to find the conic axis: 

Fig. 3. Intersection of two conic major axes at emitter location found by 

LOCA algorithm. 

[𝑥1∆𝑅23 + 𝑥2∆𝑅31 + 𝑥3(∆𝑅12 − 𝛴)]𝑥 +
[𝑦1∆𝑅23 + 𝑦2∆𝑅31 + 𝑦3(∆𝑅12 − 𝛴)]𝑦 +

[𝑧1∆𝑅23 + 𝑧2∆𝑅31 + 𝑧3(∆𝑅12 − 𝛴)]𝑧 =
1

2
[∆𝑅12∆𝑅23∆𝑅31 + 𝑎1

2∆𝑅23 + 𝑎2
2∆𝑅31 + 𝑎3

2(∆𝑅12 − 𝛴)] 

. (10) 

For three dimensions, (10) is in the form of the plane 
equation and is solvable with linear algebra techniques. For 
ambiguity resolution among the conic focal points, LOCA has a 
lower bound minimum requirement of five UAS sensors, 
resulting in three conic planes intersecting at a common 
location, the conic focus, which is the emitter location [17]. With 

a set of 𝑁 ≥ 5 sensors, there are (
𝑁
3
) sensor 𝑖, 𝑗, 𝑘 triads that 

can be formed, and any combination of a subset of 5-to-𝑁 of 
these triads can produce the emitter location estimate. The 
maximum number of intersections can be determined 
combinatorially by (11), and for a system of 8 cooperative 
sensors, this results in 130 location estimates determined for a 
correlated signal: 

intersectsmax = ∑ ∑ (
i
k
)N

i=k
N
k=5 . (11) 

Fig. 4 presents an example of how the number of emitter 
location estimates increases with increasing sensor quantities 
and shows the density of the collection of estimates. The system 
utilizing this algorithm in the presence of environmental errors 
could determine the most probable emitter location and utilize 
the density of estimates to refine its solution. For this, we 
consider the radius of the 50% spherical error probable (SEP) 
[22] determined by averaging the results obtained by the LOCA
algorithm for every available sensor combination. The SEP of
the location estimate is based on the mean of the emitter location
estimates, also known as the centroid. This radius extends from
the centroid and is determined by the median absolute deviation
from the centroid to the individual estimates.

B. Error Accumulation

In addition to analyzing the impact of environmental
scatterers, we include hardware error models from [1] to 
evaluate a cumulative error for the cooperative UAS. For TDOA 
localization algorithms, it is necessary to know the error 
contribution from UAS sensor position estimates and clock 
synchronization offsets that could cause TDOA errors when 
correlating a time-stamped signal. It is assumed for this study 
that the system is capable of adequately correlating received 
signals since previous work [18]-[21] has resulted in acceptable 

Fig. 4. Density of LOCA estimates with increasing sensor quantities. 



methods for correlating continuous signals at spatially separated 
sensors and correlating pulse signals via rising or falling edges. 

The timing error augments the range estimate (8) by (12): 

�̂� = 𝑐(𝑡𝑐 + 𝑡𝑎 + 𝑡𝑚 − 2𝑡𝑓), (12) 

where 𝑡𝑐  is the signal TOA in the presence of sensor timing
inaccuracy from [1], 𝑡𝑎  and 𝑡𝑚  are the signal TOAs in the
presence of atmospheric scatterers and multipath, respectively, 
and 2𝑡𝑓 is a free-space TOA correction for the environmental

error offsets (since it is accounted for in 𝑡𝑐 ). Further, the
positioning error augments the sensor positions in (9) and (10) 

by (13), where (𝜀𝑥𝑖 , 𝜀𝑦𝑖 , 𝜀𝑧𝑖)  correspond to the sensor

positioning error: 

𝑥𝑖 =  𝑥𝑖 + 𝜀𝑥𝑖 , �̂�𝑖 =  𝑦𝑖 + 𝜀𝑦𝑖 , �̂�𝑖   =  𝑧𝑖 + 𝜀𝑧𝑖 . (13) 

In the study of error contributions from the UAS positioning 
and timing hardware [1], the Cramér-Rao lower bound (CRLB) 
for TDOA measurements was derived to assess the theoretically 
achievable accuracy for a TDOA system such as this. The CRLB 
of the variance 𝜎𝑖

2  is the inverse of the Fisher Information
Matrix (FIM) 𝑱 , expressed in terms of the TDOA 𝜏 . For 
positioning errors, this leads to the FIM in (14): 

𝑱𝜏 = 

[

𝜕𝜏2

𝜕𝑥

𝜕𝜏3

𝜕𝑥
𝜕𝜏2

𝜕𝑦

𝜕𝜏3

𝜕𝑦

𝜕𝜏2

𝜕𝑧

𝜕𝜏3

𝜕𝑧

⋯
𝜕𝜏𝑛

𝜕𝑥

⋯
𝜕𝜏𝑛

𝜕𝑦

⋯
𝜕𝜏𝑛

𝜕𝑧 ]

𝑹𝑇𝐷𝑂𝐴
−1

[
 

𝜕𝜏2

𝜕𝑥

𝜕𝜏2

𝜕𝑦

𝜕𝜏2

𝜕𝑧

𝜕𝜏3

𝜕𝑥

𝜕𝜏3

𝜕𝑦

𝜕𝜏3

𝜕𝑧

⋮ ⋮ ⋮
𝜕𝜏𝑛

𝜕𝑥

𝜕𝜏𝑛

𝜕𝑦

𝜕𝜏𝑛

𝜕𝑧 ]
 

𝑇

(14) 

where 𝑹𝑇𝐷𝑂𝐴  is the covariance matrix of sensor positioning

errors 𝜎𝑖
2.

For the timing error, we consider the signal propagation 
speed 𝑐, receiver bandwidth 𝐵, the optimal signal-to-noise ratio 
𝑆𝑁𝑅0, the range to the emitter 𝑟𝑖, and the ideal lower threshold
for the system operating range, 𝑟0:

𝜎𝑖
2(𝑟) ≥

𝑐2

𝐵2𝑆𝑁𝑅0

𝑟𝑖
2

𝑟0
2. (15) 

The FIM in (14) takes the form of 

𝑱τ = (
𝜕𝜏(𝒙)

𝜕𝑥𝑖
)
𝑇

𝑹(𝒙)−1 𝜕𝜏(𝒙)

𝜕𝑥𝑗
+

1

2
𝑡𝑟 (𝑹(𝒙)−1 (

𝜕𝜎𝑖1

𝜕𝑥𝑖
)
𝑇

𝑹(𝒙)−1 𝜕𝜎𝑖1

𝜕𝑥𝑗
), (16) 

with a parameter-dependent FIM Jacobian of 

∂𝜎i1

∂𝒙
=

√𝑎(𝑟𝑖+𝑟1)

𝑟0√𝑆𝑁𝑅0(𝑟𝑖
2+𝑟1

2)
. (17) 

With the hardware and environmental error contributions 
formulated and with the theoretical lower bound assessed, we 
use this information to quantify the impact of these errors in 
emitter localization accuracy. 

C. Repositioning Methodology

In the presence of the defined errors, we consider an
approach to improve the localization accuracy using dynamic 

repositioning of the UAS array. To address blocked LoS and 
other challenges in urban environments, our methodology 
involves strategic repositioning of the UAS elements. Real-time 
assessments using RSS and TDOA data guide the dynamic 
adjustments within the framework of the LOCA algorithm. The 
system benefits from the computational efficiency of LOCA and 
operational flexibility of the UAS array, enabling it to maintain 
optimal sensor configurations in response to evolving 
environmental conditions.  

Once the emitter location estimate is determined, a 
repositioning scheme is applied to the sensor locations, where a 
sensor subarray corresponding to a certain suboptimal condition 
is relocated to a new position and the target position is 
subsequently estimated. The approach continues with the new 
sensor locations to iteratively reposition the array. By only 
repositioning the subset of the UAS array that corresponds to the 
suboptimal conditions, we adapt the geometry to the 
environment and expect to improve the overall localization 
accuracy. We consider as a performance metric the 
improvement of the SEP radius for each iterative repositioning. 
Two methods are based on geometrically converging a subarray 
on the centroid to reduce the range-based error, while one 
method is based on randomly repositioning a subarray to 
potentially remove a NLoS condition. The last method finds an 
equal range to the centroid for a subarray to reduce the TDOA 
errors, the goal of which is to exploit the inherent geometry of 
the LOCA algorithm to find optimal positions without 
geometrically converging on the emitter. These repositioning 
schemes are as described below for each localization step: 

{I} RSS Convergence:
1. Determine the emitter estimate centroid and the range from

each sensor to the centroid, 𝑅𝑖, using (10).

2. Identify the three sensors, 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘 , with the lowest 𝑅𝑆𝑆,

such that 𝑅𝑆𝑆𝑖 ≤ 𝑅𝑆𝑆𝑗 ≤ 𝑅𝑆𝑆𝑘 ≤ ⋯ ≤ 𝑅𝑆𝑆𝑛 .

3. Reposition 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘  to a location 25% closer to the centroid.

{II} Best Estimate Random:

1. Determine the emitter estimate centroid and the range from

each sensor to the centroid, 𝑅𝑖, using (10).

2. Consider from (10) the contribution of each 𝑠𝑖 to the set of

emitter estimates (130 estimates for the 8 UAS system).

3. Next, determine the median absolute deviation from the
centroid for each estimate and associate that deviation with

each sensor used for that estimate.

4. Compute the total deviation for each sensor as a sum of all

deviations associated with that sensor.

5. Identify 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘 with the highest deviation.

6. Reposition the subarray 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘to a random position.

{III} Best Estimate Convergence:

1. Perform methodology in {II} through step {5}.

2. After identifying 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘 , reposition the subarray to a

location 25% closer to the centroid.

{IV} Best Estimate Equidistant:

1. Perform methodology in {II} through step {5}.

2. After identifying 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘 , reposition the subarray to a

location that is the mean range of 𝑠𝑖 , 𝑠𝑗 , 𝑠𝑘  to the centroid.



V. SIMULATION APPROACH AND RESULTS

A. Simulation Approach

For this analysis, the emitter-sensor system was modeled in
MATLAB, where the emitter was assumed stationary and 
broadcasting a 5 GHz signal with known signal characteristics 
and sufficient 𝑆𝑁𝑅  in the far-field of the UAS system. The 
sensor and emitter initial locations were uniformly randomized, 
in a simulated urban environment that is approximately 1500m 
wide, long, and high. The UAS sensor system followed the 
representation in Fig. 1, with quantities 𝑁 ≥ 5, with a LiDAR-
based UAS self-positioning system that has an accuracy of 2 cm, 
and a local clock source with an accuracy of 10 ns. The self-
positioning accuracy is supported by products such as Texas 
Instruments compact LIDAR solution [23] that permits a 
ranging accuracy of 1cm at 100m, which is better than GPS [24]. 
Likewise, the low local timing source error is supported by small 
portable “Chip Scale Atomic Clocks” (CSAC) that provide a 
basis for high resolution local timing sources with low drift and 
jitter rates [25], [26] with ≤ 1 ns accuracy. Even without the 
presence of timing source synchronization methods, the use of a 
CSAC-based local timing source allows for a low-latency free-
running timing source that is synchronized at pre-mission time 
only,  and it is therefore a reasonable approach to enable accurate 
emitter location estimates over limited mission durations.  

The simulations were modeled for both an urban low-rise 
and an urban high-rise scenario, and the path loss profiles were 
modeled in MATLAB using the methodology in ITU-R P.1411 
[2]. Because the localization algorithm is time-based, the TOA 
of the signal to each sensor was determined with (4) by using the 
estimated path loss. For atmospheric scatterers, the Crane [14] 
model assumed a maximum rain rate of 30 mm/hr and a 
maximum water vapor of 30 g/m3 , each of which can be 
considered “worst-case” weather conditions.  

We use Monte Carlo simulations with 1000 runs to 
characterize the impact of these errors on the performance of the 
algorithm. The emitter location estimate was determined using 
the LOCA algorithm for each Monte Carlo result. The UAS 
positions and the emitter were then randomly varied 500 times 
to remove bias in the results. A localization error metric was 
calculated by finding the Euclidean distance from the true 
emitter location to the emitter location estimate. After each 
initial localization, the UAS repositioning approaches {I}-{IV} 
were independently modeled for 25 steps. At each step, the 
localization estimate was repeated using the described 
MATLAB simulation environment to inform the accuracy 
improvement in dynamic repositioning. 

B. Simulation Results

In each urban setting, we examined the initial localization
error by averaging the LOCA-derived emitter positions across 
Monte Carlo simulations, incorporating increasing sensor 
quantities and randomized initial conditions. The localization 
error results shown in Fig. 5 indicate that increasing the number 
of sensors mitigates the influence of environmental and 
hardware error; however, there is not a significant improvement 
to accuracy with more than nine sensors. This result is consistent 
with the results in [1] and shown here for comparison, where a 
system under the constraints of local clock inaccuracies and 

Fig. 5. Localization error due to environmental scatterers with up to 15 sensors 

compared to errors due to sensor hardware inaccuracies. 

sensor positioning errors does not result in a localization 
accuracy improvement with more than nine sensors. Therefore, 
the remainder of the study considers a maximum of nine sensors. 

Evaluating the environmental path loss impacts against the 
individual error contributions from [1], that is, the timing 
inaccuracies, positioning error, and the time-based CRLB, the 
atmospheric scattering alone provides a much lower localization 
error than urban multipath and is on a similar order as a system 
with 1 ns local timing inaccuracy. In an urban low-rise 
environment, the system appears to converge to similar accuracy 
as a system with 10 ns local timing inaccuracy. An urban high-
rise environment will provide lower accuracy than the low-rise 
scenario, and it provides an error slightly lower than that of a 
system with 50 ns timing inaccuracy. 

In Fig. 6, we accumulate the environmental and hardware 
errors for both urban multipath settings and present the 
localization error distribution across Monte Carlo runs for 
random emitter positions and random initial, i.e. static, sensor 
positions for different UAS array sizes 𝑁 . For both urban 
settings, the mean localization error 𝜇 improves with increasing 

Fig. 6. Distribution of localization error with mean error 𝜇  for increasing 

sensor quantity 𝑁 in [a.] urban low-rise and [b.] urban high-rise environments 

with static UAS. 



𝑁 with the most significant improvement from 𝑁 = 5 to 𝑁 = 6. 
In an urban setting, and especially in a high-rise environment, 
the inclusion of a sixth sensor appears to resolve the errors 
introduced by the scatterers. In addition to the improvement in 
mean localization accuracy, the distribution shows that the 
density of results with high accuracy increases with the quantity 
of sensors, driven by the combinatorial advantages of the LOCA 
algorithm. 

Although the additional sensors provide increasing 
localization accuracy in the presence of environmental 
scatterers, we are seeking to maximize this accuracy for all 
sensor quantities by exploiting the mobility of the UAS network 
and utilizing the cooperative aspect of the UAS array via emitter 
localization at the subarray-level. Therefore, we consider the 
repositioning approaches and the mitigation of the accumulated 
environmental errors with adaptive UAS geometries. Further, 
we analyze the SEP radius as a metric to quantify the 
improvement to the localization accuracy with subsequent 
geometries, with the assumption that these metrics are 
correlated. Fig. 7 shows the SEP propagation for the case where 
no hardware or environmental errors are present. In this case, the 
RSS and the equidistant approaches continually improve the 
SEP, while the methods of random repositioning and best 
estimate convergence maintain a nearly static SEP radius & 
localization error. For the RSS method, this is expected as all 
elements eventually migrate towards the target and ensure their 
TDOA, and thus their solution offset, is minimized. The best 
estimate convergence approach remains static because, in an 
error-free case, the localization estimates completely converge 
regardless of sensor position, while the TDOA will not 
necessarily converge as in the case of the equidistant approach.  

We apply our repositioning methods in a scenario 
representative of an urban scattering environment with a 10 ns 
local timing inaccuracy and 2 cm UAS positioning error and 
with 6- and 9-element UAS arrays. The dynamic repositioning 
results presented in Fig. 8 show the SEP radius and localization 
error improvement normalized to the initial SEP radius and 
localization error for each scenario. In general, as the search 
algorithm repositions the sensor array, the SEP radius and 
localization error decreases, except for the random repositioning 
approach, which shows no improvement. The RSS method 
offers the greatest improvement, which is a direct result of the 
path loss models from [2], such that a smaller propagation  

Fig. 7. Spherical error probable (SEP) radius with iterative geometries in 

error-free environment by repositioning subarray with: 1) lowest RSS towards 

centroid, 2) largest LOCA deviation to random location, 3) largest LOCA 

deviation towards centroid, and 4) largest LOCA deviation to equidistant range. 

Fig. 8. Reduction in spherical error probable (SEP) radius reduction and 

localization error as a percentage of initial SEP and localization error for 6-

sensor and 9-sensor UAS arrays, in presence of environmental and hardware 

errors by repositioning subarray with: 1) lowest RSS towards centroid, 2) 

largest LOCA deviation to random location, 3) largest LOCA deviation towards 

centroid, and 4) largest LOCA deviation to equidistant range. 

distance results in a lower error term compared to the overall 
signal strength. However, the equidistant approach, which does 
not rely on physical convergence like RSS, provides a similar 
reduction in SEP radius and localization error. Further, while the 
6-element UAS array offers an overall higher initial localization
error than larger arrays as seen in Fig. 6, it experiences a
consistently greater improvement to the SEP radius with an
adaptive geometry compared to the 9-element UAS case.

The adaptive geometry approach enables the system to 
minimize environmental and hardware error in its localization 
performance irrespective of the array size, with a greater impact 
of improvement with smaller arrays. Further, the equidistant 
approach provides an alternative to methods that converge on 
the emitter location, allowing missions to improve their 
localization accuracy at standoff distances. 

Last, we consider mission effectiveness by evaluating 
localization error as related to the total distance traveled by the 
UAS for each method. In Fig. 9, we see that for the equidistant 
method, the UAS travels approximately half the distance of the 
RSS method to achieve an equivalent localization performance, 
resulting in a reduced usage of system resources and mission 
time. The best estimate convergence method has a plateau of 
performance after traveling the same length as the equidistant 
method; however, it does not improve its localization accuracy 
to the same magnitude as the other approaches. 

VI. CONCLUSION

This investigation informs the viability of a reconfigurable 
cooperative wireless sensor array for emitter localization in an 
urban environment. Informed repositioning of the UAS sensor 
array results in improved accuracy in localization without 
requiring physical convergence on the emitter, proving more 
mission flexibility than RSS-based methods. The sensor array 
utilizes the LOCA algorithm to generate target location 
estimates with its distributed subarrays and with the full array, 
enhancing its flexibility as a cooperative emitter localization 
system. The localization error can be minimized with a small 
quantity of sensors and a low-complexity localization and  



Fig. 9. Comparison of total path length traveled by each UAS and the 

associated localization error reduction for repositioning subarray with: 1) 

lowest RSS towards centroid, 2) largest LOCA deviation towards centroid, and 

3) largest LOCA deviation to equidistant range. 

optimization algorithm, reducing the overall system cost without 
sacrificing performance. While a 5-sensor cooperative UAS 
array is minimally suitable for emitter localization with this 
method, increasing the array size with up to nine sensors 
significantly enhances accuracy and enables more dynamic 
missions at both the array- and subarray-level.  

In future studies, we explore the use of machine learning 
methods to optimize UAS sensor positions, driven by the 
findings that dynamically reconfiguring the array allows for 
improved emitter localization accuracy. 
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