
IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997 811

Brief Contributions
Signed Binary Addition Circuitry with

Inherent Even Parity Outputs
M.A. Thornton, Member, IEEE Computer Society

Abstract—A signed binary (SB) addition circuit is presented that
always produces an even parity representation of the sum word. The
novelty of this design is that no extra check bits are generated or used.
The redundancy inherent in a SB representation is further exploited to
contain parity information.

Index Terms—Signed binary addition, computer arithmetic, parity,
redundant binary, fast addition circuit.

———————— ✦ ————————

1 INTRODUCTION
THE binary addition circuit is a basic building block for many
arithmetic logic units. One technique for implementing fast adders
is to utilize signed digit number systems where the digit set has
cardinality larger than the radix value [1], [13]. When such number
systems are used, particular quantities may be represented by
more than one unique digit string. This redundancy is used to
produce addition circuits that do not require carry ripples to trav-
erse the entire set of digits comprising the addend and augend.
Examples of circuits using redundant signed binary arithmetic
may be found in [4], [8], [7], [10], [16].

In particular, the work described in [4] and [10] utilizes the
signed binary digit (SBD) set comprised of the digits { , , }1 0 1 .
Different addition tables were used in these two approaches. By
examining the two digits in the augend and addend to the imme-
diate right (one radix power less), intermediate sum and carry
digits of the current addend and augend digits could be chosen
such that no carry ripple will occur. As is shown in this paper,
there are other possible signed binary addition tables that exhibit
this property. An entire class of new addition tables is discussed
with some specific examples given.

While this class of addition tables is useful for building high
speed addition circuitry, the redundancy inherent in the data
words can also be used for error detection purposes. It is shown
that an addition circuit can be constructed that utilizes SBD re-
dundancy for both the purpose of constructing a high speed addi-
tion circuit and to always generate sums that have even parity.
This characteristic incorporates a fault detection characteristic
without adversely affecting the parallelism needed for high speed
operation. This approach has the advantage that no extra parity
bits are generated, the bits representing the sum value itself are all
that are present.

In general, SBD adders pay the implementation price of an in-
creased area requirement in order to achieve a decreased delay
characteristic. Furthermore, the resulting sum is in SBD form re-
quiring a conversion to twos complement or some other form in-
curring the delay of an extra addition stage since the sum is typi-
cally separated into a negative and positive value, then combined
using a more traditional adder. For these reasons, SBD addition

circuits are generally not considered to be useful as standalone
adders. However, in the case of accumulation of more than two
operands, such as partial product accumulation in a multiplier
circuit, SBD circuits offer distinct advantages.

As described in [6], [17], trees of 3:2, 7:3, and 15:4 counters al-
low for the sum of several operands to be formulated while incur-
ring the cost of a single carry-propagation stage (or an equivalent
addition circuit) only in the final level of the addition tree. In the
tree-based schemes for partial product accumulation, the overall
delay is dependent upon the number of levels of constant delay
adders. The number of levels can be decreased by using SBD add-
ers with reduction rates of 2:1 instead of the 3:2 counters used in
[17]. This fact is responsible for the use of SBD adders in commer-
cial products such as the one described in [4].

The central justification for the pursuit of the results described
in this paper is to refine the SBD addition circuit which is the basis
of some commercially produced integrated circuits. In particular,
it is shown that an entire family of addition tables may be used as
a basis for these circuits. Furthermore, exploitation of the redun-
dancy inherent in the encoding of the operands such that they are
represented using the digit set { , , }1 0 1 may be used to incorporate
an error detection mechanism with no additional check bits re-
quired. This can be a useful result for designers wishing to incor-
porate error checking in a SBD based circuit by enforcing a parity
representation without generating and including extra parity
check bits in the sum data word. The error detection circuitry, (a
tree of XOR gates) can be used to perform the “error detection”
function of intermediate sum words at the same time the operands
are propagating through the addition tree structure. In the past,
parity check codes have been mainly used for memory and com-
munications circuit error detection. The basic reason for the use of
codes other than those using parity check bits is that parity is not
preserved under arithmetic operations [14].

The contribution of this paper is to show the existence of alter-
native SBD addition tables and to show that sufficient redundancy
is present such that all results can be restricted to even parity
words. The redundancy can be a beneficial characteristic for in-
corporating an error detection mechanism. The benefit lies in the
fact that the mechanism is inherent, requiring no additional parity
check bits to be generated, and it also does not cause significant
decreases in the speed of the circuit. As an example, the costly
parity checker circuit could operate in the background in a check-
pointing scheme, allowing computations to proceed at a more
rapid pace. In this scenario, the detection of an error by the parity
checker would only result in the recomputation of all past opera-
tions that have an elapsed time equivalent to the delay of the
checker circuit itself. With modest addition circuit reliability char-
acteristics, this recomputation would only arise rarely.

The remainder of this paper is organized as follows. Section 2
will provide a brief review of the properties of signed binary
number systems and will describe their use in past addition cir-
cuits. In Section 3, a new class of addition tables is presented with
a description of the theory of their construction included. Section 4
will provide the details of the implementation of the even parity
addition circuit. Finally, the paper will conclude with a discussion
of the results obtained and their usefulness.

2 SIGNED BINARY ARITHMETIC
An SBD system allows each digit to carry its own arithmetic sign
information rather than assigning a single arithmetic sign to an

————————————————

• The author is with the Department of Computer Systems Engineering, Univer-
sity of Arkansas, Fayetteville, AR 72701. E-mail: mat1@engr.uark.edu.

Manuscript received 18 Aug. 1995; revised 15 Mar. 1996.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number 104707.0.

0018-9340/97/$10.00 © 1997 IEEE

812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

entire quantity. Therefore, the signed binary digit set is { , , }1 0 1 ,
where 1 indicates a negative value with unity magnitude. Num-
ber systems that have a digit set cardinality greater than the radix
value are said to be redundant since a single quantity can be rep-
resented with more than one digit string (or radix polynomial).

2.1 Signed Binary Addition
One of the first signed binary addition tables was given in [8]. In
this table, each final sum digit is represented as an intermediate
sum digit and an intermediate carry digit. For two ad-
dend/augend pair cases, 1 + 0 and 0 1+ , two possible intermedi-
ate sum and carry digits are allowed. The selection of which two
intermediate values are used is determined by the arithmetic signs
of the next lower ordered augend and addend. The strategy is to

ensure that an xi = 1 and yi = 1 (or, an xi = 1 and yi = 1) never

occur in the same radix place in the intermediate carry and sum
words. Therefore, the final step of combining the intermediate
carry and sum digits to form a final sum can be accomplished with
a guarantee that no carry ripples will occur. This type of addition
is much faster than ripple carry forms and does not suffer from
large fanout requirements that carry-lookahead forms can require.
It should also be noted that some recent modifications have been
accomplished resulting in modified carry-lookahead adders with
reduced fanout requirements [12], [9]. Table 1 is a reproduction of
the addition table that originally appeared in [8].

As an example, consider the addition of the following two
signed digit numbers:

1 0 1 1 1 0 0 addend

0 1 1 0 1 0 1 augend

1 1 0 1 0 0 1 intermediate sum

0 1 1 0 1 0 0 0 intermediate carry

0 0 0 0 0 0 0 1 final sum

As is apparent from the example, the formation of each final
sum digit in the ith position depends only upon the addend and
augend digits in the ith and i - 1th positions. Using this method, a
fast adder of arbitrary length can be built and is illustrated by the
block diagram in Fig. 1.

This is not the only possible signed binary addition table that
exhibits the behavior of limiting the carry ripple to one digit only.
In the work in [4], an SBD addition table is described where all of
the intermediate sum digits are restricted to the set { , }0 1 and all
of the intermediate carry bits are restricted to the set {0, 1}. This
ensures that during the formation of the final sum no carry will
occur since the two possibilities 1 + 1 and 1 1+ never exist. In

TABLE 1
SIGNED BINARY ADDITION TABLE USED TO PREVENT LONG CARRY PROPAGATION CHAINS

Addend + Augend Digits Sign Information of Intermediate Intermediate
in Position i of Digits in Position i - 1 Carry Digit,

ci+1

Sum Digit, si

1 + 1 Not Used 1 0
1 + 0 Either is Negative 1 1
1 + 0 Neither is Negative 0 1
0 + 0 Not Used 0 0
1+ 1 Not Used 0 0
1 + 0 Either is Negative 0 1
1 + 0 Neither is Negative 1 1
1 + 1 Not Used 1 0

TABLE 2
SIGNED BINARY ADDITION TABLE USING INTERMEDIATE BORROWS AND CARRIES

Addend + Augend Digits Intermediate Intermediate Intermediate Intermediate
in Position i Borrow Out, bi+1 Borrow In, bi Carry Digit, ci+1 Sum Digit, si

1 + 1 1 1 0 1
1 + 1 1 0 0 0
1 + 0 1 1 0 0
1 + 0 1 0 1 1
0 + 0 0 1 0 1
0 + 0 0 0 0 0
1+ 1 1 1 1 1
1+ 1 1 0 1 0
1 + 0 0 1 0 0
1 + 0 0 0 1 1
1 + 1 0 1 1 1
1 + 1 0 0 1 0

Fig. 1. Parallelism of signed binary adder.

Intermediate
Sum/Carry
Generator

Intermediate
Sum/Carry
Generator

Intermediate
Sum/Carry
Generator

Final
Sum

Generator

2

Zi+l

Final
Sum

Generator

2

Zi

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997 813

order to always form an intermediate sum word with all nonzero
values being negative valued and an intermediate carry word with
all nonzero digits being positive valued, a borrow digit is utilized.
Addition using this type of table requires two steps; first, the bor-
row digits are formed and, second, the intermediate carry and sum
digits are chosen based upon the value of the borrow digit. Like
the intermediate carry digit, the borrow digit in the ith place de-
pends only upon the the addend and augend digits in the i - 1th
position. The addition table for this type of adder is given in Table 2.
As an example, the addition rules given in Table 2 will be used to
compute the sum of the same signed binary numbers as used in
the previous example.

1 0 1 1 1 0 0

1 0 1 1

0 0 0 0 0 0 0 1

addend

0 1 1 0 1 0 1 augend

0 1 1 1 0 0 1 0 borrow

0 0 1 intermediate sum
0 0 0 1 1 0 1 0 intermediate carry

final sum

In this method, a borrow digit is used to ensure that all interme-
diate sum digits are members of the set { , }0 1 and all intermediate
carry digits are members of the set {0, 1}. In contrast, the previous
method simply chooses a form of representation for the intermediate
carry and sum digits that will never cause a carry ripple. An intui-
tive explanation of why the borrow digit is needed in the latter
method is to view the augend and addend words as being
“mapped” to two other SB values whose sum is equivalent to that of
the addend and augend. Furthermore, the “mapped” values (which
are actually the intermediate sum and intermediate carry words)
must be composed with additional allowable digit constraints to
ensure the prevention of carry ripple. These constraints are that the
intermediate carry can only contain the digits, {0, 1} and must be an
even quantity. Likewise, the intermediate sum value can only con-
tain { , }1 0 and may be odd or even. This mapping is not possible
unless a “borrow” is used to shift quantities from one radix place to
another within the addend and augend digits.

A comparison of the block diagram for the previous method as
shown in Fig. 1 and that of the this method as shown in Fig. 2 il-
lustrates that both formulate the final sum digit based only upon
the information contained in two consecutive addend and augend
digits. However, the latter method requires a borrow generator to
be included in the circuitry versus a digit selection portion as is
used in the first method.

The second method requires an additional internal stage in the
addition circuit (the borrow generator). This stage can be imple-
mented as a single two-input logic gate with an appropriate digit
encoding. The advantage gained by paying the price of the borrow
generator circuitry is that the internal borrow and intermediate sum
and carry digits only require a single bit for their representation. The
previous method does not need the internal borrow generation
stage, but requires two bits to represent the intermediate sum and
carry digits since they both may have values from the set { , , }1 0 1 .

3 ALTERNATIVE SIGNED BINARY ADDITION TABLES
Many other possibilities exist for suitable addition tables for con-
structing circuits using the ideas in [5]. It is worthwhile to derive
the alternate addition tables since their implementation can result
in circuits with more desirable implementation properties for vari-
ous technologies. SBD addition circuits are known for requiring a
relatively large amount of circuit area. However, the definition of
circuit area differs from technology to technology. For example, if
the addition circuit is to be implemented using a PLA structure, a

circuit with a minimal number of product terms (and fewer literals
per product) may be desirable. On the other hand, the amount of
internal connections, and, hence, routing constraints may limit the
overall area in a standard cell ASIC implementation. The impor-
tance of deriving alternative addition tables is to offer the designer
a choice of tables from which to realize a corresponding circuit
that is the most suitable for his/her fabrication technology.

From a theoretical point of view, the alternative formulations
arise since it is possible to choose the intermediate sum, carry, and
borrow digits with values other than those in Table 2. One possibil-
ity is to let the intermediate sum and borrow digits be members of
the set {0, 1} and the intermediate carry digits be members of the set
{ , }1 0 . Another possibility is to allow the intermediate borrow digits
to be members of the set { , , }1 0 1 , which is the entire set of SBDs.

In constructing alternative addition tables based upon this
paradigm, it is useful to refer to an algebraic equation that de-
scribes the addend and augend digits as a function of the interme-
diate values. Before this equation is given, the notation used for
each of the values is defined in Table 3. Note that the subscripts for
each symbol indicate the power of the radix when the value is
written in radix polynomial form.

TABLE 3
NOTATION USED TO REPRESENT VARIOUS INTERMEDIATE VALUES

FOR SIGNED BINARY ADDITION

SYMBOL DESCRIPTION
xi SBD in the ith Position of the Addend Word

yi SBD in the ith Position of the Augend Word

bi SBD in the ith Position of the Borrow Word

si SBD in the ith Position of the Intermediate Sum Word

ci SBD in the ith Position of the Intermediate Carry Word

zi SBD in the ith Position of the Final Sum Word

Any single addend/augend digit pair in the ith radix place
contributes to the final overall sum by the intermediate carry and
sum values, 2ci+1 + si, the value borrowed from the i + 1th digits,
2bi+1, and, by accounting for the value borrowed by the i - 1th
digits, bi. Using these facts, an algebraic equation can be written
using the notation in Table 3 and is given in (1).

xi + yi = 2(ci+1 + bi+1) + si - bi (1)

Fig. 2. Parallelism of signed binary adder using intermediate borrow
and carry.

Xi+I Yi+l Xi Yi Xi-I Yi-I Xi-2 Yi-2

Borrow
Generator

Borrow
Generator

Borrow
Generator

Intermediate
Sum/Carry
Generator

Intermediate
Sum/Carry
Generator

Intermediate
Sum/Carry
Generator

Final
Sum

Generator

Zi+l

Final
Sum

Generator

2

Zi

Borrow
Generator

814 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

TABLE 4
ALTERNATIVE SIGNED BINARY ADDITION TABLE USING INTERMEDIATE BORROWS AND CARRIES

Addend + Augend Digits Intermediate Intermediate Intermediate Intermediate
in Position i Borrow Out Borrow In Carry Digit Sum Digit

1 + 1 0 0 1 0
1 + 1 0 1 1 1
1 + 0 0 0 1 1
1 + 0 0 1 0 0
0 + 0 0 0 0 0
0 + 0 0 1 0 1
1+ 1 1 0 1 0
1+ 1 1 1 1 1
1 + 0 1 0 1 1
1 + 0 1 1 0 0
1 + 1 1 0 0 0
1 + 1 1 1 0 1

TABLE 5
SIGNED BINARY ADDITION TABLE WITH NO RESTRICTIONS ON THE BORROW DIGITS

Addend + Augend Digits Intermediate Intermediate Intermediate Intermediate
in Position i Borrow Out Borrow In Carry Digit Sum Digit

1 0 1
1 + 1 1 0 0 0

1 1 1
1 0 0

1 + 0 1 0 1 1
1 1 0
1 0 1

0 + 0 0 0 0 0
1 1 1
1 0 1

1+ 1 0 0 0 0
1 1 1
1 0 0

1 + 0 0 0 1 1
1 1 0
1 0 1

1 + 1 1 0 0 0
1 1 1

TABLE 6
ALTERNATIVE SIGNED BINARY ADDITION TABLE WITH NO RESTRICTIONS ON THE BORROW DIGITS

Addend + Augend Digits Intermediate Intermediate Intermediate Intermediate
in Position i Borrow Out Borrow In Carry Digit Sum Digit

1 1 1
1 + 1 1 0 0 0

1 0 1
1 1 0

1 + 0 0 0 1 1
1 0 0
1 1 1

0 + 0 0 0 0 0
1 0 1
1 1 1

1+ 1 0 0 0 0
1 0 1
1 1 0

1 + 0 1 0 1 1
1 0 0
1 1 1

1 + 1 1 0 0 0
1 0 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997 815

It should be noted that the sum xi + yi can contain values from
the set { , , , , }2 1 0 1 2 , which is not the signed binary digit set.
However, (1) is extremely useful for building alternative addition

tables since it may be used to find values for bi, bi+1, si, and ci+1

from the set { , , }1 0 1 that satisfy xi + yi regardless of whether its
value is one of the members of the SBD set.

Since restrictions are placed upon the digit sets for the interme-
diate carry, intermediate sum, and sometimes, the borrow digits,
the possible solutions to (1) may be enumerated and alternative
addition tables may be created by choosing the solutions that sat-
isfy the digit set constraints. Note that it is not necessary to restrict
the borrow digits to a set containing only two digits from a theo-
retical standpoint. Using the procedure outlined above, several
alternative addition tables were formed. In the first example, an
addition table is given that requires the borrow and intermediate
sum digits to be restricted to the values of {0, 1} and the intermedi-
ate carry to be restricted to { , }1 0 . The result is given in Table 4.

Since the only requirement for this class of addition tables is
that the nonzero digits in the intermediate sum and carry words
have dissimilar arithmetic signs, it is not necessary to restrict the
borrow digits to a subset of the SBDs. The following two addition
tables, illustrated in Tables 5 and 6, are examples where the inter-
mediate borrow digits are members of the set { , , }1 0 1 .

As an example, the addition performed previously will be per-
formed again using Table 6.

1 0 1 1 1 0 0 addend

0 1 1 0 1 0 1 augend

1 0 1 0 1 0 0 0 borrow

1 0 0 0 0 0 1 intermediate sum

1 1 0 0 0 0 1 0 intermediate carry

0 0 0 0 0 0 1 1 final sum

4 IMPLEMENTATION
This section will discuss some of the issues encountered in the
implementation of the addition circuit. In particular, the SBD en-
coding and resulting logic equations are presented. Also, a brief
discussion of the amount of circuit resources required to realize
the circuit will be included. The even parity adder circuit (EPAC)
described here is based upon the addition table given in Table 4.
However, any of the SBD addition tables could have been used.

The basic difference between the circuit described here is that
the two “Final Sum Generator” blocks in Fig. 2 are combined into
a single module as indicated by the dotted lines. Since the inputs
to the “Final Sum Generator” may be represented in terms of a
single bit each, this part of the circuit transforms four binary in-
puts to four other binary values.

The output stage of the EPAC depends upon four adjacent ad-
dend and augend pairs instead of two as required by other im-
plementations. This is a drawback in terms of area when com-
pared to the SBD addition circuits in [5] and [10] which do not
guarantee even parity outputs; however, when the EPAC and the
addition circuit in [5] were both mapped to a common cell library,
the gate count only increased by nine.

4.1 Signed Digit Encoding for Even Parity Generation
Even parity generation is achieved by carefully choosing the en-
coding of the signed binary digits and by allowing the signed bi-
nary digit 0 to have two different encodings. An important caveat
in the design of this class of circuits is that care must be taken to
avoid internal fanouts that could propagate errors to two individ-

ual bits in the sum word. This is necessary since only single bit
errors can be detected as is the case with all single bit parity
schemes.

The encoding scheme used for this implementation is given in
Table 7. By using this encoding, each successive pair of signed
binary digits when grouped together can be written such that they
have even parity. In essence, the problem is transformed from a
radix-2 system to a redundant radix-4 system with a digit set of
{ , , , , , ,3 2 1 0 1 2 3}, since successive pairs of signed digits can rep-
resent any value in this digit set. This is easy to see by examining
all possible strings of bits of length 4 with even parity and their
corresponding numeric value and noting that all possible values in
the radix-4 digit set are represented.

TABLE 7
SIGNED BINARY DIGIT ENCODING FOR THE EVEN PARITY ADDER

Signed Binary Digit, Xi Binary Encoding, x1ix2i

1 00
0 01
1 10
0 11

TABLE 8
NUMERIC VALUE OF EVEN PARITY BIT STRINGS

USING NEW ENCODING

Bit String Signed Binary Value Radix-4 Value
0000 1 1 3
0011 1 0 2
0101 00 0
0110 01 1
1001 10 2
1010 11 3
1100 0 1 1
1111 00 0

4.2 Logic Circuit Implementation
Each block in Fig. 2 represents a logic function. This partitioning
allows the overall circuit to be easily described but does not neces-
sarily imply that the best design is an interconnection of these
basic functions. Using the signed digit encodings given in Table 7,
the following logic equations can be derived. These equations are
expressed more compactly in terms of the intermediate borrow,
sum, and carry values. Note that the restriction of the intermediate
values to one of two SBDs allows them to be expressed with a
single bit. In this case, the bit 0 is used to indicate the SBD, 0, and
the bit 1 is used to indicate the SBD with unity magnitude.

b x x y yi i i i i+ = +1 1 2 1 2 (2)

si = bi ≈ x2i ≈ y2i (3)

c x y y x b x yi i i i i i i i+ = + + ≈1 2 2 1 1 2 2c h c h (4)

Using these values as intermediate variables the equations rep-
resenting the final sum values, Zi+1 and Zi, can be expressed as
follows.

z c c s c s s c s s c s s c c s c c s si i i i i i i i i i i i i i i i i i i i1 1 1 1 1 1 1 1 1 1 1 1+ + + + + + + + + + += + + + + + (5)

z c s s c s s c s c si i i i i i i i i i i2 1 1 1 1 1 1 1+ + + + + + += + + + (6)

z c c s c s s c s s c s s c c s c c s si i i i i i i i i i i i i i i i i i i i1 1 1 1 1 1 1 1 1= + + + + ++ + + + + + + + (7)

z c si i i2 = ≈ (8)

These equations describe the Boolean relationships within the
EPAC. The actual circuit consists of 16 inputs (four addend and

--
-- -

-- -

816 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

augend signed digits) and four outputs (two final sum digits).
Using the above equations, a description of the circuit was written
using the Verilog hardware description language [15] and verified
for all possible 216 input combinations.

In addition to verifying the functionality of the EPAC, the Ver-
ilog code was also used to generate an espresso PLA file. The es-
presso program [2] minimized the file with the resulting PLA re-
quiring 506 product terms. Also, each partitioned block in Fig. 2
was synthesized using the misII tool [3]. misII was invoked using
the standard rugged script and the minimized logic was technol-
ogy mapped to the smallest mcnc benchmark library [11]. The
synthesis results are given in Table 9. The overall critical path us-
ing this synthesis approach is 13 logic cells including inverters.
One EPAC would require a total of 60 logic cells including invert-
ers. When the circuit was treated as a single 16 input, four output
combinational logic block, misII was able to synthesize it using 53
logic cells from the mcnc library.

4.3 Conversion Methods for Binary and Signed Binary
Values

Assuming the operands are in unsigned binary form initially, en-
coding simply requires replacing each 0 bit with the correspond-
ing SBD zero value represented by 11 or 01. Likewise, each 1 bit is
representing by the signed binary positive unity magnitude value
encoded as 10. This simple encoding results in operands that may
be directly used as inputs to the EPAC described above, however
this encoding does not necessarily yield even parity input words.
If a signed binary value is to be encoded, the sign bit is used to
determine whether each 1 will be encoded as a 00 (a signed binary
negative unity magnitude value) or a 10 (a signed binary positive
unity magnitude value).

After performing this encoding, an additional step may be
taken to transform the initial SBD encoded value into an equiva-
lent even parity form. This is accomplished by using the portion of
the signed binary addition circuit referred to as the “final sum
generator.” The initially encoded operand is used as input to a
“final sum generator” module and the resulting output is an even
parity representation.

5 CONCLUSION
A fast addition circuit with an even parity output, EPAC, has been
developed and described in this paper. By exploiting the redun-
dancy that is inherent in a signed binary adder, it was shown that
a parity based fault detection mechanism can be incorporated
while maintaining minimal adder delay through the avoidance of
long carry ripples. This adder utilizes the same number of bits for
the sum word as would be required in any implementation using
the redundant SBD system. Also, a new class of addition tables for
SBD representations has been developed. This new set of tables
allows circuit designers to choose between various forms of SBD
addition circuits.

REFERENCES
[1] A. Avizienis, “Signed-Digit Number Representations for Fast Par-

allel Arithmetic,” IRE Trans. Electronic Computers, vol. 10, pp. 389-
400, 1961.

[2] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangio-
vanni-Vincintelli, Logic Minimization Algorithms for VLSI Synthesis.
Boston: Kluwer Academic, 1984.

[3] R.K. Brayton, R. Rudell, A.L. Sanagiovanni-Vincintelli, and A.R.
Wang, “MIS: A Multiple-Level Logic Optimization System,” IEEE
Trans. Computer-Aided Design, vol. 6, no. 6, pp. 1,062-1,081, Nov.
1987.

[4] W.S. Briggs and D.W. Matula, “A 17 � 69 Bit Multiply and Add
Unit with Redundant Binary Feedback and Single Cycle Latency,”
Proc. 11th Symp. Computer Arithmetic, pp. 163-170, 1993.

[5] W.S. Briggs and D.W. Matula, “Signed Digit Multiplier,” U.S.
Patent no. 5,144,576, Sept. 1, 1992.

[6] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Fre-
quenza, vol. 34, pp. 349-356, Mar. 1965.

[7] H.M. Darley, “Signed Digit Adder Circuit,” U.S. Patent No.
4,979,140, Dec. 18, 1990.

[8] Y. Harata, Y. Nakamura, H. Nagese, M. Takigawa, and N. Takagi,
“A High-Speed Multiplier Using a Redundant Binary Adder Tree,”
IEEE J. Solid-State Circuits, vol. 22, pp. 28-34, Feb. 1987.

[9] V. Kantabutra, “A Recursive Carry-Lookahead/Carry-Select Hy-
brid Adder,” IEEE Trans. Computers, vol. 42, no. 12, pp. 1,495-
1,499, Dec. 1993.

[10] S. Kuninobu, T. Nishiyama, T. Edamatsu, T. Taniguchi, and N.
Takagi, “Design of High Speed MOS Multiplier and Divider Us-
ing Redundant Binary Representation,” IEEE Trans. Computers,
vol. 36, pp. 80-85, 1987.

[11] R. Lisanke, “Logic Synthesis and Optimization Benchmarks User
Guide,” Microelectronics Center of North Carolina, version 2.0,
pp. 1-62, Dec. 1988.

[12] T. Lynch and E.E. Swartzlander, “A Spanning Tree Carry Looka-
head Adder,” IEEE Trans. Computers, vol. 41, no. 8, pp. 931-939,
Aug. 1992.

[13] B. Parhami, “Generalized Signed-Digit Number Systems: A Uni-
fying Framework for Redundant Number Representations,” IEEE
Trans. Computers, vol. 39, no. 1, pp. 89-98, Jan. 1990.

[14] T.R.N. Rao and Fujiwara, Error-Coding for Computer Systems.
Englewood Cliffs, N.J.: Prentice Hall, 1989.

[15] E. Sternheim, R. Singh, R. Madhavan, and Y. Trivedi, Digital De-
sign and Synthesis with Verilog HDL. San Jose, Calif.: Automata
Publishing, 1993.

[16] N. Takagi and S. Yajima, “On-Line Error-Detectable High-Speed
Multiplier Using Redundant Binary Representation and Three-
Rail Logic,” IEEE Trans. Computers, vol. 36, no. 11, pp. 1,310-1,317,
Nov. 1987.

[17] C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans.
Computers, vol. 13, pp. 14-17, Feb. 1964.

TABLE 9
SYNTHESIS RESULTS USING misII

Circuit Block Inputs Outputs Number of Logic Cells Critical Path Length
Borrow Generator 4 1 3 2

Carry/Sum Generator 5 2 11 5
Final Sum Generator 4 4 18 6

