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Abstract—Data-dependent completion time is a well-known
advantage of self-timed circuits, one that allows them to operate at
average rather than worst-case execution rates. A technique called
early evaluation (EE) that extends this advantage by allowing
self-timed modules to produce results before all of their inputs
have arrived is described here. The technique can be applied to
any combinational function and is integrated into the phased logic
(PL) design methodology that accepts synchronous design entry
and produces delay-insensitive self-timed circuits. We describe
an algorithm that ensures that the resulting delay-insensitive
circuits are safe, and develop a generalized method for inserting
EE gates into any PL netlist. We give performance results for
several benchmark circuits, including a five-stage pipelined CPU
and a microprogrammed floating-point unit. Comparisons are
made among clocked circuits, PL circuits, and PL circuits with
EE. Simulation results show a clear performance benefit for PL
circuits that use EE.

Index Terms—Asynchronous logic circuits, early evaluation,
level-encoded dual-rail, marked graphs, phased logic.

I. INTRODUCTION

THE ITRS’2001 Roadmap on Design refers to the syn-
chronization and global signaling challenges facing

system-on-a-chip designers up to and beyond 2007. It envisions
the common use of hybrid synchronous and asynchronous
modules and methods for efficient and predictable implemen-
tation of such systems. As a step toward that goal, we describe
enhancements to a self-timed design technique that bridges
the synchronous and asynchronous worlds. In [1], a two-wire
data encoding technique known as level-encoded dual-rail
(LEDR) was introduced and applied to self-timed pipelines
with compute blocks. Linder and Harden used marked graph
(MG) theory [6] to generalize this technique in [2] and [3]
to synthesize a safe and live self-timed, delay-insensitive cir-
cuit automatically from a netlist of D flip-flops (DFFs) and
combinational logic-driven by a global clock. They called this
self-timed design technique phased logic (PL). This paper
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describes a new technique called early evaluation (EE) for
improving the performance of PL systems. This technique
uses special PL gates that can sometimes evaluate their outputs
before all of their inputs have arrived, thus increasing the
computation rate. We present a new algorithm to ensure circuit
safety with EE gates and a method for automated insertion of
EE PL gates into arbitrary netlists [9]. We apply the technique
to standard benchmark circuits and to a processor design and
compare the results with clocked and non-EE implementations.

In the remainder of this paper, Section II includes an overview
of PL, its relationship to MGs, and a discussion of the transfor-
mation of clocked systems to PL systems. Section III compares
the PL approach with similar work. Section IV introduces new
work on PL: the definition of an EE gate, a Petri Net (PN) model
of an EE gate, and an algorithm for feedback signal insertion
that ensures safety and liveness in the presence of EE. Section V
describes a general method for inserting EE PL gates into any
PL netlist and two approaches for extracting trigger functions.
Section VI discusses other factors that affect the performance
of PL systems, and presents a performance-oriented algorithm
for feedback insertion. Section VII presents performance results
for synthesized PL circuits using EE, and Section VIII contains
a summary and the conclusion.

II. PL BACKGROUND

A. PL

The term “phased logic” was coined by Linder [2] and [3] to
describe a methodology and logic style that uses an abstraction
of signal and gate “phase” to describe circuit behavior. The goal
was to produce a digital design methodology that eliminates
global clocks, yet keeps the synchronous design paradigm. The
methodology allows the use of familiar synchronous design and
synthesis tools to produce a clocked netlist of D flip-flops and
combinational logic that is then translated to a delay-insensitive
PL netlist. A PL netlist consists of PL gates, data signals, and
feedback signals. A PL netlist can be considered an MG with
data tokens flowing throughout the graph. Each data token has a
phase that is either even or odd. The phase is implemented with
a LEDR encoding of data signals as illustrated in Fig. 1(a). Each
LEDR signal is composed of a value and timing wire,
and the phase is defined by the parity of the combined dual-rail
signal. A PL gate also has an even or odd phase, and it fires
whenever the phase of all inputs matches the internal gate phase.
When the gate fires, the internal phase and the output signal’s
phase toggles. A sample gate firing is illustrated in Fig. 1(b) and
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Fig. 1. LEDR encoding and PL gate firing. (a) LEDR encoding. (b) Ready to
fire. (c) After gate fires.

(c). A useful property of LEDR signaling is that the signal al-
ways reflects the current value of the signal, 0 or 1, so this can
be used directly in a computation block without decoding. An-
other useful property is that the phase of a LEDR signal can
be changed from even to odd or vice versa by inverting the
signal. In this way, a PL gate can have both even and odd phase
outputs by supplying a version of the LEDR output with the
signal inverted.

The translation of clocked circuit to a PL circuit maps the
clocked circuit to an MG model. An MG is a PN in which every
place has exactly one predecessor and one successor (see [4]
or [5] for standard definitions of PN terminology). A marking
is a set of tokens at the places of a PN or MG, and a marking

is reachable if there is a sequence of firings that transforms
an initial marking into . Recall that a PN and, hence, an
MG is safe if no place has more than one token in any marking
reachable from the initial marking. It is live if, for any marking
reachable from the initial one, any transition can eventually fire,
following some sequence of firings.

The graph of a PN always shows transitions, places, and
directed arcs between transitions and places. A shorthand graph-
ical notation is usually adopted for MGs in which transitions
are the vertices of a graph and directed arcs lie between
transitions, with the intervening places understood. We use this
shorthand notation for MGs in our figures unless explicitly
noted otherwise. An MG with an initial marking is
denoted . A directed circuit in an MG is a directed
path that begins at a transition and ends at the same transition
. The sum of the tokens in the set of places contained in

for a marking is the token count of , designated by
. Two important theorems [6] about the liveness and

safety of MGs are as follows.
Theorem 1: An MG is live if and only if for all di-

rected circuits of , , i.e., places at least one
token on each directed circuit in .

Theorem 2: An MG is safe if and only if every edge
of belongs to some directed circuit with . As a
corollary, a live MG is safe if and only if every edge belongs to
a directed circuit with .

If a PL netlist is not live, then signal transitions do not occur
(tokens do not circulate), and thus there is no activity in the

Fig. 2. Token abstraction (input signals). (a) Ready to fire. (b) After firing.

Fig. 3. Token abstraction (outputs).

netlist. A PL netlist requires token circulation for computation,
so a dead PL circuit is not useful. If a PL netlist is unsafe, then
a PL gate can fire and produce a second output value before a
destination gate has consumed the first output value, resulting
in incorrect operation.

The MG model for a PL netlist allows representation of gates
and LEDR signals with transitions and tokens.

Fig. 2 shows the token abstraction using LEDR signals and a
gate phase that is either even or odd. An input signal contains
a token if the input phase matches the gate phase. When a gate
fires, the internal gate phase toggles, thus consuming the input
tokens. Fig. 3 shows that a gate output signal can be viewed
as either having a token or not having a token, depending on
the destination(s). Because each fanout counts as a separate arc
(place) in the MG equivalent, this paper always uses individual
signals for fanouts 1, even though in the physical circuit only
two wires are used for an output, regardless of fanout. In the
implementation described here, all PL gates are reset to even
phase at startup. PL gates have both the normal and inverted
phase versions of a signal available, accomplished by inverting
the internal signal of the LEDR output. If an input signal is to
contain an initial token after reset, then that input is connected
to the driving PL gate output whose phase is the same as the
internal gate phase. This means that the initial token marking of
the MG equivalent of the PL netlist is a wiring choice, as shown
in Fig. 4.
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Fig. 4. Initial token marking is a wiring choice.

B. Transformation Process

The translation of clocked netlists to PL netlists distinguishes
between sequential and combinational functions in the clocked
netlist. Sequential functions, such as flip-flops, are mapped to
barrier gates, while combinational functions are mapped to
through gates. The terms barrier and through are used to distin-
guish these gates for the purpose of initial token marking rules,
which are specified later in this section. The logic function of
the data values of the LEDR inputs of barrier and through gates
are the same as the logic function in the original netlist (i.e., a
barrier gate is simply a buffer function in the PL netlist if it does
not have any integrated combinational function in the clocked
netlist). The translation procedure may need to insert additional
signals termed feedback signals to make the resulting PL netlist
live and safe (a more familiar term is acknowledgment signals,
but we will use the terminology developed in [2]). In the MG
equivalent, a feedback signal is the same as any other directed
arc between transitions. However, in the PL netlist, a feedback
signal does not have any data associated with it, so a feedback
signal from a gate is a single rail signal that is the wire of the
LEDR output of the gate.

The translation algorithm that maps clocked netlists to PL
netlists consists of the steps that are outlined below. These steps
are illustrated in Fig. 5(a)–(d). See [2] and [3] for more details.
These rules assume the PL netlist forms a closed system, i.e.,
that the global reset is the only external input signal. The method
for addressing external input/output (I/O) signals is discussed
after the presentation of the translation rules.

Step 1) All sequential functions in the clocked netlist are
mapped one-to-one to barrier gates in the PL netlist.
All combinational gates are mapped one-to-one to
through gates in the PL netlist. LEDR signals con-
nect the PL gates to copy the original topology of
the clocked netlist, excluding the clock signal. The
initial token-marking rules assume that inputs from
barrier gates always have an initial token on them.
This means that a gate with an input from a barrier
gate is connected to the barrier gate output whose
phase matches the barrier gate’s internal phase. The

initial token-marking rules require that any non-
feedback input signals from through gates do not
have an initial token, so these input signals are con-
nected to the through gate output whose phase is
opposite the through gate’s internal phase. A global
reset signal is used to reset all gates to even phase
at startup (the choice of even phase after reset is ar-
bitrary; it is only necessary that all gates be reset to
the same phase value). Fig. 5(b) illustrates this step.

Step 2) Extra gates termed splitter gates are inserted to
break any direct connection between barrier gates.
Splitter gates are through gates that implement
buffer functions. Splitter gates are required so that
the application of initial token marking rules and
feedback insertion rules result in a live and safe
MG. In Fig. 5(c), through gate is a splitter gate
inserted between barrier gates and .

Step 3) The network is traversed, and any signals that are
part of a directed circuit , where , are
marked as safe signals. At this point, only output
signals from barrier gates are marked with initial
tokens, so a signal is safe if and only if it is in a
directed circuit that contains a single barrier gate.
It is important to understand that each fanout from
an output counts as a separate signal for safety
checking. If all signals are safe, then the transfor-
mation process is finished, and the PL netlist is live
and safe.

Step 4) Single rail signals called feedbacks are now added to
make the remaining signals safe. A feedback signal
is added from the output of a source gate to the
input of a destination gate to form a directed circuit

with . Any initially unsafe signals
contained in this directed circuit are now safe. Any
signals made safe by the addition of the feedback
are covered by that feedback. The directed circuit
cannot include a barrier gate unless the barrier gate
is either the source or destination of the feedback.
Fig. 6 summarizes the rules for feedback insertion
and initial token marking. A feedback originating
from a through gate and terminating on a through
gate has an initial token [this marking supplies the
token in the directed circuit since the nonfeedback
output of a through gate does not have an initial
token, see Fig. 6(a)]. A feedback originating from a
through gate and terminating on a barrier gate does
not have a token [the initial token on the directed cir-
cuit is provided by the barrier gate, see Fig. 6(b)].
Any feedbacks originating from barrier gates have
initial tokens [i.e., all signals originating from bar-
rier gates have initial tokens, see Fig. 6(c)]. A feed-
back cannot both originate from a barrier gate and
also terminate on a barrier gate (the directed circuit
formed would be unsafe as it would have an initial
token count 1, see Fig. 6(d)]. Fig. 6(e) shows how
this problem is solved by splitter gate insertion to
break barrier-to-barrier gate paths.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:03:30 UTC from IEEE Xplore.  Restrictions apply. 

A B 

~~~ase: ,----,1-_E_V_E_N,.
2
~ Gate phase: 

EVEN 

C 

Gate phase: 
EVEN 

A B 

C 

u7 
u5 u6 

C mo(C) = 1 

C mo(C) 1 

T 

> 



REESE et al.: EE FOR PERFORMANCE ENHANCEMENT IN PL 535

Fig. 5. Example translation. (a) Clocked circuit. (b) PL circuit before splitter gate insertion. (c) PL circuit after splitter gate insertion indicates an unsafe
signal in initial marking. (d) After feedback insertion, the circuit is live and safe.

Fig. 6. Token marking, feedback insertion, splitter gate insertion rules.
(a) Through gate to through gate feedback. (b) Through gate to barrier gate
feedback. (c) Through gate to through gate feedback. (d) Barrier gate to barrier
gate feedback not allowed. (e) Splitter gate inserted between barrier gates.

Safety is ensured if every signal is part of a directed circuit
that contains a single token in the initial marking. To select from
multiple feedback signal placement options, a scoring function
is used. This scoring function takes into account the number of
signals that are covered (made safe), the number of feedback
signals previously connected to a gate, and the length of the
feedback signal. A general form of the scoring function defined
in [2] is given below:

score (1)

where
is the number of unsafe signals covered;
is the number of feedbacks present at the destination, and

is a user-specified constant. This term is a penalty term
that encourages spreading of feedbacks among different
nodes. The factor can be used to reduce this penalty if
desired. Our mapping code produces PL netlists that use
four-input Muller C-elements [11] for feedback concen-
tration at a node, so is used in the netlist mappings
results in Section VIII. High-fanout C-elements are built
from trees of four-input C-elements, so spreading fanout
among different gates can decrease the delay associated
with a feedback input by decreasing the depth of the C-el-
ement tree.
is the number of gate levels between destination and
source gates (if the destination is directly connected to
the source, ), and is a user-specified constant.
This term is a penalty term that favors shorter feed-
backs over longer feedbacks as shorter feedbacks can
improve the cycle time of the resulting circuit (the effect
of feedback length on performance is discussed more in
Section VI). The constant is a weighting factor for this
penalty term; our results in Section VII use .

Note that for and the scoring function selects the
feedback that covers the largest number of signals. The algo-
rithm [3] for selecting feedbacks using the above scoring func-
tion is as follows.

While there are unsafe signals
1) For each gate G1 do the following;:

a) Perform a backward depth-first search starting at G1
along clear paths. A clear path is one that excludes
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barrier gates and feedback signals except for barrier
gates at the beginning or end of the path. This pre-
vents a feedback from forming a directed circuit that
includes more than one barrier gate, which would
place more than one token on the circuit, forming
an unsafe directed circuit.

b) For each gate G2 found in the backward depth-first
search, determine the number of signals covered if
a feedback signal is added from G1 to G2.

c) Calculate the score for a feedback signal from G1
to G2.

d) If the score is the best seen so far for any G1, save
the feedback signal as the current best.

2) Add the best feedback signal seen to the netlist and mark
as safe all the signals that are covered by it.

The principle goal of this scoring function is to minimize the
number of feedbacks inserted into the PL netlist, and is thus
area-oriented. In Section VI, we discuss a performance-oriented
approach to feedback insertion.

Fig. 5 illustrates the mapping of a clocked circuit to a PL cir-
cuit with and used in the scoring function. It is
evident from Fig. 5(d) that multiple solutions exist to feedback
insertion for liveness and safety. For example, feedback was
inserted to cover signals and . Feedback originates
from gate and terminates on gate , where the inputs to
are two gate levels away tracing backward from inputs. Feed-
back is said to have a path length . However, could
also be covered by a feedback from to (a path length ),
and by a feedback from to (a path length ). The
effect of maximum allowable feedback path length on the per-
formance of PL circuits and on the CPU time required for feed-
back insertion is discussed in Sections VI and VII, respectively.

The clocked-to-PL translation algorithm has been proven to
result in PL circuits that are delay-insensitive, but display the
same cyclic, synchronous, deterministic behavior as the clocked
netlist [3]. Many example circuits have been translated and
compared to their original clocked netlist implementations [7],
[8], [10]. Section IV discusses modifications to the feedback
insertion rules to support EE. The safety and liveness of
external inputs are handled at the VHDL testbench level during
simulation; the PL netlist provides a feedback output to the
testbench for each input, and accepts a feedback input from the
testbench for each output. The same token marking rules are
applied to these feedbacks as are applied in the clocked-to-PL
transformation process.

III. RELATED WORK

Several types of delay-insensitive circuits that use LEDR sig-
nals have been proposed in the literature. Dean et al. propose
PLA-based, domino logic, and series stack circuit styles in [1].
The sequential behavior of these circuits differs slightly from
PL gates and they are applied only to pipeline structures. How
describes a self-timed FPGA based upon three-input lookup ta-
bles and LEDR signaling in [13] and uses this cell in the con-
text of Sutherland’s micropipelines [16] and self-timed iterative
rings [17]. That work does not address the design methodology
or EDA tools for the FPGA architecture. McAuley implements

wavefront array circuits with a sequential multiplexer cell in
[26] and compares their performance with that of clocked sys-
tolic arrays. PL differs from all of these approaches by providing
a formalization based on graph theory that relates delay-insen-
sitive PL circuits to general clocked circuits. Using this formal-
ization, general synchronous circuits can be transformed to PL
circuits automatically by using commercial EDA tools and a
custom netlist mapping tool, while preserving the synchronous
behavior specified by the designer.

Automated translation of asynchronous designs from syn-
chronous design specifications using commercial synthesis
tools has also been proposed in [18]. This asynchronous design
methodology, known as Null Convention Logic (NCL), differs
from PL in several ways. It uses a (NULL/DATA/NULL)
signaling convention rather than LEDR and has some delay
sensitivity between NCL gates in the final implementation,
requiring a final timing analysis. The NCL circuit implemen-
tation uses -of- threshold gates. Although both PL and
NCL specifications can be written in VHDL RTL, the NCL
methodology is restricted to RTL that separates combinational
logic and register descriptions.

Performance enhancement techniques for self-timed circuits,
under names such as eager evaluation, speculative execution,
and early completion, have been investigated by other re-
searchers [1], [19]–[22]. In [1], an “eager” implementation is
described for LEDR signaling that is similar in concept to the
EE PL gates described here. An example of an eager AND gate
is given that computes its output value without waiting for
both inputs, if one of the inputs has a value of zero. Because
the phase of the output is computed from both inputs, for
some cases the output phase does not change until both inputs
arrive. This dependence limits the speedup to a subset of the
potential “eager” transitions that occur for the AND gate. The
authors mention the potential problem for eager circuits with
feed-forward branches, but they do not provide a solution
since the focus of this work was on strict (noneager) LEDR
implementations.

Some speculative completion techniques are applicable
only to addition subcircuits [19]. In [19], a completion detec-
tion technique is described for carry-select adders. Another
speculative completion technique [20], which uses bundled
data and a discrete set of data-dependant matched delays, is
a more general design style, but is applied in [20] only to
adder circuits. Other performance enhancement techniques that
involve completion differ from EE by using optimizations that
are unrelated to data dependencies [21], [22]. In [21], parallel
circuits are used to reduce the delay caused by the NULL part
of the DATA/NULL/DATA cycle of NULL Convention Logic
(NCL). In [22], a technique for detecting completion of NCL
circuits at the input of the register, rather than the outputs, is
described. This optimization is called “early completion” but
it is independent of the value of the data inputs. The novelty
in the EE approach described here is that it is not limited to
addition circuits, it is easily automated, and it takes advantage
of data-dependencies in general combinational circuits.

It is also noted that similar methods referred to as “telescopic
units” have been employed to speed-up synchronous pipelines
[23], [24]. The telescopic unit approach considers the early com-
putation of combinational blocks in pipeline stages. The concept
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of controlling values is similar to the concept of EE inputs that
compute a trigger function (explained in Section IV).

IV. EE IN PL

Our extension to the PL methodology is the support for EE
within PL netlists. The PL gates discussed in the Section II sat-
isfy the firing rule, which states that: “A PL gate fires its output
once all of its inputs have tokens. An input has a token [or:
an input has arrived] when the input phase matches the phase
of the gate.” An output update means that the phase portion
of the output is toggled from even to odd or vice versa, and
the value portion is updated by the gate compute function. In
EE, we divide the set of input signals into two sets, early ar-
riving signals and late arriving signals

. The firing rule for an EE gate (EEgate)
is relaxed so that output update is allowed whenever the early
inputs arrive and the trigger function , a Boolean
function of the value bits of the early arriving signals, evaluates
to 1. The trigger function is chosen so that the value por-
tion of the gate output is fully determined by the value bits of
the early arriving inputs. This technique can provide increased
system performance if the signals that form the early fire subset
arrive substantially earlier than the remaining signals, as it al-
lows successor gates to begin firing before the remaining inputs
arrive. An early firing of an EEgate is defined as an output up-
date after all of the early inputs have arrived, but before all of
the late inputs have arrived. A normal firing of an EEgate is de-
fined as an output update after all inputs have arrived.
An EEgate has two internal gate phases, an early phase and a
normal phase, with a natural extension of the notion of arrival to
characterize arrivals of early or late inputs in terms of the corre-
sponding gate phase. Arrival of all early inputs toggles the early
phase; arrival of all inputs toggles the normal phase. A
feedback output from an EEgate is updated only after all inputs
have arrived (toggling of the normal phase implies toggling of
the feedback output phase). Feedback inputs to an EEgate are
always inputs to the early phase.

A. Safety and Liveness in MGs With EE

We intend to show that a PL netlist with EEgates can still
be modeled as an MG, and that only a few simple changes are
required to the original feedback insertion rules to produce an
MG with EEgates that is live and safe. Fig. 7 gives PN models

and , for the early and normal fire behavior, respectively,
of an EEgate. Firing of the transition corresponds to toggling
of the early phase, while firing of the transition corresponds
to toggling of the normal phase. Fig. 8(a) combines the and

PNs of Fig. 7 into a live and safe PN model with choice.
In Fig. 8(a), the internal places Pint and
internal transitions Tint are from
the early and normal fire subnets of Fig. 7. External
places Pext , external transitions
Text , and the initial marking are added to
form a live and safe PN. Place P5 is a free choice place that
allows selection between early and normal fire behaviors. Initial
tokens are placed only within members of Pext. In Fig. 8(a),

Fig. 7. PN models of EEgate early and normal fire behaviors. (a) PN (early
fire). (b) PN (normal fire).

the transition has an input (place ) from transitions
, which prevents a second fire of either or

from occurring until all inputs have arrived.
The PN of Fig. 8(a) can be decomposed into two MG compo-

nents as shown in Fig. 8(b) and (c). Fig. 8(b) is the MG compo-
nent that models the early fire behavior of the PN in
Fig. 8(a), while Fig. 8(c) is the MG component that
models the normal fire behavior. Both and
satisfy Theorems 1 and 2 and are therefore live and safe.
corresponds to trigger function (the EEgate always fires
early), while corresponds to trigger function (the
EEgate never fires early). The free choice place P5 of Fig. 8(a)
chooses one of the two internal behaviors of an EEgate, with
each behavior modeled by an MG.

Given that an EEgate may fire either early or normally,
depending on the trigger function , we must express the
relationship between these graphs to understand the complete
behavior and to show safety and liveness. To explore this
point, Fig. 9(a) and (b) shows the coverability graphs [4] of

and . The coverability graph of a PN gives
all reachable markings for that PN. Each node in a coverability
graph is the marking of the places in the PN. In Fig. 9, each
node lists places to , left to right, represented as a bit
string formed from the token count of each place. To emphasize
the state of the external places, we assign the identifier for
each node to be the decimal representation of the bitstring
formed from , , , , (shown in bold face in
Fig. 9). The arcs from each node point to the marking that
results when the enabled transition on the arc fires. The set
of reachable markings of the set of external places Pext is
important, as these markings on the input/output arcs of the
EEgate define the behavior of the gate to the successor and
predecessor gates in the MG model of the PL netlist.
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Fig. 8. PN with choice model of EEgate, , and MG components. (a) EE
as PN with choice. (b) MG component (early fire). (c) MG component
(normal fire).

In a safe PN, only 1’s and 0’s can appear for place values
in the coverability graph. Liveness for a PN cannot be deter-
mined solely from the coverability graph. However, if a PN is
live and is also an MG, then every marking in the coverability
graph is live. Therefore, all markings in and coverability
graphs are safe and live. In the coverability graphs in Fig. 9(c),
the dotted arrows show the alternate arcs based on the decision
point for the trigger function that is evaluated when the early
inputs arrive (transition ). These illustrate the reconfiguration
from a marking in the early fire coverability graph to the normal
fire coverability graph and vice versa. From these coverability
graphs, we form the following key observations.

The set of reachable markings of Pext for is a
subset of its reachable markings for . Furthermore,
the alternate arcs for an early or normal fire in lead to a
marking in when evaluates to 0, and every marking
in is live and safe. The decision point for an early or

normal fire in leads to a marking in when eval-
uates to a 1, and every marking in is live and safe.
If we restrict consideration to graphs of interest, namely,

those that are live and safe, then this observation can be sup-
ported by noting that the nodes of the normal-fire coverability
graphs form a subset of the nodes of the early-fire graph (since
we have identified nodes that differ only in the markings of
internal places). Hence, the set of reachable markings for Pext
is independent of the trigger function as long as the net
is used for the early fire model.

We argue from these observations that the dynamic choice be-
havior of an EEgate can be modeled as a conditional arc between
coverability graphs of MGs. Taking the arc from one graph to
another is a configuration change in the graph. We define the
two possible changes as follows.

1) An early-to-normal configuration change for an EE-
gate is a change from the graph to the graph,
triggered by the transition when . The P2
predecessor transition changes from to , and a
token appears in P1, but not in .

2) A normal-to-early configuration change for an EEgate
is a change from the graph to the graph, trig-
gered by the transition when . The pre-
decessor place changes from to , and a token
appears in both and .

We will use the above two configuration change definitions
in the proof of liveness and safety of EEgates in PL netlists. We
begin with an MG G composed of EEgates and non-EEgates,
where EEgates are represented by ( , always early
fire) and non-EEgates by a single transition for all input arcs as
used in [2]. Initially G has no feedback arcs, and we produce a
live and safe MG by a modified version of the feed-
back insertion rules presented in Section II. We show that any
combination of early-to-normal and normal-to-early configura-
tion changes in the EEgates in results in a live and safe MG.
We start with three lemmas that characterize the safe and live

.
Lemma 1: In , each late input to an EEgate

must be in a directed circuit with that contains a
feedback output arc from .

Proof: Because the EEgate is represented by the early-fire
net, no late inputs in are in directed circuits, as no

transition has output arcs in . So, a feedback arc must be
added for each late input in order to form a directed circuit for
that late input.

Lemma 2: In , at least one early input to an EE-
gate must be in a directed circuit with that
contains a feedback output arc from .

Proof: This is evident from PN of Fig. 8. If the
transition did not include as an input a feedback output arc, then
the firing sequence places two
tokens in , which is a safety violation.

Lemma 3: In , each output arc from of an
EEgate must be in a directed circuit with that
contains either a feedback input arc terminating on or an
early input .
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Fig. 9. Coverability graphs for eegate early fire and normal fire MG models. (a) Early fire; (b) normal fire; (c) with configuration change arcs added.

Proof: This is evident from net as there is no path from
to an output arc from . This restricts directed circuits

containing an output arc to either contain a feedback input
arc or early input arc.

Based on Lemmas 1–3, the modifications to the
clocked-to-PL translation rules presented in Section II are as
follows.

1) In Step 3, during the marking of initial safe signals,
only early inputs are traced through EEgates. This is
because is used to represent an EEgate, and as such,
there is no path from a late input to an output. This
means that no late inputs will be marked as initially
safe, and must be covered by inserted feedback sig-
nals as per Lemma 1. It also means that outputs of
EEgates are only marked initially safe if the directed
circuit used to mark an EEgate output as initially safe
contains an early input (Lemma 3).

2) In Step 3, after the marking of initially safe signals,
examine each EEgate . If all early inputs to have
been marked as safe, then mark any one early input
signal as unsafe. This modification forces a feedback

signal to be added in Step 4 to cover this signal as
per Lemma 2, preventing a second early fire from oc-
curring until all late inputs for the previous early fire
have arrived. Recall that this early input signal can only
be initially marked as safe if it is in a directed circuit
C containing only one barrier gate. The initial token
marking places initial tokens on the outputs of all
barrier gates, so , making the signals con-
tained in safe. Marking one early input signal unsafe
within C does not invalidate the safety of the other sig-
nals within as this directed circuit still exists. Thus,
the feedback to be added in Step 4 only has to cover
this early input signal.

3) In Step 4, during the backtracking along clear paths,
the path through an EEgate can only include early in-
puts, as there is no path in from the output of an
EEgate to a late input.

These changes to the feedback insertion rules will create di-
rected circuits that contain Pint, the set of internal places (
and ) for the nets of all EEgates. These directed circuits
will always contain one or more places , the set of
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places external to all EEgates . The initial token marking
rules for MGs without EEgates only place tokens within Pext
to created directed circuits with . The validity
of these rules has already been proven in [2]. These same initial
token marking rules can be used for with no modifications,
as places and in contain no initial tokens.

With these revised feedback insertion rules, the MG
is live and safe if EE gates always fire early (i.e., ).
We now show that any combination of early-to-normal or
normal-to-early configuration changes still result in a live and
safe MG.

Theorem 3: From any marking reachable from ,
allow a single EEgate to perform an early-to-normal config-
uration change. The resulting graph is live and safe.

Proof: The only directed circuits with af-
fected by the early-to-normal configuration change are the ones
containing an output arc from , as the predecessor transition
to is now . All these directed circuits now contain
as a result of the configuration change. has a token from
the firing of , so these directed circuits are live, .
When fired, the only arcs in these directed circuits that could
have contained a token are the arcs incident on . The firing of

consumed these tokens, so the token count of these directed
circuits remain unchanged, at .

Theorem 4: From any marking reachable from ,
allow any set of EEgates to perform
early-to-normal configuration changes. The resulting graph

is live and safe.
Proof: The only directed circuits with af-

fected by the early-to-normal configuration changes are the ones
containing an output arc from within a gate . Pick
any directed circuit affected by an early-to-normal config-
uration change. Because was live and safe in , the

transition change within that triggers the early-to-normal
configuration change is the only fireable transition on this di-
rected circuit. Thus, any of the other early-to-normal config-
urations changes do not affect this directed circuit, so by the
same reasoning in the proof of Theorem 3, is live and safe.
Because all directed circuits can be affected by only one
of the early-to-normal configuration changes in , then all di-
rected circuits with affected by these configuration
changes are live and safe.

At this point, we have proven that any combination of
early-to-normal configuration changes from result
in an MG that is live and safe. As long as no
normal-to-early configuration changes occur in , the graph
is live and safe as all markings reachable from
are live and safe. Also, any combinations of additional
early-to-normal configuration changes from any
resulting in are also live and safe by Theorems 3
and 4. We will now consider normal-to-early configurations
changes from .

Theorem 5: From any marking reachable from ,
allow a single EEgate to perform a normal-to-early configu-
ration change. The resulting graph is live and safe.

Proof: The only directed circuits with af-
fected by the normal-to-early configuration change are the ones

containing an output arc from , as the predecessor transition
to is now . All these directed circuits now no longer con-
tain as a result of the configuration change, but they do still
contain . The firing of that causes the normal-to-early
configuration change places a token in , so these directed
circuits are live, . As these directed circuits have

at the time of firing, the only arcs in these di-
rected circuits that could have contained a token are the arcs
incident on . The firing of consumed these tokens, so
the token count of these directed circuits remain unchanged, at

.
Theorem 6: From any marking reachable from ,

allow any set of EEgates to perform
normal-to-early configuration changes. The resulting graph

is live and safe.
Proof: The only directed circuits with af-

fected by the normal-to-early configuration changes are the ones
containing an output arc from within a gate . Pick
any directed circuit affected by an normal-to-early config-
uration change. Because was live and safe in , the

transition change within that triggers the normal-to-early
configuration change is the only fireable transition on this di-
rected circuit. Thus, any of the other normal-to-early config-
urations changes do not affect this directed circuit, so by the
same reasoning in the proof of Theorem 5, is live and safe.
Because all directed circuits can be affected by only one
of the normal-to-early configuration changes in , then all di-
rected circuits with affected by these configuration
changes are live and safe.

Theorems 3–6 prove that any combination of early-to-normal
and normal-to-early configuration changes in the live and safe
MG produce another live and safe MG. The key point
in inserting feedbacks in a PL netlist to provide liveness/safety
in the presence of EEgates is to make the graph live and safe
assuming that the EEgates always fire early; then any combina-
tion of early and normal fires are live and safe.

One outcome of using the same initial token marking rules
for a PL netlist with or without EEgates, is that an EEgate can
either be a barrier gate or a through gate, as EE is independent of
initial token marking. Of course, it is meaningless for a barrier
gate to be an EEgate if it implements a buffer function, as there
is only one input to the gate. However, there are two situations
where a barrier gate with EE capability could be useful.

1) The DFFs in the original clocked netlist have multiple
inputs that implement a combinational function (this
accommodates the common situation in ASIC libraries
that embed logic within DFFs).

2) If a DFF does not have embedded combinational logic,
then after Step 1 of the translation process and before
splitter gates are inserted, a netlist transformation is
performed in which DFFs are absorbed into the com-
binational gate that supplies their data input. Absorp-
tion of a DFF into a combinational gate can be done
if the DFF is the unique fanout of that combinational
gate. This can reduce the critical path of the circuit, im-
proving performance. However, this can also create a
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TABLE I
TRUTH TABLES FOR MASTER AND TRIGGER FUNCTIONS

direct DFF-to-DFF path if there was only one combi-
national gate between DFFs, and this performance gain
is lost when splitter gates are inserted in Step 2 of the
clocked-to-PL transformation process.

V. GENERALIZED INSERTION OF EE GATES

The previous section shows that the insertion of EE gates can
be accomplished without making PL circuits unsafe. However,
EE gates will be more expensive to implement than standard PL
gates, so it is important to use them only when a significant per-
formance advantage can be obtained. An EE gate implements
two logic functions. The master function, , is the orig-
inal function mapped to the gate from its corresponding clocked
netlist element. The trigger function, , has only a subset
of the inputs of the master function, . The trigger func-
tion is true for those values of such that . A
technique for finding potential trigger functions for these logic
functions, selecting the optimal trigger functions, and then se-
lecting which netlist elements should be implemented with EE
gates is described in this section.

Two approaches are taken for the generation of trigger
functions: 1) an exhaustive search for small functions and 2) a
heuristic method for larger functions. We will first assume
four-input logic functions. This is a reasonable upper bound for
standard logic cells and a common size for field programmable
gate array (FPGA) lookup tables. With this assumption, all 14
possible subfunctions with three or fewer inputs can be eval-
uated as trigger functions and a merit function can be applied
to choose the trigger function with the best characteristics. A
function can be a trigger function if it is true for at least some
cases when the master function value is independent of the
nontrigger inputs. Candidate trigger functions are computed by
processing the cube list representation of the and
functions for the master function, .

As an example, consider the truth table for a carry-out func-
tion of a full adder cell, , as shown
in the Master column of Table I. Since this function depends on
three input signals, a search for the trigger function would con-
sist of generating all candidate functions with support sets of

, , , , , and . In the Trigger column
of Table I, a potential trigger function is shown,

, that is based on the support set . Each time the
trigger function is true, the master gate can evaluate even if the
input signal has not arrived since its value is a don’t-care in
these cases.

TABLE II
DETERMINATION OF CANDIDATE TRIGGER FUNCTIONS

The best trigger function may be determined by means of
a merit function that measures the degree of coverage that the
trigger function provides in relation to the master Boolean func-
tion. The coverage is the number of times a master function
may evaluate early divided by where is the number of ele-
ments in the set (i.e., ) and is expressed as a percentage. The
higher this percentage is, the more often EE can occur. Table II
shows the cube representation of the master full-adder carry-out
function along with the computed coverage. Since two cubes in
Table II depend only upon master inputs and and each of
those cubes cover four of the eight possible outputs of the master
function, the trigger function has a coverage
of 50%. The trigger function corresponds to the cube list given
by .

The merit function is also weighted by the relative arrival
times of the input signals to the master and candidate trigger
PL gates. This is necessary since, unlike the case of the adder
circuit, a potential trigger function with large coverage may de-
pend on slowly arriving signals and hence provide less effec-
tive speed-up than a trigger function with less coverage but de-
pending on faster arriving inputs. The arrival times are com-
puted by finding the maximum path length in terms of PL gates
from the primary circuit inputs or from barrier gate outputs to
PL gate inputs. The merit function is given in (2).

Merit Coverage (2)

and are the maximum delay of the input signals
to the master and trigger PL functions, respectively. This merit
function works well if data movement in the forward direction
from external inputs or barrier gates limits performance, as is the
case in a clocked system. However, if performance is limited at
a gate by feedback arrival, then insertion of an EEgate will not
help. To account for this, the effect on cycle time of the PL netlist
by the proposed EEgate insertion could be incorporated into the
merit function. However, this is a difficult issue, as typically
the insertion of just one EE gate does not improve cycle time.
Instead, groups of gates (i.e., one gate for each bit of a datapath)
have to be inserted before improvement in cycle time is seen.
Also, how to determine cycle time in a netlist that has data-
dependent cycle times caused by the presence of EEgates is a
difficult problem. Future work is planned on evaluating different
merit functions for EEgate insertion.

This technique presented here generalizes EE to work for
any arbitrary master function since candidate trigger functions
are automatically extracted based on the structure of the master
function. If the merit function is low for all trigger functions, the
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Fig. 10. Example BDD for master function in Table I.

use of EE gates may not be worth the additional overhead, and
in those cases a standard PL gate can be used instead. The de-
signer can select a threshold value for the merit function, below
which an EE gate is not inserted.

As the size of the master functions increase in terms of the
variable support set, it becomes impractical to search over all
possible candidate functions since a total of functions
must be evaluated. To avoid this exponentially large exhaus-
tive search, a heuristic method using binary decision diagrams
(BDDs) can be used [15]. A switching function may be eval-
uated for a particular variable assignment by traversing a path
from the initial to a root node and following the directed edges
that correspond to the polarity of each variable for the particular
assignment. The annotation of the root node is then the evalua-
tion of the function. As an example, Fig. 10 contains a diagram
representing a BDD for the master function given in Table I with
a variable ordering of .

It is a property of BDD’s that all paths from the initial to
a root vertex represent disjoint cubes in the on- or off-set of
the function being represented. By definition, a trigger func-
tion is one that is composed of a set of cubes in the on-set
that represent cubes in either the on- or off-set of the master
function and which depend on fewer variables than the master
function. Such cubes are easily identified from a BDD repre-
sentation of the master function by extracting those that corre-
spond to paths from the initial to a terminal node such that the
paths do not include all variables. In the example master func-
tion in Table I, a trigger function can be extracted depending
only on variables and . In the corresponding BDD shown
in Fig. 10(a), note that variables and are ordered first and
that complete paths exist by following the 0-edge of variables

and yielding the cube as the on-set of the trigger function.
These complete paths are illustrated in the BDD in Fig. 10(b)
where two paths are shown by the dashed ovals that correspond
to the cubes . The technique for extracting
a trigger function is then to construct a BDD with all variables in
the set to be grouped together and appear in the BDD struc-
ture closest to the initial node with the remaining variables in
to appear closer to the root nodes. Next, the BDD is traversed
and all distinct paths containing variables in are chosen as
cubes in the on-set of the trigger function whether those paths
terminate at terminal nodes annotated with 0 or 1.

An additional constraint in determining the trigger function
is the desire to have variables in the support set that are early
arriving. This information is obtained through a timing analysis
of the PL circuit prior to trigger function extraction and is used

Fig. 11. MG performance example. (a) Block delay units, firing pattern
at for average of 30. (b) Block delay units, firing
pattern at for average of 40.

to determine candidate variable orderings for the BDD. Those
variables that are earliest in arrival are ordered first in the BDD.
Those variables with equal arrival times are grouped together
in the BDD. This method has been used to extract trigger func-
tions from candidate master functions that depend on as many
as 34 variables in less than 1 ms of computer runtime.

VI. OTHER PERFORMANCE CONSIDERATIONS IN PL CIRCUITS

A. Performance of Timed MGs

An elementary directed circuit in an MG is a directed circuit
that contains no other circuits. A timed MG assigns delays to
each transition in the MG; the MG model of a PL netlist is a
timed MG. Assuming fixed delays for each transition, a lower
bound on the cycle time of a timed MG can be found by com-
puting the average cycle time of each elementary di-
rected circuit of in isolation, by summing the firing times
of the nodes in and dividing by the number of tokens present
on . The lower bound on cycle time is then
[32]. Fig. 11 shows a simple PL netlist that is an unbalanced
two-stage pipeline, where B1/B2 are barrier gates and T1–T4
are through gates. Recall that barrier gates are DFFs and through
gates are combinational gates in the original clocked system.
The elementary directed circuit in Fig. 11(a) formed by

contains two tokens and
forms the directed circuit with the maximum average cycle time.
Assuming each node has a delay of 10 time units, then the av-
erage firing time of this directed circuit is time units.
Manual tracing of node firing reveals that the firing pattern at
each node is 20, 40, 20, 40, etc. for an average delay of 30 time
units. In a clocked system, the cycle time of this system would
be 40 time units if B1 and B2 were DFFs, and T1–T4 were com-
binational blocks, as the cycle time of the clocked system is set
by the maximum delay between DFFs.

The cycle time of a PL netlist without EE gates is fixed and is
independent of input vector value. The cycle time of a PL netlist
with EE gates can vary from cycle to cycle based upon input
vector values because the early or normal firing of an EE gate is
data dependent. As such, the cycle times of PL circuits with EE
gates presented in Section VII are average cycle times measured
over a range of different input vectors. There is a one-to-one
correspondence between a firing cycle in a PL netlist and a clock
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cycle in the original clocked system. Thus, the cycle time of the
PL netlist is analogous to the clock period of a clocked netlist.

A register-to-register path in a clocked circuit corresponds to
a barrier gate to barrier gate path in the PL circuit. In a clocked
circuit, only one computation can be in progress on the reg-
ister-to-register path at any given time during a clock cycle,
unless an asynchronous technique such as wave pipelining is
used. However, in a PL circuit, it is possible to have more than
one token in flight between barrier gates, which would corre-
spond to more than one computation in progress between the
barrier gates. This allows PL system performance to be some-
what tolerant of unequal delays between barrier gates. This is
seen Fig. 11(a) as the delays across the two stages of the pipeline
in the PL system are averaged because the PL system can sup-
port two tokens in flight between B1 and B2.

B. Feedback Insertion and Cycle Time

In a PL netlist, directed circuits occur either naturally via
paths from the output of a barrier gate back to its input, or are
created by the addition of feedback. Fig. 11(b) is a minimal
feedback version of the circuit of Fig. 11(a). The directed cir-
cuit formed by is now the cir-
cuit with the maximum average cycle time. This circuit has one
token, with an average cycle time of time units.
The firing pattern at each gate is now 40,40,40 etc. Tracing of
node firings shows that the firing of gate B1 is caused by token
arrival on the feedback input from T3, not by token arrival from
T4. The firing of gate B1 is limited by token movement in the
backward direction along feedbacks, not by token movement in
the forward direction along nonfeedback inputs. This illustrates
how feedback insertion can have an adverse effect on the per-
formance of the final PL circuit. Long feedbacks (feedbacks that
skip over multiple gate lengths) generate directed circuits with
many gates, which can limit the performance of the PL netlist.
To remove feedback path length as a performance factor, all cir-
cuit examples in Section VII use a feedback path length of 1
unless explicitly stated otherwise. This maximizes the number
of feedbacks, but also maximizes circuit performance for our
current mapping approach.

The original scoring function for feedback insertion in [2]
is area-oriented, not performance-oriented. To create a per-
formance-oriented feedback insertion algorithm, the effect on
cycle time on the resulting PL netlist must be considered when
feedback is inserted in the netlist. Unfortunately, identification
of the elementary directed circuit with the maximum cycle time
is an -complete problem [34]. A lower bound on the average
cycle time of a timed MG can be computed in polynomial time
using a linear programming approach [32]. Another approach
for computing the cycle time of an MG involves the solution
of a set of linear equations that use a special max-plus algebra
[33]. The applicability of these approaches for computing
cycle time in PL netlists with EEgates is questionable given
that the number of nodes can be large and the token flow data
dependent.

We have implemented a performance-oriented algorithm for
feedback insertion that uses a simulation-based approach for
computing cycle time. We feel that a simulation approach is
required because of the data-dependent cycle times in PL netlists

with EEgates. The cycle time of the PL netlist is calculated
via a timed MG simulator that is integrated into the mapping
software. The MG simulator currently assumes that all EEgates
always fire early; however, we plan on extending it to use
firing patterns for EEgates captured from an external gate level
simulator. Our performance-oriented algorithm uses the MG
simulator to iteratively identify gates fired by feedback arrival,
and targets those feedbacks that have the most waiting time
between the last nonfeedback arrival and the gate firing. These
feedbacks are removed, and the resulting unsafe signals are
covered by feedbacks restricted to half of the maximum path
length of the deleted feedbacks. The goal is to have those gates
previously fired by token movement in the backward direction
(feedback arrival), to now be fired by token movement in
the forward direction (nonfeedback arrival). The performance-
oriented algorithm for feedback insertion is as follows.

1) Identify a target average cycle time for the
final PL netlist. We currently find by creating
a PL netlist where all feedbacks are restricted to
path length . This gives the minimum achievable
cycle time for this PL netlist using our current map-
ping approach.

2) Create a PL netlist using the area-oriented scoring
function for feedback with no restriction on feedback
path length. This creates a PL netlist with the min-
imum number of feedbacks using our current search
technique for feedback insertion. This netlist is used
as the starting point for the optimization process.

3) Simulate node firings within the MG via the simulator
until a stable average cycle time is reached where the
average cycle time is computed as a running average
over the last four cycles. This usually takes less than ten
simulation cycles. During the simulation, track gates
that are fired by feedback arrival, and not by nonfeed-
back input arrival. Time spent waiting for feedback is
wasted time. We want gates to be triggered by data
movement in the forward direction, as in the clocked
system. If the target cycle time has been reached, then
the mapping is finished.

4) Traverse the list of gates fired by feedback arrival,
and identify the gates that have the largest delta
time between the last nonfeedback arrival and the feed-
back arrival that fires the gate. For each of these gates,
identify the feedback input that triggered the firing
of the gate. If the path length of the feedback is the
largest so far, record as . Place the feedback in
a list . After all gates have been processed, if

then the mapping is finished as the length of
the late arriving feedbacks cannot be further reduced.

5) For each feedback , remove from the PL netlist
and mark the signals covered by as unsafe.

6) Insert feedback to cover all unsafe signals created
in step 5 using the area-oriented scoring function,
restricting feedback length to . Go to step 3.

This algorithm is a greedy heuristic as no candidate feedbacks
in step 4 are rejected. Results from using this approach are given
in Section VII.
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Fig. 12. Slack matching buffer insertion.

C. Slack-Matching Buffers

Another method of improving the performance of the PL
netlist involves adding extra buffers called slack-matching
buffers [30] in order to alter the average cycle time of directed
circuits within the netlist. Circuit A in Fig. 12 is a modified
version of the original two-stage pipeline found in Fig. 11. The
dashed lines are feedbacks of length 1. The directed circuit
formed by is now the circuit
with the maximum average cycle time. This circuit has one
token, with average cycle time of time units.
However, by adding the extra buffer T5 shown in Circuit B,
the directed circuit with the maximum average firing time
becomes , the same directed
circuit found in Fig. 11(a). The firing pattern of each gate
is changed to a repeating pattern of 40,20,40,20, etc., for an
average cycle time of 30 time units, an improvement of ten
time units. In the examples in Section VII, any slack matching
that has been done to improve performance is explicitly stated
and is accomplished manually. More recent work has resulted
in a partially automated technique for slack matching buffer
insertion as described in [31].

VII. RESULTS

A. Clocked-to-PL Mapping Environment

We evaluated the effectiveness of EE for gates of four inputs
or less, by synthesizing several benchmark circuits both with
and without the use of EE gates. The benchmark circuits were
the International Test Conference 1999 (ITC’99) suite [14],
a five-stage pipelined MIPS CPU [28], and the picoJava-II
floating-point unit [29]. Circuit sizes ranged from four gates to
over 8500 gates and a variety of circuit structures are included.
The circuits were specified in RTL-level VHDL and Verilog
formats, and each test case was synthesized using the Synopsys
Design Compiler tool using a minimum delay constraint to
an EDIF netlist of D-flip-flips and four-input lookup tables

Fig. 13. Tool flow.

(LUT4s). EE functions are extracted from this netlist using
the techniques described in Section V and are written to a
separate file. The PL mapping program reads both the EDIF
netlist and EE function file, maps this to a netlist of normal
and EE PL gates, inserts feedback signals using the algorithm
described in Sections II and IV, and produces a VHDL netlist
that is simulated via the Mentor Graphics Modelsim VHDL
simulator. The complete mapping flow is shown in Fig. 13.
The logic synthesis via the Design Compiler from RTL to a
gate-level netlist has no knowledge of EE or PL in general.
Logic synthesis constraints used to produce faster or slower
clocked circuits will in general also produce faster or slower
PL circuits. An area of future work is changing logic synthesis
algorithms to be EE and PL aware, so that the resulting netlist
has more opportunity for speedup.

A four-input lookup table was chosen as the basic combina-
tional element because one application of PL technology would
be as the basis for a family of self-timed FPGAs. Fig. 14 shows
the circuit details for PL gate without EE. Each PL gate has
five inputs; four LEDR inputs for the logic function and one
single-rail feedback input. The internal logic function is stored
in a LUT4, whose output is latched upon gate firing to produce
a LEDR output. A Muller C-element is used to detect input ar-
rival, and the state of the C-element determines the gate phase
and the value of the feedback output. Unused logic inputs are
either used as extra feedback inputs, or tied to the feedback
output of the gate. Trees of four-input C-elements are used to
concentrate feedback inputs to a gate if necessary. While use
of LEDR signals provide delay insensitivity to wiring delays
between PL gates, the internal operation is not delay insensi-
tive and the delay of the control path must be matched to the
delay of the computation path through the LUT4. To remove
technology dependence, all circuit performance results are nor-
malized to LUT4 delays one LUT delay . A PL gate has
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Fig. 14. LUT4-based PL gate.

Fig. 15. LUT4-based PL gate with EE.

delay equal to 1.4 because of the overhead of the output latch
after the internal LUT4 that contains the gate function. A PL
gate with EE is shown in Fig. 15, and is implemented using two
normal PL gates; one implementing the trigger function
and early transition , as defined in Section IV, and one imple-
menting the normal function and transition . Because of the
extra complexity of this gating, a PL gate with EE has delay
of 1.6 LUT4 delays. The four-input Muller C-elements used for
feedback concentration have delay of 0.6. Note that a PL system
has a 40% gate-level delay penalty with respect to the clocked
netlist because of the output latch latency. A PL gate is similar
to a one-bit Sutherland micropipeline block [16], and a common
feature of micropipelines is that output latch latency is in the

critical path of the circuit. The performance boost from EE can
be used to overcome this latency penalty.

B. ITC’99 Benchmarks

Table III gives the performance results from mapping the
ITC’99 benchmarks to PL netlist implementations. For the 15
benchmarks presented in Table III, 11 cases demonstrated a
performance improvement after insertion of EE gates. Further-
more 11 of the 15 cases had less than the expected 40% perfor-
mance degradation when compared to their clock counterparts,
and three benchmarks had better performance than the clocked
netlists. In these results, EE circuitry was added to all PL gates
where a speedup was possible. No slack matching buffers were
added to any of these circuits.

Table III contains columns representing the description of
the benchmark circuit, total PL gates required without EE, total
PL gates required with EE, the percent area increase in terms
of additional gates when the EE algorithm is applied, the cycle
time of the clocked design (longest register-to-register path),
the average cycle times of the non-EE and EE PL netlists,
the percent performance increase for non-EE versus EE, and
the percent performance increase for clocked versus the PL
EE netlist. Synopsys Design Compiler was used to find the
longest register-to-register path in the clocked design, with the
delay of a DFF plus setup time equal to 1.0 LUT4 delay.

Because a PL gate with EE has a longer delay than a non-EE
PL gate, some benchmarks suffered a slight degradation in
overall delay values when the EE algorithm was applied.
Overall, the EE algorithm resulted in a speedup of the PL netlist
for most of the benchmarks. Not surprisingly, those benchmarks
with significant amounts of arithmetic circuitry benefited more
from the EE algorithm since arithmetic circuits are frequently
composed of addition circuits where EE techniques are known
to perform well [20]. In the more complex examples (Viper
and 80 386 processors), the speedup gained from EE was able
to overcome the 40% gate-level penalty of PL gates and enable
the PL system to have equivalent performance to the clocked
system. Note that in the Viper and 80 386 benchmarks, the
PL netlist without EE had lower cycle time than the original
clocked netlists; this performance boost is from delay averaging
of unequal paths lengths between DFFs.

C. Five-Stage Pipeline CPU

A deeper exploration of the benefits of EE was done via the
mapping of a five-stage pipeline CPU [28], [35] that implements
a subset of the MIPS ISA. Fig. 16 shows a simplified diagram
of the pipeline structure. The circled multiplexers indicate ar-
chitectural-level application of EE. One location for application
of the EE is in the forwarding path from the ALU to decode
stage; if this forwarding path is not needed for the current in-
struction, then this multiplexer fires early allowing the decode
stage to begin execution before the ALU result is ready. Sim-
ilarly, if the next PC value does not require the computed PC
from the branch logic, then this multiplexer fires early. The mul-
tiplexer that interfaced the external input databus to the rest of
the CPU was also replaced with EE gates. If the instruction was
not a load word , this allowed the rest of the CPU to pro-
ceed without having to wait for the memory interface to fire.
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TABLE III
EXPERIMENTAL RESULTS COMPARING THE USE OF EE IN PL SYNTHESIS

Fig. 16. Pipelined CPU.

These EE gates were inserted manually into the architecture in
order to observe their effect upon performance. Other CPU ver-
sions had additional EE gates that were inserted automatically
into the netlist via the procedure in Section V. A limitation on
our tool that performs automated insertion of EEgates is that we
currently have no method for specifying delays of external in-
puts, so the EE multiplexers for the external memory inputs have
to be inserted manually; we plan on correcting this limitation in
the future. Table IV gives the different versions of the CPU that
were generated to explore the benefits of EE.

Version e) inserted EE gates wherever a possible speedup
could be obtained; as was done for the ITC benchmarks.
Version (d) utilized user-specified constraints to the EE trigger
function extraction algorithm which limited trigger function
choice based on signal arrival times and function coverage.
Note that version (e) requires almost twice as many extra gates
as version (d).

Five benchmark programs were used for performance mea-
surement: 1) fibonacci (fib), a value of 7 was used; 2) bubble-
sort, an array size of 10 was used; 3) crc, calculate a CRC table
with 256 entries; 4) sieve—find prime numbers, stopping point

TABLE IV
MIPS CPU IMPLEMENTATIONS

TABLE V
PERFORMANCE FOR CRC BENCHMARK

set to 40; and 5) matrix transpose—a 20 30 matrix was used.
Table V shows the PL cycle times in LUT4 delays for the various
versions running the CRC benchmark. The register-to-register
path of the clocked design was 24 LUT4 delays. The column
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Area Performance 

Description PL EE %Area Clk PL Cycle PL Cycle % Cycle %Cycle 
Gates Gates Increase Cycle (no EE) (w. EE) (noee vs (clkvs ee) 

(no EE) time ee) 

FSM that compares serial 
flows 30 35 17% 7 9.2 8 13% -14% 

FSM that recognizes BCD 
numbers 8 8 0% 2 4.0 4 0% -100% 

Resource arbiter 96 111 16% 7 7.8 9 -10% -23% 

Computer min and max 341 456 34% 12 19.6 16 18% -33% 

Elaborate contents of memory 304 410 35% 16 14.8 14 8% 15% 

Interrupt handler 18 20 11% 5 7.0 8 -14% -60% 

Count points on a straight line 261 350 34% 10 12.6 12 8% -16% 

Find inclusions in sequences 99 114 15% 11 11.2 12 -4% -5% 

Serial to serial converter 93 112 20% 7 8.6 8 2% -20% 

Voting system 121 157 30% 9 12.6 12 6% -31% 

Scramble string with a cipher 379 585 54% 13 15.4 14 9% -8% 

I-player games (guess a 
sequence) 584 766 31% 12 16.8 18 -6% -48% 

Interface to meteo sensors 170 195 15% 7 9.2 8 15% -11% 

Viper processor (subset) 3409 5789 70% 40 37.8 27 29% 33% 

80386 processor (subset) 5122 8035 57% 42 34.4 28 19% 34% 

Fetch Decode Execute I Mem I WB 

PL Versions (clocked version had 6134 Gates %Extra 
gates, delay path o/24) gates 

a) No EE gates, no slack matching 6231 0% 
buffering 

b) Manually inserted EE gates, no slack 6424 3.1% 
matching buffering 

c) Version (b) + slack matching 6453 3.6% 
buffering 

d) Version ( c) + automated insertion of 7207 15.7% 
EE gates, with trigger gates chosen by a 
cost function that weights signal arrival 
times with a trigger function coverage of 
5 0% or better 

e) Version ( c) + automated insertion of 8252 32.4% 
EE gates on all LUTs with input signal 
arrival time differences of one LUT 
delay or better 

Version CRC %Improve CRC(RO) %Improve 

(a) 25.2 25.2 

(b) 22.2 12% 21.6 14% 

(c) 18.9 25% 17.8 29% 

(d) 17.3 31% 16.1 36% 

(e) 17.6 30% 16.3 35% 

X 
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TABLE VI
PERFORMANCE FOR ALL MIPS BENCHMARKS

marked as “CRC” is the average cycle time of the PL system
for the execution of the CRC benchmark using code produced
by the gcc compiler with a compile optimization level of “ O.”
The small difference between versions (d) and (e) indicates the
importance of limiting trigger function extraction, as there is
a point of diminishing returns for performance gained versus
gates added. As opposed to the ITC benchmarks, every version
with EE was less than the clocked cycle time of 24 LUT4 delays.

The column marked as “CRC (RO)” is the CRC benchmark
with the instruction stream as produced by the gcc compiler re-
ordered so as to reduce ALU operand forwarding. For example,
a typical code segment produced by gcc is shown as follows:

addi r4, r4, 1
slti r2, r2, 8
bne r2, r0, L10.

ALU forwarding is required for the bne instruction because
r2 is a destination in the slti instruction, and a source in the
bne instruction. However, the instructions can be reordered as
follows:

slti r2, r2, 8
addi r4, r4, 1
bne r2, r0, L10.

Functionally, the two code streams are equivalent, but the
second code stream does not require ALU forwarding for the
bne instruction, which increases the number of EE firings
and hence the performance. Instruction reordering was done
manually by examining the assembly code of the critical loops.
Table VI gives the performance for all benchmarks using
reordered instruction streams. The CRC benchmark had the
fastest average cycle time as it had the highest percentage of
logical operations whose cycle time benefited the most from
the insertion of EE gates. The fib benchmark was fast as it had
the lowest amount of ALU operand forwarding. Instruction
reordering is an example of an application-level modification
to take advantage of the speedup offered by EE.

D. picoJava-II Floating-Point Unit

The floating-point unit in the picoJavaII CPU is a microcoded
engine with a 32-bit datapath that performs single and double
precision floating-point operations in IEEE 754 format. The mi-
crocode is stored in two 160 54 bit ROMs. The FPU is avail-
able from Sun Microsystems as Verilog RTL. Before synthesis,

TABLE VII
FPU INSTRUCTION CYCLE TIMES

the Verilog RTL was restructured to place the microcode ROMs
external to the hierarchy so that a PL interface wrapper could be
placed around them. The Verilog RTL was then synthesized to
a netlist of DFFs and LUT4s and mapped to a PL implementa-
tion. The cycle time of the clocked netlist was 40 LUT4 delays
and contained 8559 gates. Table VII shows the PL cycle times
for the individual FPU instructions. The EE version of the FPU
was mapped using the same trigger function constraint options
as for version (d) of the 5-stage pipelined CPU. Note that all
of the instruction cycle times of the EE version of the FPU are
lower than the clocked version. The increase in gates from the
clocked version to the PL (none-EE) version is due to the inser-
tion of through gates (splitter gates) between directly connected
DFFs by the mapping program as mentioned in Section II. No
slack matching buffers were added in the mapping of the FPU.

E. Mapping Performance

Table VIII gives netlist results using different mapping con-
straints for the MIPS, CPU, ITC B14 and ITC B15 benchmarks.
These tests were run on a 2.0 GHz P4 computer with 1 GB of
main memory under RedHat 7.3 Linux. Column descriptions
from left to right are the following.
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Ver. Fib Bubble CRC Sieve Tpose Avg 

(a) 25.2 25.2 25.2 25.2 25.2 

(b) 21.8 13% 22.0 13% 21.6 14% 22.2 12% 22.0 13% 13% 

(c) 17.8 29% 18.8 26% 17.8 29% 19.0 24% 18.5 27% 27% 

(d) 16.6 34% 17.5 30% 16.1 36% 17.5 30% 16.9 33% 33% 

(e) 16.8 33% 17.8 29% 16.3 35% 17.5 30% 16.9 33% 32% 

Clocked version 8559 gates, cycle time = 40 

PL (None-EE) 8573 PLgates 

12130 PLgates (42% increase over non-
PL (EE) EE version) 

Cycle Time (LUT4 delays) 

Instructions NoEE EE %change 

fadd/fsub/fmul 50.4 31.6 37% 

fcmpg/fcmpl 50.4 31.8 37% 

fdiv 50.4 35 31% 

frem 50.4 34.4 32% 

f2d 50.4 31.6 37% 

f2i 50.4 31.6 37% 

f21/i2f/ 12[ 50.4 31.4 38% 

dadd/dsub/dmul 50.4 31.4 38% 

dcmpg 50.4 31.2 38% 

dcmpl 50.4 31.4 38% 

ddiv 50.4 36.2 28% 

drem 50.4 33.2 34% 

d2f/d2i/d21/12f 50.4 31.4 38% 

i2d 50.4 31.6 37% 

Average 50.4 32.1 36% 

X 
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TABLE VIII
NETLIST RESULTS UNDER DIFFERENT MAPPING CONSTRAINTS

1) FB Alg (PO Iter): This indicates if the area-oriented
(AO) or performance-oriented (PO) feedback insertion
algorithm was used. For the PO algorithm, the number
in parenthesis is the number of iterations of steps 3–6
required to meet the target performance.

2) PLgates: number of PLgates in the equivalent MG for
the PL netlist.

3) Signals: number of signals in the equivalent MG for the
PL netlist; each fanout from a gate is a separate signal.

4) Unsafe: number of signals unsafe after initial safe net
marking.

5) Max (Actual): This is the restriction on the max-
imum feedback path length. The number in parenthesis
is the actual maximum feedback length used in the
netlist.

6) Fbacks: number of feedbacks inserted
7) %chg: percent change in number of feedbacks required

from base case of .
8) Map Time (s): mapping time in seconds measured via

Unix time utility.

9) EE trigger extract: EE trigger extraction time
10) MG Sim Cycle Time: The cycle time in LUT4 delays

as reported by the MG simulator contained within the
mapping tool; this only simulates control firings and
assumes that EEgates always early fire.

11) VHDL Sim Cycle Time: The cycle time in LUT4 delays
as reported by the VHDL simulation of the PL netlist.

12) %chg: percent change in the VHDL simulation cycle
time from the base case of feedback length .

Some general observations based on Table VIII are as
follows.

1) The lowest cycle times were obtained for .
In most cases, having an unrestricted feedback length
resulted in longer cycle times, but not for the FPU,
FPU/ee, or B14/ee cases. For these cases, the PO feed-
back insertion was not performed, as the AO feedback
insertion did not affect performance.

2) The cycle time reported by the MG simulator is in good
agreement with the cycle time reported by the VHDL
simulator for the non-EE cases. However, the cycle
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EE MG VHDL 
MaxFB Map Trigger Sim Sim 

FBAlg Length Time Extract Cycle Cycle 
(PO lter) PLgates Signals Unsafe (Actual) Fbacks %chg (s) (s) Time Time %chg 

MIPS ao 6231 17170 12672 1 12572 6.7 25.2 25.2 

ao max(20) 6200 51% 52 32.2 31.8 -26% 

ao2 max(14) 7763 38% 30 25.2 25.2 0% 

po (11) max(ll) 6320 50% 68 25.2 25.2 0% 

MIPS/ee ao 7207 17614 14726 1 14626 7.7 4.7 11.8 16.6 

ao max(ll) 9531 35% 25 16.5 21.4 -29% 

po (88) max(6) 12012 18% 189 11.8 19.2 -16% 

FPU ao 8573 27511 18197 1 17971 91 50.4 50.4 

ao max(24) 8227 54% 2062 50.4 50.4 0% 

ao2 max (31) 8159 55% 388 50.4 50.4 0% 

FPU/ee ao 11550 27511 25478 1 25350 17 8.6 22.4 31.6 

ao max(ll) 13174 48% 103 23 31.6 0% 

B14 ao 3409 11653 9392 1 9306 30 37.4 37.4 

ao max(19) 3177 66% 969 55.2 55.2 -48% 

ao2 max(24) 3211 65% 263 54.6 54.6 -46% 

po2 (212) max(16) 6344 32% 492 37.4 37.4 0% 

Bl4/ee ao 5789 11653 10961 1 10890 9 1.6 13.2 27 

ao max(l0) 6774 38% 52 20.2 27 0% 

Bl5a ao 11409 1 11303 955 33.9 34.4 

ao max(22) 5321 53% 2889 56.6 56.6 -65% 

ao2 max(25) 5454 52% 1263 52.4 52.4 -52% 

po2(162) max(17) 7026 38% 1445 33.9 34.4 0% 

Bl5b ao1 5122 16456 16456 1 16350 10 33.9 34.4 
ao1,2 max(25) 7137 56% 280 54.4 54.4 -58% 

po1•2(232) max(17) 9591 41% 591 33.9 34.4 0% 

B15/ee ao 8035 16456 14603 14584 11 1.9 16 28 

ao max(13) 10455 28% 41 22.7 34.8 -24% 

po (65) max(&) 11490 21% 156 16 30.2 -8% 

1initial safe net marking not performed, 2initial feedback destinations restricted 

=1 

FBlen FBlen = 1 

FBlen = 1 
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time reported by the MG simulator is very optimistic
for EE cases since it assumes that EEgates always per-
form an early fire.

3) The PO feedback insertion algorithm always met the
target cycle time, with a reduction in the number of
feedbacks required when compared to the
case. However, meeting the target MG cycle time for
the EE netlist cases does not guarantee that the VHDL
cycle time will be the same as the case for

because of the optimistic cycle time of the MG
simulator. The PO feedback insertion algorithm created
netlists with lower performance for the MIPS/ee and
B15/ee cases because the iteration terminates when
the target performance is reached—more late-arriving
feedbacks can still be removed, but these do not affect
the MG simulation time, while they do affect the VHDL
simulation time. This implies that a more accurate cycle
time simulation is needed for netlists with EEgates.
This could be achieved by using the actual EEgate
firing sequences captured from the VHDL simulator.
A firing sequence of early/normal fires for an EEgate
does not change as long as the netlist is live and
safe and thus will not change for different feedback
arrangements. A firing sequence would only have to
be captured once, using a representative set of input
vectors.

4) The B15a and B15b cases illustrate that initial safe net
marking can dominate the CPU time required for map-
ping if the combinational network has high fanout, in-
creasing the number of paths to be traced. The B15b
case disabled initial safe net marking, resulting in the
insertion of more feedbacks.

5) High fanin within a combinational network can cause
the back tracing for feedback destination gates to dom-
inate the mapping CPU time. To reduce execution time
for complex netlists when there is no restriction on
feedback path length, feedback insertion was divided
into two passes. The first pass restricted starting points
for back tracking to barrier gates and EE gates. Barrier
gates were chosen as the starting point because only
output signals from barrier gates cannot be covered
by feedback originating from a barrier gate. EEgates
were chosen because the late arriving inputs must be
covered by feedback from the EEgate. First pass feed-
back insertion was terminated when the number of sig-
nals covered by the next best choice feedback dropped
below a user-specified threshold . The second
pass feedback insertion algorithm then proceeded nor-
mally, with feedback path length restricted to .
This two-pass approach was tested with the non-EE
cases in Table VIII with . Except for the
MIPS, the restricted-search feedback insertion algo-
rithm significantly reduced the mapping time and came
very close to matching the number of feedbacks in-
serted by the original search algorithm. For the FPU,
the restricted search algorithm actually beat the orig-
inal search algorithm by a small amount. The two-
pass feedback insertion algorithm was not used with

the EE benchmark cases because feedback destination
candidates are already limited as back tracing through
EEgates is restricted to early inputs.

We believe that the results justify the use of a simulation-
based approach for a performance-driven feedback insertion for
the non-EEgate test cases. Improvement of the cycle time es-
timation is needed with this approach for early-evaluation PL
netlists, perhaps by including EEgate firing sequences captured
from a gate-level simulation.

VIII. CONCLUSION

A technique called EE has been described for improving
the performance of PL circuits. An extension of a previously
published translation algorithm has been shown by means of
marked-graph theory to result in live and safe PL circuits.
The inclusion of this technique in the PL design flow allows a
designer to specify a circuit in VHDL or Verilog, synthesize it
to a clocked netlist, translate it to a PL netlist, and then make
tradeoffs between increased area and performance through the
automated insertion of EE gates. This technique has been shown
to improve the performance of several benchmark circuits of
various architectural types, including a pipelined integer CPU
and a microcoded floating-point unit.
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