
Logic Circuit Equivalence Checking Using Haar Spectral
Coefficients and Partial BDDs

M. A. THORNTONa,*, R. DRECHSLERb and W. GÜNTHERc

aDepartment of ECE, Mississippi State University, P.O. Box 9571, Mississippi, MS, USA; bInstitute of Computer Science, University of Bremen, 28359
Bremen, Germany

cAlbert-Ludwigs-University, Freiburg, Germany

(Received 20 January 2000; In final form 4 October 2000)

A probabilistic equivalence checking method is developed based on the use of partial Haar Spectral
Diagrams (HSDs). Partial HSDs are defined and used to represent a subset of Haar spectral coefficients
for two Boolean functions. The resulting coefficients are then used to compute and to iteratively refine
the probability that two functions are equivalent. This problem has applications in both logic synthesis
and verification. The method described here can be useful for the case where two candidate functions
require extreme amounts of memory for a complete BDD representation. Experimental results are
provided to validate the effectiveness of this approach.

Keywords: Verification; BDD; Spectral methods; Haar transform; Equivalence checking

INTRODUCTION

The equivalence checking problem for two Boolean

functions of n variables, f(X) and g(Y), is addressed in this

work. Here, we assume that the correspondence between

the vectors of variables, X and Y is known. Although this

problem is easily solved when f and g can be completely

represented in BDD form, problems can arise for some

functions whose corresponding BDD representations are

too large. Thus, we have motivation to formulate a technique

for equivalence checking based on partial representations of

f and g. The incorporation of the Haar spectral coefficients in

our approach allows for further information about the two

candidate functions to be exploited.

This problem has applications in logic synthesis in

terms of the library binding stage where a technologically

independent sub-function, f, must be “mapped” to a

technologically dependent “library cell” represented

functionally by g such that f ðXÞ ¼ gðYÞ [13]. Typically,

a subset of gi cells satisfy this equivalence and the logic

synthesis system chooses a specific gi based on some

optimization constraint such as area minimization, shape

factor, speed, etc. Determining the appropriate set of

“library cells”, {gi}, can be accomplished via the

application of an equivalence checking technique.

The equivalence checking function is also of concern in

verification systems where two representations of a

function are compared [3,5,14,15,17]. Two abstractions

of a circuit resulting from different optimization phases of

a logic synthesis system (e.g. f(X) and g(Y)) may need to

be checked to determine if f ðXÞ ¼ gðYÞ: This is applicable

for methods that express state machines as BDDs as well

as for the verification of purely combinational logic.

In many cases, this problem can be easily solved by

building an Ordered Binary Decision Diagram (OBDD)

[1,6] representing f and g according to a common variable

order. When this is possible, the determination of

equivalence is accomplished by simply comparing two

pointer values. However, some classes of functions result

in OBDDs with an exponential number of vertices

regardless of the variable order [2,4].

The technique described here allows for the equivalence

checking problem to be formulated in terms of a subset of

Haar spectral coefficients [10,11]. Given a set of Haar

spectral coefficients, we examine the probability that

f ðXÞ ¼ gðYÞ: This allows the equivalence checking

problem to be iteratively refined in terms of possible

error by accounting for the existence of more matching

coefficients. Thus, techniques that provide subsets of Haar

spectral coefficients [8,9,18] for representations of f and g

can be used for non-tautology checking. A similar

approach using an arithmetic transform and a decision

diagram structure known as an Interleaved BDD (IBDD)

has also been proposed [12]. The technique described here

ISSN 1065-514X print/ISSN 1563-5171 online q 2002 Taylor & Francis Ltd

DOI: 10.1080/10655140290009800

*Corresponding author. Tel.: þ1-662-325-3629. Fax: þ1-662-325-2298. E-mail: m.thornton@computer.org

VLSI Design, 2002 Vol. 14 (1), pp. 53–64

differs due to the fact that we utilize partial HSDs versus

IBDDs allowing us to make use of the multi-resolution,

modified Haar wavelet transform [10,11] rather than the

arithmetic transform. This allows for the advantage of

partially representing the functions under consideration

and to obtain the Haar spectral coefficients directly from a

traversal of the HSD without performing additional

spectral computations. Furthermore, the multi-resolution

nature of the Haar transform offers advantages in the

probability calculations since higher ordered coefficients

can represent disjoint portions of the function of interest.

In this approach, we adapt the method reported in Ref. [9]

that allows the Haar spectral coefficients to be represented as

a HSD with the concept of the partial BDD as given in [16].

This allows for a partial function representation to be used for

quickly computing subsets of Haar spectral coefficients

avoiding problems that may arise for functions that result in

very large BDDs when represented in their fully specified form.

Once the subsets of Haar spectral coefficients are found to be

equivalent for two candidate functions, f and g, we compute the

probability that f and g are equivalent. If any two same-ordered

Haar spectral coefficients are found that have different

values, we can declare that f – g and halt the process.

A discussion of the background of partial BDDs and

HSDs is reviewed followed by a section on the mathematical

basis of our technique. The mathematical basis includes a

review of relevant aspects of the Haar transform and contains

the derivations for the probability computations. Next, we

present a simple example and the results of some preliminary

experiments that indicate the effectiveness of using matching

Haar coefficients for statistical verification. Finally, a

section containing conclusions is given.

BINARY DECISION DIAGRAMS

Boolean variables can assume values from B ¼ {0; 1}: In

the following, we consider Boolean functions f : Bn ! Bm

over the variables specified by the vector ðXÞ ¼ ðx1; . . .; xnÞ:
As is well known, each Boolean function f : Bn ! B can

be represented by a Binary Decision Diagram (BDD) [1],

which is directed acyclic graph where a Shannon

decomposition

f ¼ �xif xi¼0 þ xif xi¼1 ð1 $ i $ nÞ

is carried out in each node.

A BDD is called ordered if each variable is encountered

at most once on each path from the root to a terminal node

and if the variables are encountered in the same order on

all such paths. A BDD is called reduced if it does not

contain multiple isomorphic sub-graphs or any instances

of both edges from a single vertex pointing to the same

node. Reduced and ordered BDDs are unique since each

distinct Boolean function and a given variable ordering

result in a canonical representation.

BDDs are defined analogously for multi-output

functions f : Bn ! Bm as for the case of single-output

functions: A BDD Gj for each component function f jð1 $

j $ mÞ is used for the shared BDD representation G for f.

The order of the variables is fixed over all Gjs.

For functions represented by reduced, ordered BDDs,

efficient manipulation algorithms may be formulated [1].

In the following discussion, only reduced, ordered BDDs

are considered and for briefness these graphs are referred

to as BDDs.

INCOMPLETE CONSTRUCTION

As long as symbolic simulation can be carried out

completely, the verification process succeeds. But

problems arise if BDDs do not fit in the main memory

of a computer. This might be due to several reasons.

The first (and simplest) reason is that a “bad” variable

ordering has been chosen. In the past, several techniques

have been proposed for BDD minimization (for an

overview see Ref. [6]). Furthermore, the ordering in which

the operands are combined is very important, as can be

seen by the following simple example:

Example 1 Let F be an AND gate with three inputs f, g

and h that occur during symbolic simulation of a circuit.

BDD packages based on recursive synthesis have to

compute:

ðf ·gÞ·h; f ·ðg·hÞ or ðf ·hÞ·g

The order in which the calculation is performed largely

influences the number of nodes that are needed during the

computation, e.g. if f·g is computed first, but h ¼ 0: In this

case, the result f·g (which might be large) is computed first

even though the results of the AND gate is 0.

Some first steps for finding good orderings involve

traversing gates in circuit representations as described in

Ref. [7]. However, there also exist functions for which the

corresponding BDD size becomes exponential (indepen-

dent of the variable ordering). The most popular example

is the multiplier [2].

In Ref. [16], an approach based on partial information

has been proposed: if the BDD size becomes too large some

parts can be projected to a new “terminal” node, called U

for undefined. The drawback of this method is that the

complete functionality of the represented circuit is no

longer present and complete verification is not possible.

Fortunately, the resulting partial DD gives enough

information to compute at least some Haar coefficients.

This fact will allow us to formulate the equivalence

checking technique based on matching subsets of Haar

coefficients using only the partial BDDs.

To give a better understanding of partial BDDs,

including the value U, we consider the function from

Ref. [16] given by the table in Fig. 1. As can be seen, the

BDD for this function requires 6 non-terminal nodes (in

the following, we fix the variable ordering). We assume

that the memory of the BDD packages is limited to four

non-terminals nodes. Thus, complete construction is not

M. A. THORNTON et al.54

possible. However, if two runs are made using partial

information and the rest is projected to an undefined value,

U (see Figs. 2 and 3), we see that the complete function

can be obtained using two partial BDDs.

HAAR SPECTRAL DIAGRAMS

In Ref. [9], a directed graph referred to as a Haar

Spectral Diagram (HSD) is defined that represents the

Haar spectrum of a Boolean function. HSDs are

isomorphic to BDDs (with the exception that all BDD

terminal vertices are “mapped” to a common HSD

terminal vertex). This allows the BDD representation of a

function to double as a representation of the Haar

spectrum with extra memory storage required only in the

form of an additional edge-attribute value. The additional

storage is needed because all 1-edges in the HSD have a

Haar spectral coefficient as an attribute.

The enabling observation for defining the HSD is that

the Haar transformation matrix can be expressed in terms

of Kronecker products in natural order. The n-dimensional

transformation matrix that produces the coefficients in

natural order, T n, can be represented as a sum of matrices

denoted as A n and D n as given in Eq. (1).

T n ¼ An þ Dn ð1Þ

A n can now be defined by the Kronecker product

relation (denoted by the ^ operator) as:

An
1 0

0 1

" #
^An21 þ

0 0

1 21

" #
^Dn21 ð2Þ

The initial cases are A0 ¼ 0 and D0 ¼ 1: It is observed

that the first row of A n is all zeros and only the first row of

D n is non-zero, thus the spectral vector due to T n can be

represented by the two vectors due to A n and D n

separately. By using this observation and viewing a non-

terminal node of a BDD as pointing to two disjoint

subfunctions, we can represent the spectrum of the

subfunctions (the subfunctions spectra are actually scaled

by a constant in this case) as two different portions of the

entire vector due to T n. Figure 4 is similar to the diagram

originally appearing in Ref. [9] and illustrates this

relationship.

Using these observations, it is possible to represent the

Haar spectrum of a function by annotating all 1-edges of

the graph (and the pointer to the initial node) with Haar

spectral coefficients.

As an example, consider the Boolean function, f ¼

x1x2 þ �x3: Equation (3) gives the Haar spectrum for this

FIGURE 1 Complete BDD.

FIGURE 2 First incomplete BDD.

FIGURE 3 Second incomplete BDD.

FIGURE 4 Non-terminal in HSD.

HAAR TRANSFORM 55

function. If the T 3 matrix were used, the resulting spectral

vector would become ½H0;H4;H2;H5;H1;H6;H3;H7� ¼

½22;22; 0;22; 2;2 2; 2; 0�: These coefficients can be

used as annotation values on the Shannon decision

tree representing the example function as shown in

Fig. 5. As is well known, the corresponding BDD can

be formed by removing all isomorphic subgraphs and

redundant nodes from the decision tree representation.

If these reductions are carried out and the edge

annotations are retained, the BDD/HSD results as shown

in Fig. 6.

1 1 1 1 1 1 1 1

1 1 1 1 21 21 21 21

1 1 21 21 0 0 0 0

0 0 0 0 1 1 21 21

1 21 0 0 0 0 0 0

0 0 1 21 0 0 0 0

0 0 0 0 1 21 0 0

0 0 0 0 0 0 1 21

266666666666666664

377777777777777775

�

21

1

21

1

21

1

21

21

266666666666666664

377777777777777775
¼

22

2

0

2

22

22

22

0

266666666666666664

377777777777777775
ð3Þ

The entire spectrum can be recovered through traversals

of the HSD and several properties arise due to the BDD

reduction rules. As an example, any 1-edge that is

annotated by a negative value must point to either another

non-terminal node or the logic-0 terminal. Likewise, a

positive valued 1-edge attribute implies the reverse of this

rule. Furthermore, if a 1-edge attribute is 0-valued, it

cannot point to a terminal node since it would be removed

by the deletion rule. With knowledge of these properties

and a given HSD, the entire spectrum can easily be

reconstructed.

Using the example HSD in Fig. 6, it is immediately

apparent that H0 ¼ 22; H1 ¼ 2 and H3 ¼ 2 since these

values are explicit 1-edge attributes. It is also inferred that

H4 ¼ H5 ¼ 22 since all traversals from the x1 0-edge do

not encounter any x2 node. H6 ¼ 22 by the attribute value

on the 1-edge from the x3 node also since this edge is

FIGURE 5 Shannon decision tree with Haar coefficient 1-edge annotations.

FIGURE 6 Example HSD.

M. A. THORNTON et al.56

traversed for the path where x1 ¼ 1; x2 ¼ 0 and x3 ¼ 1:
Also, H2 ¼ 0; since the leftmost x2 node was removed

from the Shannon decision tree due to its redundancy.

Likewise, H7 ¼ 0 since the rightmost x3 node was

removed from the Shannon tree due to its redundancy.

MATHEMATICAL BASIS AND DERIVATION

In this section, the notation used throughout the remainder

of the paper is defined and relations between probabilistic

events and Haar spectral coefficients are derived.

Notation

The following notation is used:

. f ðx1; x2; . . .; xnÞ represents a fully specified Boolean

function of n variables that may also be represented by

the vector, X ¼ ðx1; x2; . . .; xnÞ:
. HT represents the transpose of the modified Haar

spectral coefficient vector representing some function,

f(X).

. Hi(f) represents the individual i-th Haar spectral

coefficient of the Boolean function, f(X), where

HT ¼ ðH0;H1; . . .;H2n21Þ: Hi is also represented as

Ho
s in some of the literature where o is the order of

the spectral coefficient and s is the s-th Haar

function [11].

. P[A] is the discrete probability that some event, A,

occurs.

. P[f] is the output probability of a Boolean function,

f, which is the likelihood that f ¼ 1 given the

distribution of the dependent variables in X.

. Si is the event that Hiðf Þ ¼ HiðgÞ; that is, the i-th

Haar spectral coefficients of f and g are equal in

value.

. E is the event that f ðXÞ ¼ gðYÞ; that is, the functions

f and g are functionally equivalent.

Haar Spectrum

This section will summarize the ideas about how output

probabilities can be used to compute the modified Haar

spectral coefficients directly as given in Ref. [18]. The

idea was developed by making observations about the

structure of the transformation matrix.

Each transformation matrix row consists of the integer

elements 21, þ1 and 0. An integer 21 represents the

Boolean 1 constant, an integer þ1 represents the Boolean

0 constant, and an integer 0 indicates the absence of a

Boolean constant. Each row represents a particular

modified Haar function, fc, dependent upon n or fewer

variables where n is the number of variables of f, the

function to be transformed.

Figure 7 contains the modified Haar transformation

matrix for any function of n ¼ 3 variables. It is noted that

higher ordered coefficients are computed from matrix row

functions with a decreasing range space dimension. In

fact, this decrease in the dimension of the range space

corresponds directly to various Shannon co-factors of the

function to be transformed.

The output vector of the function to be transformed

generally contains integers with 21 representing logic-1

and þ1 representing logic-0. With this viewpoint, we can

define the number of matches between a particular

transformation matrix row vector as the number of times

the row vector and function vector components are

simultaneously equal to 21 or þ1. Since some of the

rows represent functions that are masked by co-factors, the

row-function space is less than 23 in size and the presence

of a 0 value acts as a place holder.

The presence of co-factors in the Haar constituent

functions can be accounted for by using Bayes’ theorem to

represent these quantities as output probabilities of the

AND of the function to be transformed with its respective

dependent literals. These functions are shown to the left of

the transformation matrix in Fig. 7.

In order to determine the total number of matching

outputs between f and a row-function, it is necessary to

determine when both simultaneously evaluate to a logic-0

level as well as a logic-1 level. We denote the percentage

of the total number of matches of logic-0 between some f

and a row-function as pm0 and likewise for the logic-1

levels, pm1. With this viewpoint, the composite fc
expressions can be constructed (shown to the left of the

transformation matrix in Fig. 7 that utilize co-factors of

the function to be transformed to restrict the range space and

to dictate where the relative location of the valid output of the

fc function occurs in the 2n row vector components.

Given these observations, we see that the k-th modified

Haar spectral coefficient can be calculated as:

Hk ¼ 2n2i½2ðpm0 þ pm1Þ2 1� ð4Þ

where n is the dimension of the range space of the function

to be transformed, f, and i is the dimension of the range

space of a particular Shannon co-factor of f. If Nm

represents the number of times an intermediate product

value of þ1 occurs in the computation of a particular

modified Haar spectral coefficient (corresponding to 1 £ 1

and 21 £ 21 products) and Nmm corresponds to the

number of times a product value of 2 1 occurs

(corresponding to 1 £ 21 products), then the k-th

FIGURE 7 Example of modified Haar transformation matrix for n ¼ 3:

HAAR TRANSFORM 57

modified Haar spectral coefficient is given as:

Hk ¼ Nm 2 Nmm ð5Þ

It is noted that the sum of Nm and Nmm must necessarily

equal 2n2i where i indicates the number of variables about

which co-factors have been taken. Substituting this

observation into Eq. (5) yields:

Hk ¼ 2Nm 2 2n2i ð6Þ

We define pm to be the total percentage of times that a

matching output between the f and fc functions occur,

therefore pm ¼ 2n2i £ Nm: Furthermore, pm ¼ pm0 þ pm1:
Substituting these definitions into Eq. (6) yields the result:

Hk ¼ 2n2i½2pm 2 1� ð7Þ

The result of Eq. (7) reduces the computation of a single

modified Haar spectral coefficient to that of finding

matching percentages of identical similar outputs of f and

a transformation matrix row-function. This can be

accomplished by applying the output probability compu-

tation algorithm to an OBDD representation of the fc
functions. Using the result of Bayes’ theorem, the co-

factor output probabilities can be computed by ANDing

various cubes with the original function f and dividing the

result by the output probability of the cube itself, which is

a constant.

Table I contains symbols for each of the Haar spectral

coefficients (Hi) values that indicate the size of the co-

factor function range (i) and probability expressions that

evaluate whether the function to be transformed and the

row function simultaneously evaluate to logic-0

(denoted as pm0), or evaluate to logic-1 (denoted as

pm1).

By observing that the pm0 and pm1 expressions for a

given Hk in Table I are statistically independent, the

individual computations may be combined into a compact

form. As an example, consider H5.

Example 2 The divisor for the pm0 and pm1 expressions,

P[x̄1x2] is a constant equal to 1/2i and thus may be factored

out resulting in Eq. (4) being rewritten as:

Hk ¼ 2n2i½2iþ1ðpm0 þ pm1Þ2 1� ð8Þ

Since the Boolean expressions f ·�x1·x2·x3 and �f·�x1·x2·�x3

are disjoint, the overall probability may be computed as

the sum of the individual probabilities, or alternatively, as

the probability of the inclusive-OR of the functions. This

is true because it is easy to see that P½gþ h� ¼

P½g� þ P½h� for g and h that are covered by disjoint cube

sets.

Combining the Boolean arguments and simplifying:

f ·�x1·x2·x3 þ �f·�x1·x2·�x3 ¼ �x1x2ðx3%f Þ ð9Þ

Therefore, we can rewrite Eq. (8) as:

Hk ¼ 2n2i½2iþ1P½�x1x2ðx3%f Þ�2 1� ð10Þ

A

The manipulations used in Example 2 may be applied to

all of the modified Haar spectrum coefficients. This leads

to the interesting result that the modified Haar coefficients

depend on the set of nþ 1 Boolean relations,

{f %0; f %x1; f %x2; · · ·f %xn}; which describe the equival-

ence of a particular dependent variable, xi, and the

function to be transformed, f. We refer to this set of

functions as the characteristic equivalence relations.

Higher ordered coefficients are based on disjoint partitions

of the range space of these equivalence functions. The

partitioning is accomplished by ANDing the equivalence

functions with various cubes of other dependent variables

of f referred to as the characteristic cubes. The specific co-

factor that pm is computed from is given by the inherent

order of the dependent variables describing f.

Table II contains the probability functions for an n ¼ 3

variable transformation in terms of the characteristic

equivalence relations. Using this table, each coefficient

can be computed using Eqs. (11) and (12).

Hi ¼ 2n2j½2jþ1pm 2 1� ð11Þ

j ¼
0; i ¼ 0

blog2ðiÞc; i . 0

(!
ð12Þ

We can also compute the total number of possible

different valued coefficients for a particular i (or equiva-

lently, a particular j). We note that the Haar coefficients

range in value as given by { 2 2n2j;22n2j þ 2;22n2j þ

4; . . .;22; 0;þ2; . . .; 2n2j 2 4; 2n2j 2 2; 2n2j}: Thus, the

total number of possible different valued coefficients

(denoted by Nj) is given in Eq. (13).

Nj ¼ 2n2j þ 1 ð13Þ

Probabilistic Equivalence Checking

By the definition of event E and the assumption that all

functions of n variables are equally likely to arise (uniform

distribution), it is easy to see that:

P½E� ¼
1

22n ð14Þ

Since the Modified Haar spectrum for a given fully

specified Boolean function is unique [11], Eq. (15) also

TABLE I Relationship of the Haar spectrum and output probabilities

Symbol i n 2 i pm1 pm0

H0 0 3 P[f·0] P[f̄·0̄]
H1 0 3 P[f·x1] P[f̄·x̄1]
H2 1 2 P[f·x̄1·x2]/P[x̄1] P[f̄·x̄1·x̄2]/P[x̄1]
H3 1 2 P[f·x1·x2]/P[x1] P[f̄·x1·x̄2]/P[x1]
H4 2 1 P[f·x̄1·x̄2·x3]/P[x̄1·x̄2] P[f̄·x̄1·x̄2·x̄3]/P[x̄1·x̄2]
H5 2 1 P[f·x̄1·x2·x3]/P[x̄1·x2] P[f̄·x̄1·x2·x̄3]/P[x̄1·x2]
H6 2 1 P[f·x1·x̄2·x3]/P[x1·x̄2] P[f̄·x1·x̄2·x̄3]/P[x1·x̄2]
H7 2 1 P[f·x1·x2·x3]/P[x1·x2] P[f̄·x1·x2·x̄3]/P[x1·x2]

M. A. THORNTON et al.58

holds.

P½SijE� ¼ 1 ð15Þ

Equation (15) may be generalized for the occurrence of

any subset of q events, {Si}, to that shown in Eq. (16).

P
\q
i¼1

SijE

" #
¼ 1 ð16Þ

Also we see that P[Si] is the ratio of all possible

functions that yield the coefficient, Hi(f), divided by the

total population of 22n

. We define a counting function,

k(Hi), that is integer valued and yields the number of fully

specified Boolean functions for which the i-th Haar

spectral coefficient is Hi. Thus we can express this

relationship as shown in Eq. (17).

P½Si� ¼
kðHiÞ

22n ð17Þ

From probability theory, we know that Eq. (18) holds.

P½E
\

Si� ¼ P½SijE�P½E� ¼ P½EjSi�P½Si� ð18Þ

Using the relationships in Eqs. (14), (16) and (18), we

see that the conditional probability becomes:

P½EjSi� ¼
P½E�

P½Si�
¼

1

kðHiÞ
ð19Þ

In general, for any subset of events, {Si}, we have the

expression as given in Eq. (20).

P Ej
\q
i¼1

Si

" #
¼

P½E
T
ð
Tq

i¼1SiÞ�

P½
Tq

i¼1Si�

¼
1

22n

� �
1

P½
Tq

i¼1Si�

� �

¼
1

22n
P½
Tq

i¼1Si�
ð20Þ

Equation (20) is the governing expression for the

probabilistic equivalence checking technique described in

this paper. We see that given a subset of matching Haar

spectral coefficients for two functions, f and g, (or

alternatively, a subset of events, {Si}), the probability that

f and g are indeed equivalent may be computed. By

obtaining the information that a new event Si has occurred,

we may update the value P½
Tq

i¼1Si� thereby increasing the

value P½Ej
Tq

i¼1Si�:

Relation of Haar Coefficients to Probabilistic Events

This section will derive the relationship between the

probabilistic events, Si, and their dependence upon the

corresponding Haar spectral coefficients, Hi(f) and Hi(g).

The Haar spectral coefficients may be obtained through

the use of any efficient method such as those in Refs.

[8,9,18].

We note that given the i-th Haar spectral coefficient for

a function, f, and a function, g, there appear to be four

possibilities as given in Table III. It is seen that as soon as

Hiðf Þ – HiðgÞ occurs, it is possible to declare f – g and to

terminate the process of equivalence checking. However,

when Hiðf Þ ¼ HiðgÞ; it is not known whether f ¼ g or

f – g unless all possible Hi are found to be equivalent.

However, it is possible to successively refine the

P½Ej
Tq

i¼1Si� value using Eq. (20).

For this probabilistic scheme to be practically useful,

we need to determine the joint distribution, P½
Tj,2n21

i Si�;
as a function of the corresponding subset of Haar spectral

coefficients. We first consider the simple case of

determining a function for P[Si] that depends on the

single Haar spectral coefficient, Hi. For a single matching

coefficient, we are interested in finding, P½EjSi�: Since it is

known that P½E > Si� ¼ P½Si�P½EjSi�; we can express

the conditional probability as given in Eq. (21) since

P½Si� – 0:

P½EjSi� ¼
P½E > Si�

P½Si�
ð21Þ

The numerator of Eq. (21) is the percentage of functions

f and g that have a common Haar coefficient, Hi. Since all

equivalent functions have the same Haar spectra by the

uniqueness property of the transform, we see that P½E >
Si� ¼ 1=22n

: The denominator of Eq. (21) is the percentage

of functions that have a common Hi value. In general,

many different functions can have common Hi values. For

example, 6 out 16 possible functions of n ¼ 2 variables

have H0 ¼ 0: Based on the definition of the counting

function, k(Hi), we can then express P½Si� ¼ kðHiÞ=22n

and

TABLE II Relationship of the Haar spectrum and characteristic
equivalence functions

Symbol j n 2 j pm

H0 0 3 P½�0·f %0�
H1 0 3 P½�0·f %x1�
H2 1 2 P½�x1·f %x2�
H3 1 2 P½x1·f %x2�
H4 2 1 P½�x1·�x2·�f%x3�
H5 2 1 P½�x1·x2·f %x3�
H6 2 1 P½x1·�x2·f %x3�
H7 2 1 P½x1·x2·f %x3�

TABLE III Apparent possibilities given f, g, Hi(f) and Hi(g)

Function relation Hi relation Observation

f ¼ g Hi(f) ¼ Hi(g) Possible f ¼ g
f ¼ g Hi(f) – Hi(g) Not possible
f – g Hi(f) ¼ Hi(g) Possible f ¼ g
f – g Hi(f) – Hi(g) f – g

HAAR TRANSFORM 59

Eq. (21) is rewritten as Eq. (22).

P½EjSi� ¼
1

kðHiÞ
ð22Þ

The relationship between the characteristic equivalence

functions and the Haar spectral coefficients is established

in the following results.

Lemma 1 Two Boolean functions, f ðx1; x2; . . .; xnÞ and

gðx1; x2; . . .; xnÞ cannot be equivalent if it is true that

P½f %xi� – P½g%xi�:

Proof Assume the contradiction of the lemma, that is

P½f %xi� – P½g%xi�; but f ¼ g: Since f ¼ g; then it must

be true that f %xi ¼ g%xi and that P½f %xi� ¼ mf =2n and

P½g%xi� ¼ mg=2n where mf is the number of distinct 1-

values in the truth vector of f %xi and mg is the number of

distinct 1-values in the truth vector of g%xi: But since

P½f � ¼ P½g� and f %xi ¼ g%xi; it must be the case that

mf ¼ mg; thus contradicting the assumption that

P½f %xi� – P½g%xi�: A

Corollary 1 Two co-factors about the same cube of

f %xi and g%xi have identical output probabilities.

We denote fci as the function that is formed as the

intersection of some cube and i-th characteristic

equivalence function. Thus, fci depends upon all n

variables and pm ¼ P½f ci�: The total number of functions

with a common Hi value (denoted as k(Hi)), can be

computed as the total number of different fci functions that

have a common P[fci] due to Corollary 1. Therefore, k(Hi)

is the different number of ways that a function with a

range space of size 2n2j can have 2npm logic-1 values. This

combinatorial quantity must be scaled by a constant to

account for the decreasing magnitude of the Hi that are

distributed over the entire population of 22n

functions as i

increases. This scaling factor is seen to be 2N0 2 Nj where

Ni is defined in Eq. (13). Given these observations, k(Hi)

can be expressed as:

kðHiÞ ¼ 2N02Nj

2n2j

2npm

 !
ð23Þ

Using the fact that 2N02Nj ¼ 22n22n2j

and that pm ¼

ðHi þ 2n2jÞ=ð2nþ1Þ; we can reduce Eq. (23) to Eq. (24).

kðHiÞ ¼ 22n22n2j
2n2j

Hiþ2n2j

2

0@ 1A ð24Þ

Thus, we can rewrite Eq. (22) as shown in Eq. (25).

P½EjSi� ¼
1

22n22n2j

� � 2n2j

Hiþ2n2j

2

0@ 1A21

ð25Þ

As an example, consider the case where H0ðf Þ ¼

H0ðgÞ ¼ 2 for n ¼ 2 variables. To compute P½EjS0�; we

use the relationship in Eq. (25) resulting in P½EjS0� ¼ 1=4:
To successively improve the P½EjSi� value, it must be

updated with each subsequent event, Si. For a practical

implementation, this means that P½
Tj,2n21

i Si� must be

computed as a function of the corresponding Haar

coefficients, Hi. However, this value cannot be computed

as a simple product of individual P[Si] values since the

multiple Si events are not necessarily statistically

independent.

For the general case, we must re-compute P½
Tq

i¼1Si� for

each new event, Si, in order to update the P½Ej
Tq

i¼1Si�

value. Some events are statistically dependent while other

subsets are not. Recall that the values, Hi, depend on co-

factor functions of various characteristic equivalence

functions about some cube. A subset of events, {Si}, are all

statistically independent if they result from a correspond-

ing subset of matching Haar spectral coefficients, {Hi},

that are formed based on Shannon co-factors with respect

to mutually disjoint cubes. As an example, H2 and H3,

result from the functions �x1·f %x2 and x1·f %x2 which are

disjoint. Thus, P½S2

T
S3� ¼ P½S2�P½S3� since x̄1 and x1 are

disjoint characteristic cubes.

Not all events, {Si}, are statistically independent. As an

example, H0 and H1 are dependent since an intersection of

the co-factors of the characteristic equivalence functions

of H0 and H1 exists and is non-null. In order to find the

value P½S1

T
S0�; we generalize our definition of

the counting function to k(H0,H1) which will denote the

number of possible Boolean functions that may have both

H0 and H1 as Haar spectral coefficients. Given this

quantity, we may then express the desired joint probability

as given in Eq. (26).

P½S0

\
S1� ¼

kðH0;H1Þ

22n ð26Þ

In general, we have Eq. (27) resulting in Eq. (28).

P
\q
i¼0

Si

" #
¼

kðHi;Hiþ1; . . .;HqÞ

22n ð27Þ

P Ej
\q
i¼0

Si

" #
¼

1

22n
P½
Tq

i¼1Si�
¼

1

kðHi;Hiþ1; . . .;HqÞ
ð28Þ

To compute this joint probability distribution, we must

have some information concerning the dependent relation-

ship between individual k(Hi) and k(Hm) values. As an

example of this dependence, we will derive the relationship

between H0 and H1. For i ¼ 0; 1; the integer j is zero valued

yielding the relationships as shown in Eqs. (29) and (30).

H0 ¼ 2n½2pm0 2 1� ð29Þ

H1 ¼ 2n½2pm1 2 1� ð30Þ

For these two coefficients, we have the output

probabilities pm0 and pm1 that may be expressed as:

pm0 ¼ P½�0·f %0� ¼ P½�f� ¼
1

2
{P½�f�x1

� þ P½�fx1
�} ð31Þ

pm1 ¼ P½�0·f %x1� ¼ P½f %x1� ¼
1

2
{P½f x1

� þ P½�f�x1
�} ð32Þ

M. A. THORNTON et al.60

Thus, the corresponding Haar spectral coefficients

become:

H0 ¼ 2n{P½�f�x1
� þ P½�fx1

�2 1} ð33Þ

H1 ¼ 2n{P½�f�x1
� þ P½f x1

�2 1} ð34Þ

Equating the P½�f�x1
� values results in the relationship

between H0 and H1 as given in Eq. (35).

H1 ¼ H0 þ 2n{P½f x1
�2 P½�fx1

�} ð35Þ

Using the result of Eqs. (24) and (35), we have:

kðH1Þ ¼
2n

H1þ2n

2

0@ 1A ¼ 2n

H0þ2n{P½f x1
�2P½�fx1

�}þ2n

2

0@ 1A

¼
2n

H0þ2n

2
þ H12H0

2

0@ 1A ð36Þ

Using the identity relation:

n

k

 !
n 2 k

m 2 k

 !
¼

n

m

 !
m

k

 !
ð37Þ

We rewrite Eq. (36) as:

2n

H0þ2n

2

0@ 1A H0þ2n

2

H1þ2n

2

0@ 1A ¼ 2n 2 H1þ2n

2

H0þ2n

2
2 H1þ2n

2

0@ 1A 2n

H1þ2n

2

0@ 1A
ð38Þ

Equation (38) reduces to Eq. (39) and we define the

resulting quantity as the value A0,1.

A0;1 ¼
kðH0Þ

kðH1Þ
¼

2n 2 H1þ2n

2

H0þ2n

2
2 H1þ2n

2

0@ 1A H0þ2n

2

H1þ2n

2

0@ 1A21

ð39Þ

Thus, we have the result that the values k(H0) and k(H1)

are deterministically related as kðH0Þ ¼ A0;1kðH1Þ: Using

this fact, we devise a means for computing the desired

joint quantity, k(H0,H1). We know that for a given H0 and

H1 to exist for a single function, the corresponding

kðH0Þ2 A0;1kðH1Þ ¼ 0: Thus, it is possible to check all

possible k(H1) values for H1 ¼ { 2 2n;22n þ

2; . . .;22; 0; 2; . . .; 2n 2 2; 2n} and where the relationship

is satisfied, we increment the value of k(H0,H1). This may

be expressed in closed form through the use of the unit-

step function, u(t), as defined in Eq. (40).

uðtÞ ¼
1; t ¼ 0

0; otherwise

(
ð40Þ

Equation (41) then expresses the desired relationship.

kðH0;H1Þ ¼
X2nþ1

i¼0

u½kðH0Þ2 A0;1kðHiÞ� ð41Þ

The upper bound of the summation is the total number

of possible Haar spectral coefficients that can result for the

i ¼ 1 coefficient. Although the complexity of this

approach is prohibitive for low-ordered coefficients, Eq.

(41) can be algorithmically stated as follows:

1. Compute A0,1 based on the value of the Haar spectral

coefficients.

2. Initialize kðH0;H1Þ ¼ 0:
3. Iterate over all possible 2n þ 1 values of H1 and

evaluate if ðkðH0Þ2 A0;1kðH1Þ ¼¼ 0Þ then

kðH0;H1Þ þ þ

4. P½S0 > S1� ¼ ðkðH0;H1ÞÞ=22n

; or, P½EjðS0 > S1Þ� ¼

1=ðkðH0;H1ÞÞ:

This procedure can be generalized by deriving and

computing new Ai;j;...;k values each time a new event, Sk,

occurs and updating the P½
Tq

i¼1Si� and hence, the

P½Ej
Tq

i¼1Si� values.

In general, this procedure leads to exponential

complexity for updating all new k values. However, we

note that the multi-resolution nature of the Haar transform

allows us to determine subsets of coefficients that are

statistically independent, thus avoiding the computation of

large joint distributions. This can also be coupled with the

construction of the partial BDDs by constraining them to

represent mutually disjoint portions of the functions under

consideration. We also note that the decreased range space

dimension of high-ordered coefficients, Hi, can allow the

algorithm to run in reasonable time for those Hi.

EXAMPLE CALCULATION

As an example, consider Table IV which contains the Haar

spectral vectors for all possible functions of n ¼ 2

variables. We will assume that we are dealing with two

functions, f(x1,x2) and g(x1,x2) such that f and g are

equivalent to the function represented in the third row of

Table IV. Thus, the corresponding Haar spectral vector

TABLE IV All possible Boolean functions for n ¼ 2 and their Haar
spectra

Function (f) H0 H1 H2 H3 Expression

0 0 0 0 4 0 0 0 0
0 0 0 1 2 2 0 2 xy
0 0 1 0 2 2 0 22 xȳ
0 0 1 1 0 4 0 0 x
0 1 0 0 2 22 2 0 x̄y
0 1 0 1 0 0 2 2 y
0 1 1 0 0 0 2 22 x%y
0 1 1 1 22 2 2 0 x þ y
1 0 0 0 2 22 22 0 xy
1 0 0 1 0 0 22 2 x%y
1 0 1 0 0 0 22 22 ȳ
1 0 1 1 22 2 22 0 x þ ȳ
1 1 0 0 0 24 0 0 x̄
1 1 0 1 22 22 0 2 x̄ þ y
1 1 1 0 22 22 0 22 x̄ þ ȳ
1 1 1 1 24 0 0 0 1

HAAR TRANSFORM 61

is HT ðf Þ ¼ HT ðgÞ ¼ ðH0;H1;H2;H3Þ ¼ ð2; 2; 0;22Þ:
Figure 8 contains the Karnaugh maps and corresponding

partial and complete BDDs for the function f (or g). Note

that the BDDs are also interpreted as HSDs with the 1-

edges having an attribute equal to a Haar spectral

coefficient value. The coefficient attributes are shown on

the HSD/BDDs with an “*” indicating that the exact

coefficient could not be computed. From the center partial

HSD/BDD, we see that H2 ¼ 0 and from the rightmost

partial HSD/BDD we see that H3 ¼ 22:
From the partial BDDs, it is seen that only two Haar

spectral coefficients can be obtained, H2 and H3. This is

due to the fact that H0 and H1 require a completely

specified HSD since the corresponding transform matrix

rows have no 0-valued entries. For more practical cases

with much larger values of n, we obtain a larger fraction of

the total number of Haar coefficients than the 50%

obtained from this small example.

Using the previously derived equations, we have

kðH2Þ ¼ 8; kðH3Þ ¼ 4 and kðH2;H3Þ ¼ 2: These values

result in the probability values P½EjS2� ¼ 1=8; P½EjS3� ¼

1=4 and P½EjðS2 > S3Þ� ¼ 1=2: Furthermore, we note that

P½S2 > S3� ¼ P½S2�P½S3� ¼ ð1=2Þð1=4Þ ¼ 1=8 in this case

since S2 and S3 are statistically independent. The

independence arose from the fact that the two partial

BDDs represent disjoint segments of the range space of

the function. If this is ensured during the construction of

all partial BDDs, the joint computation of k(H2,H3) may

be avoided and P½EjðS2 > S3Þ� may be computed as given

in Eq. (42).

P½EjðS2 > S3Þ� ¼
1

22n
P½S2 > S3�

¼
1

22n
P½S2�P½S3�

¼
1

16ð1=8Þ
¼

1

2
ð42Þ

This result shows that there are only two possible

functions out of the population of 22n

¼ 16 that have H2 ¼

0 and H3 ¼ 22:

EXPERIMENTAL RESULTS

Experiments were formulated to investigate the effective-

ness of using Haar spectral coefficients for equivalence

checking. These experiments were run to observe the

average number of Haar coefficients needed before a

mismatch in value was found for two functions known to

be slightly different. The results also give an indication of

how different errors between two versions of a circuit

affect the number of required Haar coefficients for a

mismatch to be found.

The initial set-up for this experiment involved choosing

a single output from a benchmark function and randomly

inserting a single inverter in the netlist. Next, HSDs were

formed for the circuit with the inverter and without. To

ensure the two HSDs did indeed represent different

functions, a graphical equivalence checker was used. The

experiment consisted of randomly extracting pairs of

same-order Haar coefficients from the two representations

until two were found that differed in value. For each given

circuit error (that is, each given inverter insertion) 1024

trials were made.

Table V contains the results for 10 benchmark

functions, each with 10 different inverter errors. The

column labeled Inp contains the number of distinct

variables that the function depends on and the row labeled

avg is the average number of Haar coefficients (over the

1024 trials) that were required before a mismatch

occurred. Likewise, the row labeled dev contains the

standard deviation of the number of required Haar

coefficients. It is apparent that the standard deviation is

approximately the same value as the mean in all cases.

This is a result of the fact that the subset of Haar

coefficients was chosen randomly with the assumption

that each was equally likely for two designs that are

known to differ (i.e. a geometric distribution resulted in

terms of the average number of coefficients before a

mismatch occurred). Although this observation is largely

an artifact of our experimental setup, another result is the

large range in value of the required number of coefficients

in order to detect the differences in the two circuits. As an

example, we see that the benchmark frg1 has differences

in the averages that are as great as four orders of

magnitude (e.g. 70.1 versus 104225.8).

The data presented in Table VI was computed in order

to compare the Haar coefficient matching scheme to

random simulations. These results compare the average

number of required Haar coefficients to the number of

random simulations that must be performed before a

difference in the two circuits is detected. The simulations

were performed using equally likely, randomly generated

test vectors. The averages were formed over the 10 circuit

modifications described above with 1024 trials each. In

FIGURE 8 Karnaugh maps and HSD/BDDs of complete and partial
functions.

M. A. THORNTON et al.62

terms of comparing just the number of simulations to

required Haar coefficients, we see that each technique is

approximately equal since of the 21 benchmark functions

in Table VI, 13 required fewer coefficients than random

simulations.

However, we must point out the very important fact that

the computational overhead required to obtain a single

Haar coefficient is not equal to that for performing a

simulation. Furthermore, the assumption that the Haar

coefficients are equally likely to occur also biases these

results to some degree since the subset of coefficients

resulting from a specific partial HSD will have mutual

dependence due to the definition of the transform.

Nevertheless, we can conclude that the use of Haar

coefficients does appear to yield as much information as

random simulations over this sample of benchmark

functions. The importance of this result is that schemes

that allow for the computation of Haar coefficients more

efficiently than a netlist simulation can be used to increase

the effectiveness of statistical verification.

CONCLUSION

A method for probabilistically determining the equiva-

lence of two Boolean functions has been developed and

TABLE V Effect of different errors on Haar coefficient matching

Circuit Inp Inverter error (10 random trials)

c432 36 avg 58.0 24.8 474.1 15.9 58.3 9.6 8.2 8.4 97.5 56.4
dev 61.3 24.5 471.2 15.4 55.3 9.2 8.2 8.4 97.5 56.4

c499 41 avg 69.3 65.3 61.4 68.3 66.1 165.6 59.2 59.5 61.4 66.4
dev 70.4 66.6 60.1 66.9 65.3 163.4 58.9 58.9 60.1 61.1

c880 42 avg 669.3 393.4 36.6 160.7 768.6 134.7 69.4 75.5 46.8 74.2
dev 681.1 385.9 36.7 161.4 763.9 125.9 68.3 72.1 46.3 72.5

c2670 78 avg 29.9 9.2 10.5 128.1 7.5 62.8 9.7 5.5 18.3 117.6
dev 28.5 9.3 10.0 129.0 7.2 60.8 9.0 5.0 18.2 110.7

cm151a 12 avg 5.3 16.1 6.4 6.5 15.9 372.5 5.4 5.3 110.3 4.2
dev 4.7 16.3 5.9 6.1 15.8 403.2 5.1 4.7 109.0 3.5

cu 13 avg 22.5 16.1 48.5 80.2 162.6 253.3 182.1 30.7 225.8 11.1
dev 22.2 15.9 47.6 85.0 162.1 248.6 190.1 31.2 246.0 10.2

misex3 14 avg 326.6 28.1 579.5 337.1 303.1 234.0 47.0 54.5 131.4 79.4
dev 336.0 27.1 576.0 324.3 287.3 243.1 45.9 54.4 127.2 74.4

frg1 25 avg 39866.3 70.1 471.6 104225.8 1709.9 989.2 3025.0 12890.1 38287.1 1956.8
dev 38715.4 70.9 456.9 104031.3 1740.4 1018.6 2954.8 12954.8 38180.4 1992.8

too_large 36 avg 636.5 2559.8 104685.6 1169.4 640.6 1302.6 614.6 738.6 711.5 7888.4
dev 616.7 2667.7 103407.8 1176.7 609.8 1272.8 611.5 731.0 658.5 7798.7

t481 16 avg 810.6 503.9 415.2 53.3 3.1 1164.9 23.0 383.2 646.1 427.1
dev 760.4 508.1 425.4 52.0 2.6 1088.7 22.4 364.2 674.5 440.8

TABLE VI Average number of Haar coefficients before a mismatch occurs

Circuit Inp Avg number coefficients Avg number simulations

9sym-hdl 9 2.7 5.9
c2670.329 78 39.9 29.1
c432.432GAT 36 81.1 43.2
c499.OD31 41 74.2 252.4
c880.880GAT 42 242.9 119.1
cc.l0 7 16.0 3.8
cm150a 21 7373.9 55.1
cm151a.m 12 54.8 22.1
cm162a.r 11 33.5 27.3
cu.v 13 103.3 223.5
dalu.O7 57 3133.2 3584.3
frg1.d0 25 20349.2 26958.6
misex3.l2 14 212.1 1586.0
mux 21 29810.1 93.1
pcler8.q0 13 641.4 1567.7
pm1.c0 9 25.4 90.5
rd53-hdl.out , 2 . 5 6.8 9.8
t481 16 443.0 2214.2
too_large.n0 36 12094.8 94946.1
x2.p 10 15.9 31.3
z4ml.24 7 7.4 32.1

HAAR TRANSFORM 63

presented. We have combined the use of two notions;

partial BDDs [16] and the computation of Haar spectral

coefficients using a BDD as a HSD [9]. The probabilistic

framework has been derived for the equivalence checking

problem.

Experimental results indicate that this approach can be

a viable alternative for equivalence checking of functions

that are difficult to represent completely. The experiments

also indicate that this approach can be better in terms of

required computational resources as compared to a

repeated simulation approach.

Acknowledgements

This work was supported in part by NSF grants CCR-

9633085, SBE-9815371 and DAAD grant 315/PPP/gü-ab.

References

[1] Bryant, R.E. (1986) “Graph-based algorithms for Boolean function
manipulation”, IEEE Transactions on Computers 35, 677–691.

[2] Bryant, R.E. (1991) “On the complexity of VLSI implementations
and graph representations of Boolean functions with application to
integer multiplication”, IEEE Transactions on Computers 40,
205–213.

[3] Camurati, P., Prinetto, P. and Torino, P.di. (1988) “Formal
verification of hardware correctness: introduction and survey of
current research”, IEEE Computer Magazine July, 8–19.

[4] Devadas, S. (1993) “Comparing two-level and ordered binary
decision representations of logic functions”, IEEE Transactions on
CAD 12(5), 722–723.

[5] Devadas, S., Tony Ma, Hi-Keung and Newton, R. (1988) “On the
verification of sequential machines at differing levels of abstrac-
tion”, IEEE Transactions on Computers 7(6), 713–722.

[6] Drechsler, R. and Becker, B. (1998) Binary Decision Diagrams—
Theory and Implementation (Kluwer Academic Publishers,
Dordrecht).

[7] Drechsler, R., Hett, A. and Becker, B. (1997) “Symbolic simulation
using decision diagrams”, Electronic Letters 33(8), 665–667.

[8] Falkowski, B.J. and Chang, C.-C. (1994) “Efficient algorithms for
forward and inverse transformations between Haar spectrum and
binary decision diagram”, International Phoenix Conference on
Computers and Communications, pp 497–503.

[9] Hansen, J.P. and Sekine, M. (1997) “Decision diagram based
techniques for the Haar wavelet transform”, International
Conference on Information, Communication and Signal Processing,
pp 59–63.

[10] Hurst, S.L. (1981) “The Haar transform digital network synthesis”,
International Symposium on Multi-Valued Logic, pp 10–18.

[11] Hurst, S.L., Miller, D.M. and Muzio, J.C. (1985) Spectral
Techniques in Digital Logic (Academic Press Publishers, New
York).

[12] Jain, J., Bitner, J., Fussell, D. and Abraham, J. (1992) “Probabilistic
verification of Boolean functions”, Formal Methods in System
Design: An International Journal 1(1), 63–118.

[13] Keutzer, K. (1987) “Dagon: technology binding and local
optimization by dag matching”, Design Automation Conference,
pp 341–347.

[14] Madre, J.C. and Billion, J.-P. (1988) “Proving circuit correctness
using formal comparison between expected and extracted
behaviour”, Design Automation Conference, pp 205–209.

[15] Malik, S., Wang, A.R., Brayton, R.K. and Sangiovanni-Vincentelli,
A.L. (1988) “Logic verification using binary decision diagrams in a
logic synthesis environment”, International Conference on CAD, pp
6–9.

[16] Ross, D.E., Butler, K.M., Kapur, R. and Mercer, M.R. (1991) “Fast
functional evaluation of candidate OBDD variable ordering”,
European Conference on Design Automation, pp 4–9.

[17] Stavridou, V., Barringer, H. and Edwards, D.A. (1988) “Formal
specification and verification of hardware: a comparative case
study”, Design Automation Conference, pp 197–204.

[18] Thornton, M.A. (1997) “Modified Haar transform calculation using
digital circuit output probabilities”, International Conference on
Information, Communication and Signal Processing, pp 52–58.

Authors’ Biographies

Mitchell Thornton is an Associate Professor in the

Electrical and Computer Engineering Department at

Mississippi State University. He has served on the faculty

at the University of Arkansas for four years and has five

years of industrial experience. His research interests

include systems synthesis and verification, computer

architecture and arithmetic. He is a senior member of the

IEEE and the IEEE Computer Society.

Rolf Drechsler received his diploma and Ph.D. degree in

computer science from the J.W. Goethe-University in

Frankfurt am Main, Germany, in 1992 and 1995,

respectively. He was with the Institute of Computer

Science at the Albert-Ludwigs-University of Freiburg in

Breisgau, Germany and is now at the University of

Bremen. He published two books with Kluwer Academic

Publishers, one on BDD techniques co-authored by Bernd

Becker and one on using evolutionary algorithms for VLSI

CAD. His research interests include verification, logic

synthesis, and evolutionary algorithms.

Wolfgang Günther received his diploma in computer

science from the Albert-Ludwigs-University of Freiburg

in Breisgau, Germany in 1998. He is currently working at

the same institute as a PhD student in the group of Bernd

Becker. His research interests include formal verification,

logic synthesis, and evolutionary algorithms.

M. A. THORNTON et al.64

