
SYSTEM ENGINEERING THE MISSION CRITICAL

SOFTWARE RELEASE DECISION

Approved by:

__
Dr. Mitch Thornton, Ph.D. – Committee Chairman

__
Dr. Jerrell Stracener, Ph.D. – Dissertation Director

__
Dr. Khaled Abdelghany, Ph.D.

__
Dr. W. D. (Dave) Bell, D. Eng.

__
Dr. George Chollar, Ph.D.

__
Dr. Stephen Szygenda, Ph.D.

SYSTEM ENGINEERING THE MISSION CRITICAL

SOFTWARE RELEASE DECISION

A Dissertation Presented to the Graduate Faculty of

The School Of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Applied Science

by

Tim Woods

(B.S.E.E., Michigan Technological University)
(M.S.E.M., Southern Methodist University)
(M.S.S.E., Southern Methodist University)

December 18, 2010

Copyright 2010

Tim Woods

All Rights Reserved

iv

Woods, Tim B.S., Michigan Technological University, 1987
M.S., Southern Methodist University, 1995
M.S., Southern Methodist University, 2005

SYSTEM ENGINEERING THE MISSION CRITICAL
SOFTWARE RELEASE DECISION

 Advisor: Dr. Jerrell T. Stracener

Doctor of Philosophy conferred December 18, 2010

Dissertation completed October 15, 20010

 Mission critical software can be defined as software that a system requires to

perform its mission. Mission critical software may also be safety critical software.

Whether mission or safety critical, software is an integrated, crucial aspect in the

development of today’s complex systems. If the software fails, or is not able to perform

its intended purpose, there is a risk of system failure. Critical software requires

additional rigor during the design, development, release, and test life cycles to help

prevent system failures. This additional rigor may be imparted through proven processes

and analytical methodologies.

Systems engineering principles are used to develop an analysis driven,

quantifiable, Mission Critical Release Readiness Methodology (MCRRM) for releasing

mission critical software, focusing on the decision to release software from the

development process to the customer. A software release occurs in order to document the

current software and transfer the software to the customer. Multiple factors affect when

to release the software. The mission critical release readiness methodology is developed

v

through rigorous application of the systems engineering process starting from the

customer needs through design, development, implementation, test, and verification and

validation of the process itself. The application of the methodology is intended for

projects with multiple subsystems with varying levels of critical software being released

as part of an overall system. Validation and Verification (V&V) of the methodology was

accomplished via thorough testing and representative case studies.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES... xvi

LIST OF ABBREVIATIONS... xvii

INTRODUCTION .. 1

1.1 Background... 2

1.1.1 Software .. 2

1.1.2 Systems Engineering Defined... 6

1.1.3 Software And Systems Engineering ... 11

1.2 Mission Critical Release Readiness Methodology
Applicability ... 22

1.3 Using Systems Engineering To Improve The Software Release
Decision Process... 23

1.3.1 System of Systems Adds Complexity... 24

1.3.2 Software Complexity .. 25

1.3.3 Software Criticality... 26

1.3.4 Software Releases ... 27

1.4 Dissertation Organization... 29

2 CUSTOMER’S NEEDS/REQUIREMENTS ... 32

2.1 Process Inputs... 32

2.2 Research Customer Needs.. 32

2.3 Why Release Software?.. 33

2.4 Customer Needs.. 34

2.5 Customer Needs to Requirements .. 40

2.6 Summary of Customer’s Needs/Requirements .. 41

vii

3 REQUIREMENTS DEVELOPMENT ... 42

3.1 Requirements Analysis... 42

3.2 Requirements Analysis... 42

3.3 Verifiability of Requirements... 43

3.4 Derived Requirements .. 45

3.4.1 Minimum Performance ... 46

3.4.2 Software Release Decision Methodology Constraints.................. 46

3.5 Summary of Requirements Development .. 47

4 METHODOLOGY DESIGN SPACE AND ANALYSIS... 48

4.1 Systems Analysis and Control.. 48

4.2 Formulate Solution Design Space .. 49

4.3 Candidate Methodology Designs ... 49

4.3.1 Software Release Methodology Research 49

4.3.2 Software Release Methodology Brainstorming/White Boarding . 50

4.3.3 Informal Software Release Methodologies................................... 51

4.3.3.1 Bunch Of Guys Sitting Around a Table........................ 51

4.3.3.2 Squeaky Wheel Gets The Grease 52

4.3.3.3 Releasing Per the Plan.. 52

4.3.3.4 Schedule-Driven Development Program 53

4.3.4 Formal Software Release Methodologies 53

4.3.4.1 6C ... 53

4.3.4.2 Agile Software Development 55

4.3.4.3 COnstrunctive COst Model (COCOMO)..................... 56

4.3.4.4 EVOLVE .. 57

viii

4.3.4.5 Program Evaluation and Review
Technique ... 60

4.3.4.6 ShipIt .. 61

4.3.4.7 Stopping Rule or Software Reliability
Growth Model .. 62

4.3.4.8 System Evaluation and Estimation of
Resources – Software Estimating Model 63

4.3.4.9 Zero-Failure Method .. 65

4.4 Design Space Mapping Of Researched Software Release
Methodologies .. 66

4.5 Methodology Development Requirements... 69

4.5.1 Decision Analysis ... 69

4.5.1.1 Mission Critical Release Readiness
Methodology As A Decision Tool 70

4.5.2 Reducing The Number Of Software Releases 71

4.6 Requirements Update ... 72

4.7 Methodology Risk .. 73

4.8 MCRRM Design Space and Analysis Summary.. 78

5 METHODOLOGY DESIGN.. 80

5.1 Functional Analysis/Allocation .. 80

5.2 Choose Solution.. 80

5.3 Analyzing the Design Space... 81

5.4 More ARSD Functional Flow Block Diagramming..................................... 81

5.4.1 Provide Inputs ... 83

5.4.2 Verify Software Release Process Followed.................................. 83

5.4.3 Analyze Release Against Requirements 83

5.4.4 Calculate Release Readiness... 84

ix

5.4.5 Output Release Decision Analysis.. 84

5.5 Input/Output (I/O) System Diagram... 84

5.6 Analyze Software Release Decision Inputs.. 87

5.6.1 Contractual Obligations .. 88

5.6.2 Cost ... 88

5.6.3 Problem Reports ... 90

5.6.3.1 Problem Report Severity .. 91

5.6.3.2 Mitigate Problem Reports .. 92

5.6.4 Requirements .. 93

5.6.5 Resources .. 93

5.6.6 Software Release Plan .. 93

5.6.7 Software Release Process ... 94

5.7 Analyze Software Release Decision Sub-Function Outputs 94

5.7.1 Software Release Process Followed? ... 95

5.7.2 Software Able To Support Intended Purpose? 96

5.7.3 Software Release Affects Requirement V&V? 97

5.7.4 Software Release Requires Security Processing?......................... 97

5.7.5 Software Release Readiness ... 98

5.8 I/O Functional Flow Block Diagrams .. 98

5.9 Methodology Design Summary.. 101

6 DEVELOPING THE METHODOLOGY... 102

6.1 Design Synthesis .. 102

6.2 Develop Solution .. 102

6.3 Development... 103

x

6.4 Inputs and Outputs Review .. 104

6.4.1 Generic Software Release Process.. 105

6.4.2 Outputs.. 107

6.5 Sub-Functions... 107

6.5.1 Verify Software Release Process Followed................................ 108

6.5.2 Analyze Software Release Requirements 109

6.5.3 Calculate Release Readiness Metric ... 110

6.6 User Interface ... 121

6.6.1 Analytic Hierarchy Process User Interface................................. 121

6.6.2 TOPSIS User Interface ... 123

6.6.3 Output User Interface.. 128

6.7 Developing The Methodology Summary ... 134

7 VERIFICATION AND VALIDATION OF METHODOLOGY.............................. 136

7.1 Verification... 136

7.2 Verify And Validate Solution... 136

7.3 Analytic Hierarchy Process Verification.. 136

7.4 TOPSIS Methodology Verification.. 137

7.5 Methodology Verification .. 138

7.5.1 Methodology Testing.. 139

7.5.1.1 Case Study: Release Plan User Interface 139

7.5.1.2 Case Study: Analytic Hierarchy Process
Worksheet ... 142

7.5.1.3 Case Study: TOPSIS User Interface.......................... 143

7.5.1.4 Case Study: Dashboard ... 146

7.5.2 Verification Cross Reference Matrixes....................................... 148

xi

7.6 Sensitivity Analysis .. 151

7.6.1 Criterion Values .. 152

7.6.1.1 Resources: Personnel.. 154

7.6.2 Pairwise Comparison .. 161

7.6.2.1 Random Pairwise Comparisons And Fixed
Criterion ... 161

7.6.2.2 Random Pairwise Comparisons And
Varying Criterion.. 167

7.6.2.3 Random Pairwise Comparisons And
Varying All Criterion.. 168

7.7 Validation ... 168

7.8 Status .. 169

7.8.1 Design Space... 169

7.8.2 Development ... 170

7.8.3 Verification And Validation ... 170

7.8.4 Risk ... 171

7.8.5 Technical Performance Measure .. 173

7.9 Verification And Validation Of Methodology Summary........................... 174

8 SUMMARY AND CONCLUSIONS.. 175

8.1 Process Output.. 175

8.2 Present Results.. 175

8.3 Summary... 175

8.4 Conclusions .. 178

8.5 Future Work.. 179

APPENDIX... 181

References... 197

xii

LIST OF FIGURES

Figure Page

1 – BIOS, OS, and Application Software ... 4

2 – The Fundamental Systems Engineering Process .. 8

3 – SIMILAR Process (Bahil and Gissing) .. 9

4 – Systems Engineering "Vee" Model .. 9

5 – Spiral Model ... 10

6 – IEEE Std 610.12-1990 Sample Software Life Cycle.. 13

7 – Derived Software Development Process .. 14

8 – Release Software Functional Block Diagram... 15

9 – Need Identification And Solution Response Process ... 17

10 – Fundamental Systems Engineering Process ... 19

11 – Need Identification and Solution Response Mapped To Fundamental Systems
Engineering Process .. 21

12 – Lifecycle Stages (from INCOSE Handbook) ... 22

13 – The Defense Acquisition Management System (from DoD Instruction 5000.2,
December 8, 2008) .. 23

14 – Windows® Software Complexity Through Releases ... 26

15 – Process Coverage By Dissertation Chapter .. 31

16 – Tiered Organization .. 35

17 – Needs Elicitation Process.. 36

xiii

18 – Identified Candidate Methodologies Vs. Requirements ... 67

19 – DoD Risk Management Process ... 74

20 – Risk Matrix ... 75

21 – Methodology Risks ... 77

22 – Analyze Software Release Decision ... 82

23 – Analyze Software Release Decision I/O System Diagram....................................... 86

24 – I/O FFBD .. 99

25 – Analyze Software Release Decision ... 100

26 – Generic Software Release Process.. 106

27 – ARSD FFBD... 107

28 – Verify Software Release Process Followed.. 108

29 – Analyze Release Against Requirements ... 109

30 – Calculate Release Readiness... 119

31 – Complete Mission Critical Release Readiness Methodology................................. 120

32 – Analytic Hierarchy Process User Interface... 122

33 – MCCRM TOPSIS Worksheet UI ... 124

34 – Software Release Plan User Interface... 125

35 – Dashboard User Interface ... 129

36 – Dashboard Color Coding Example ... 130

37 – MCRRM Conditional Formatting Data .. 131

38 – Conditional Formatting Equations.. 132

39 – Case Study SW Release Plan.. 140

40 – Case Study AHP Worksheet ... 143

41 – Case Study TOPSIS Worksheet.. 145

xiv

42 – Case Study MCRRM Dashboard.. 147

43 – Sensity Test Runs.. 152

44 – Criterion Sensitivity Analysis Starting Point.. 153

45 – Dashboard Starting Point .. 154

46 – Personnel Increased to 9 ... 155

47 – Dashboard For 9 Personnel... 155

48 – Dashboard For 7 Personnel... 156

49 – Dashboard For 6 Personnel... 157

50 – Dashboard For 5 Personnel... 158

51 – Dashboard For 4 Personnel... 158

52 – Dashboard For 3 Personnel... 159

53 – Dashboard For 2 Personnel... 159

54 – Dashboard For 1 Personnel... 160

55 – Dashboard For 0 Personnel... 160

56 – Design Space Status.. 170

57 – Updated Risk Items... 173

58 – Complete Methodology .. 177

59 – Contractual Obligations Metric Warning ... 189

60 – Cost Dashboard Caution ... 190

61 – Cost Metric Caution.. 190

62 – Cost Metric Warning .. 191

63 – Problem Reports Dashboard Caution ... 191

64 – Problem Reports Metric Caution .. 192

65 – Hardware Metric Warning .. 192

xv

66 – Laboratories Metric Warning.. 193

67 – Software Release Process Metric Warning... 193

68 – Software Requirements Dashboard Caution... 194

69 – Software Requirements Metric Caution ... 194

70 – Software Requirements Metric Warning .. 195

71 – Software Release Plan Dashboard Caution .. 195

72 – Software Release Plan Metric Warning.. 196

xvi

LIST OF TABLES

Table Page

1 – Customer Needs For Software Release Decision Methodology................................. 37

2 – Methodology Requirements.. 41

3 – Methodology Requirements Verification Methods .. 44

4 – Derived Requirements .. 45

5 – Risk Likelihood... 75

6 – Risk Consequence... 76

7 – Methodology Risk Mitigations ... 78

8 – Example Problem Reporting Severity States.. 92

9 – Software Mehodologies And Tools Risk Item ... 105

10 – Saaty's Analytic Hierarchy Process Rating Scale ... 117

11 – Case Study Relevant Problem Reports ... 144

12 – Requirement Verification Cross Reference Matix.. 149

13 – Derived Requirements Verification Cross Refernce Matrix................................... 150

14 – Sensitivity Analysis Results.. 166

15 – Results Analysis.. 167

16 – Methodology Risks and Mitigation Plans... 172

xvii

LIST OF ABBREVIATIONS

AHP – Analytic Hierarchy Process

ASD – Adaptive Software Development

ASRD – Analyze Software Release Decision

BIOS – Basic Input/ Output System

BOGSAT – Bunch Of Guys/Gals Sitting Around a Table

COCOMO – COnstructive COst Model

CMMI – Capability Maturity Model Integration

DoD – Department of Defense

DSDM – Dynamic Systems Development Method

FFBD – Functional Flow Block Diagram

GNU – GNU's Not Unix

INCOSE – International Council On Systems Engineering

IO – Input/Output

KSLOC – Thousands of Source Lines Of Code

LOC – Lines Of Code

MCRRM – Mission Critical Release Readiness Methodology

NASA – National Aeronautics and Space Administration

xviii

N/A – Not Applicable

OS – Operating System

PERT – Program Evaluation and Review Technique

QFD – Quality Function Deployment

SE – Systems Engineering

SEER-SEM – System Evaluation and Estimation of Resources – Software

Estimating Model

SEP – Systems Engineering Process

SLOCS – Source Lines Of Code

SoS – Systems of Systems

SRGM – Software Reliability Growth Model

SRM – Software Release Manager

SME – Subject Matter Experts

SW – Software

TOPSIS – Technique for Order Preference by Similarity to Ideal Solution

TPM – Technical Performance Measurement

UI – User Interface

V&V – Verification and Validation

VCRM – Verification Cross Reference Matrix

xix

ACKNOWLEDGEMENTS

This journey was not taken by me alone. I was accompanied by family, committee

members, friends, and co-workers during this journey. No one was more a part of this

journey or more important than my wife, Dawn Woods. She did not journey as a passenger,

but as my co-pilot, navigator, and occasionally even as pilot, helping to guide and direct me

when my path strayed and taking control when other distractions made the journey seem

impassable. Her guidance, support, and love gave me strength, and for that, I am grateful.

My parents, Tom and Karla Woods, provided the foundation of the journey and faith

along the journey. The Woods and Tormohlen families, especially Ed and Eleanor

Tormohlen, inspired me and provided encouragement when needed.

My committee guided and mentored me on this journey and I could not have made it

without them. I thank them for all they did. Dr. Stracener not only provided thesis advising,

but also guidance and mentoring that will be useful in the years to come. Dr. Thornton

provided inspiration for reaching far beyond what I thought was possible. Dr. Szygenda’s

guidance and viewpoint made the journey bearable. Dr. Abdelghany provided critical

guidance during the journey and especially as the journey was nearing completion. Dr. Bell

provided critical direction in my decision to begin the journey and welcomed consultation

during the journey. Dr. Chollar’s insight and analytical guidance kept the journey on track

xx

and within reach. I am humbled and very grateful for all my committee did on my behalf and

again, thank them.

 I cannot thank all my friends and co-workers enough for their inquiries on my status

and continued support during the journey. I would like to especially thank Dr. Skinner and

Dr. Zummo for their assistance and friendship during our educational journeys. They

allowed me glimpses into their journey and provided much needed consultation during mine.

My daughters, Cayla and Corinna, were passengers and inspirational on this part of

my educational journey. I hope they see education as a journey to take and not a merely a

task and hope that I can provide inspiration to them during their personal journeys, as they

have inspired me.

Chapter

1

Chapter 1

INTRODUCTION

 Mission critical software can be defined as software that a system requires to

perform its mission. Mission critical software may also be safety critical software.

Whether mission or safety critical, software is an integrated, crucial aspect in the

development of today’s complex systems. If the software fails, or is not able to perform

its intended purpose, there is a risk of system failure. Critical software requires

additional rigor during the design, development, release, and test life cycles to help

prevent system failures. This additional rigor may be imparted through proven processes

and analytical methodologies.

Systems engineering principles are used to develop an analysis driven,

quantifiable, Mission Critical Release Readiness Methodology (MCRRM) for releasing

mission critical software, focusing on the decision to release software from the

development process to the customer. A software release occurs in order to document the

current software and transfer the software to the customer. Multiple factors affect when

to release the software. The mission critical release readiness methodology is developed

through rigorous application of the systems engineering process starting from the

customer needs through design, development, implementation, test, and verification and

validation of the process itself. The application of the methodology is intended for

projects with multiple subsystems with varying levels of critical software being released

2

as part of an overall system. Validation and Verification (V&V) of the methodology was

accomplished via thorough testing and representative case studies.

A software release consumes both time (schedule and personnel time) and

resources (personnel, computers, media, etc.). Software releases can also negatively or

positively effect customer satisfaction. The developed mission critical release readiness

methodology analyzes the software release decision as a system in itself and uses

analytical methodologies to determine the optimal system (software release decision)

solution based on the current program and system states, while providing the software

release decision maker with quantitative analysis on the release decision with the intent

of reducing overall program cost, schedule, and risk, while increasing customer

satisfaction.

1.1 Background

1.1.1 Software

Merriam-Webster’s online dictionary defines software as something used or

associated with and usually contrasted with hardware: as the entire set of programs,

procedures, and related documentation associated with a system and especially a

computer system; specifically: computer programs [14]. In today’s technological

society, software is ubiquitous. Software is used in everyday items from cars, to

microwaves, to pacemakers. Software runs on some type of hardware. The type of

3

hardware, microcontroller, personal computer, etc., being used does not concern us at this

time. What may concern us is what type of software is being developed and released,

with type referring to one of the following: 1) Basic Input/ Output System (BIOS); 2)

Operating System (OS); or 3) application software.

The BIOS normally comes from the hardware vendor and is provided as a part of

the hardware to allow the other types of software to access the hardware’s specific

capabilities. BIOS’ major task is to load the operating system for the hardware.[26] At

some time in the development phase, computer hardware does not have a operating

system loaded. It is the BIOS that permits the hardware to load operating system

software.

BIOS and the operating system software can be further classified as systems

software as they both control the hardware functions [27]. The operating system

manages the resources of the hardware – both hardware and software while allowing the

application software to access those same resources in a stable and consistent

environment [27]. Widely known operating systems include Microsoft Windows®,

UNIX, Linux, and Mac OS.

Application software is different than system software as it is written for the user

to perform some task or set of tasks using the operating system to manage the hardware

resources [27]. Application software does not normally control the hardware resources

directly. Examples of application software uses are: listen to and record music; develop

software; develop a presentation; write a document; surf the web; manage data; etc.

The interactions of BIOS, operating system and application software are shown in

Figure 1 – BIOS, OS, and Application Software. BIOS software is shown interacting

4

with portions of the hardware- just enough to get the operating system loaded. The

operating system interacts with all of the hardware. And the application software, shown

with some example applications, is a byproduct of the interactions of the BIOS and

operating system software.

Figure 1 – BIOS, OS, and Application Software

The BIOS software used by one vendor does not necessarily have to match that of

another vendor, but the software will be similar. Other aspects of BIOS are that it is very

specialized software performing well known actions and therefore does not require many

updates.

Operating system software continues to evolve and change – some changes are to

add features and capabilities, some changes are due to security exploits of the software.

The operating system interacts with both the BIOS and application software, but the

5

operating system software is written for a particular computer or application and is not

normally encompassed of multiple releases of differing software. So while the operating

system appears to be more complex than BIOS software, it would appear there is a more

complex release problem waiting to be solved.

Application software interacts with the user, which does add complexity to the

software just due to human interaction. Adding to the complexity is interacting with OS

software. The problem of when to release application software could be complex. Just to

insure the problem is not overly simple, what if application software interacted with the

user, OS and other application software?

Imagine a system consisting of multiple other smaller systems and several of

those systems are composed of hardware and application software. Assume this

imagined system’s smaller systems are interrelated and require some aspect of the other

systems to perform their intended purpose. Now imagine having to decide when to

release the system, which of course means deciding when to release the smaller systems

software. Now the application software is dealing with the OS, the user, and other

application software. Now there is a problem to solve.

Before getting too comfortable with this problem, let’s add to the complexity by

releasing mission critical software. Depending upon the application and the system using

the software, mission critical software may also be flight critical or even safety critical.

Now we have a problem to solve – how to decide when to release mission critical

software for a system composed of smaller systems.

6

1.1.2 Systems Engineering Defined

The International Council On Systems Engineering (INCOSE) defines systems

engineering as an interdisciplinary approach and means to enable the realization of

successful systems [15]. The realization of successful systems requires systems engineer

to be able to focus on development of hardware and software, system integration, system

test, system support and reliability, and system disposal. INCOSE further states that

systems engineering focuses on defining customer needs and required functionality early

in the development cycle, documenting requirements, then proceeding with design

synthesis and system validation while considering the complete problem: Operations;

Cost & Schedule; Performance; Training & Support; Test; Manufacturing; and

Disposal.

Engineering has been practiced for years – traceable back to stone tools and

man’s desire for fire [32], but systems engineering was not formalized until more recently.

Systems Engineering is believed to have roots born in the 1940s in the

telecommunication industry [18] and [31] and in the military development process used

on the ballistic missile programs of the mid-1950s [16]. With its basis in processes and

formal methods, systems engineering’s formalization in the telecommunications and

ballistic missile systems was a natural extension of engineering principles. INCOSE, a

systems engineering professional organization, was started in 1990 [33] and as of

December 2008 had over 6,700 members [35].

Although systems engineering is known for its processes and procedures, it is not

a one size fits all with respect to processes and methodologies. Systems engineers have

developed several processes to apply, depending upon the system under development.

7

Additionally, systems engineering allows for customization of processes to align with the

system and problem being worked.

As part of this research, systems engineering processes were researched and

reviewed for their applicability to deciding when to release software. A systems

engineering process was then chosen and a customization of the process developed and

applied to the problem under study.

Figure 2 illustrates the fundamental systems engineering process and is described

below from systems engineering fundamentals [17] and [16].

The Systems Engineering Process (SEP) is a comprehensive, iterative and

recursive problem solving process, applied sequentially top-down by integrated

teams. It transforms needs and requirements into a set of system product and

process descriptions, generate information for decision makers, and provides

input for the next level of development. The process is applied sequentially, one

level at a time, adding additional detail definition with each level of development.

8

Figure 2 – The Fundamental Systems Engineering Process

Another systems engineering process is the SIMILAR Process, shown in Figure 3

– SIMILAR Process (Bahil and Gissing). SIMILAR is the acronym for the seven steps of

the process: State the Problem, Investigate Alternatives, Model the System, Integrate,

Launch the System, Assess the Performance, and Re-evaluate.

9

Figure 3 – SIMILAR Process (Bahil and Gissing)

A modified Forsberg and Mooz systems engineering “Vee Model” is shown in

Figure 4 [91]. The “Vee Model” is a top down, bottom up approach useful in

decomposing systems into finer levels of details and then integrating and testing at those

levels on the way up the left side of the “Vee”.

Figure 4 – Systems Engineering "Vee" Model

Several processes have been developed for applying systems engineering to

software development. Boehm’s Spiral development model is one such model and is

10

shown in Figure 5. The Spiral model is useful in projects where the design and therefore

the requirements are not fully developed at program onset [36].

Figure 5 – Spiral Model

The spiral model was developed specifically for software development. Although

the problem under consideration, assisting with the software release decision, deals with

software, it is the process and decision making regarding the problem that is focus of this

paper. Any of the system engineering models and processes could be adapted to the how

to decide when to release problem, but the fundamental systems engineering process

11

aligns well with implementing a decision process and therefore will be used as the base

model for the problem of how to decide when to release software.

1.1.3 Software And Systems Engineering

 The added complexity of the software in systems today adds to the costs of

developing a system, but not adhering to strong software development processes and not

following good requirements management processes will increase the development costs

also [20]. With complex, mission critical software complicating release planning and

decision making, systems engineering, and its focus on realizing successful systems, is

used to develop a methodology for assisting in the decision making process for releasing

mission critical software.

The software and systems engineering fields are not currently well integrated,

although there are several initiatives underway to do just that, e.g. Capability Maturity

Model Integration (CMMI). And we are not trying to integrate the fields, just applying

systems engineering to solve a software process problem. Both software and systems

engineering have their own domains and tools, processes and best practices unique to the

tasking in their area. This paper borrows some tools and processes from each field and

applies them to solve a problem.

Software has evolved since its start with Jaquard using punch cards in a weaving

loom to perform predefined tasks in the early 1800’s [22]. Interesting enough, 180 years

after software’s start; the American Society for Engineering Management was using

computer cards for a mailing list [23] and students on college campuses across the United

12

States were still using punch cards in their programming classes. As Platt says in his

book, “Fifteen years ago – even ten – ordinary people didn’t use software in their daily

lives…That’s changed completely, almost overnight in societal terms and seemingly

without our noticing it.” [58] The tools used to develop software have evolved beyond

punch cards, but this is not a discussion on software development or its difficulties. As

the INCOSE Modeling and Systems engineering workgroup stated, “Software doesn’t fly

and wings don’t go far on their own [24].” At some point, the software and hardware

must be integrated to allow the complete system to operate. In order for this integration

to occur, the software must make it through the development process and then through a

release process to be released for use. The problem is the difficulties encountered when

releasing mission critical software for its intended purpose. The problem area will be

researched and a solution will be developed.

Releasing software sounds easy enough, just decide when to release and move on,

but the release decision is multi-dimensional problem. If the software is released too

soon, it may not be able to support its intended purpose, be too buggy or customers may

not upgrade because they just bought the last version. Release the software too late and

customers may be lost through competitors releasing earlier versions, customers may not

upgrade because the older version no longer works, or the purpose for the software has

been lost. Throw in contractual, fiscal, personnel, and resource issues and the release

decision process difficulty increases.

Figure 6 shows the IEEE Std 610.12-1990 definition for a sample software life

cycle [86]. A generic software process can be derived from the software life cycle.

Combining Concept Exploration and the Requirements cycles into one process activity,

13

dividing the Installation and Checkout cycle into two process activities, and combining

Operation and Maintenance and Retirement cycles, a generic software process can be

derived. A top-level functional flow block diagram for the software development process

is shown in Figure 7.

Figure 6 – IEEE Std 610.12-1990 Sample Software Life Cycle

A functional flow block diagram conveys what must happen in a time sequence

for the item being diagramed [16]. Additionally, a functional flow block diagram may

be used to assist in deciding the functions the item must accomplish and to provide a time

sequence for the item. A functional flow block diagram also allows the user to develop

the functions of the item under development and show the functions and sub-functions in

a graphical representation. The functional flow block diagram will be used throughout

14

the development of the mission critical release readiness methodology. The derived

software process shown consists of 7 functions: 1.0 – Develop Software Requirements;

2.0 – Design Software; 3.0 – Develop Software; 4.0 – Test Software; 5.0 Release

Software; 6.0 – Deliver Software; and 7.0 – Support Software. Although all aspects of

software development factor into the software release decision, the mission critical

release readiness methodology is in regards to function 5.0 – Release Software. Other

aspects of software development will be discussed as required to support consideration of

how to decide when to release the software.

Figure 7 – Derived Software Development Process

The Release Software function consists of four sub-functions. The top-level

software development process and the release software sub-function are shown in Figure

8. The four sub-functions of Release Software are: 5.1 – Analyze Software Release

Decision; 5.2 – Decide to Release Software; 5.3 – Receive Approval To Release

Software; 5.4 – Perform Software Release. The mission critical release readiness

methodology develops processes and methods for the release software sub-function 5.1 –

Analyze Software Release Decision. The remaining release software sub-functions are

not developed further in this discussion, other than as required to support sub-function

5.1.

15

Figure 8 – Release Software Functional Block Diagram

The software release decision maker decides when to release the software. The

decision maker may be a software manager, a project manager, or maybe even a program

director. Again, software releasing sounds easy enough, just decide when to release and

move on. Easy enough, that is, until one encounters change.

Everything in software changes. The requirements change. The design changes.

The business changes. The technology changes. The team changes. The team

members change. The problem isn’t change, because change is going to happen;

the problem, rather, is our inability to cope with change.[25]

Changes during the software development process complicate the software release

decision. Fortunately, the decision maker has a multitude of tools at their disposal to

assist in the release decision process. Unfortunately for the decision maker, the ultimate

decision still rests upon them. The software release decision maker must decide not only

16

the usefulness of any tool inputs, but the timing of the release in the perspective user’s

eyes, the effect on the organization of releasing software, the ability of the software to

support its intended purpose, and how to overcome their own personal views on when the

software should be released.

A systems engineering approach will be used in considering how to decide when

to release software. The systems engineering approach aligns well with problem solving

and will provide useful foundations from which to consider. Although there are many

approaches to applying systems engineering, the fundamental systems engineering

approach will be used to solve the software release system. The fundamental systems

engineering process is tailored to fit how to decide when to release the software.

As a first step, the process used to identify, analyze, solve, and verify and validate

the methodology was developed. The process develop is given in Figure 9.

17

Figure 9 – Need Identification And Solution Response Process

The process developed defines a need identification step, with a control loop

through a literature search to determine if the need identified has been solved. If the

literature search did not find an adequate solution, detailed research on the need will be

performed to determine if the need is still not adequately solved. If the detailed research

determines the need is not adequately solved, customer needs are researched to determine

the validity of the need and whether an adequate solution is developable. Next,

18

requirements are developed and analyzed based upon the customer needs researched

previously. After requirements analysis, a design space of possible solutions is mapped

to assist in determining alternative solutions and their relations to the other identified

solutions. Given the design space, trades are performed to determine a solution that

appears to fill the customer needs and developed requirements. The chosen solution’s

design is developed and tested for operability. The solution is then verified against the

requirements and then validated against the customer needs. Finally, the results are

presented.

The developed need identification and solution process is a tailoring of the

fundamental systems engineering process. The fundamental systems engineering process

consists of the following sub-processes: 1) Process Inputs; 2) Requirements Analysis; 3)

System Analysis and Control; 4) Functional Analysis/Allocation; 5) Synthesis; 6)

Verification; and 7) Process Output. The fundamental systems engineering process is

shown in Figure 10. As a matter of convention, sub-processes will be indicated by

italicized text for the remainder of this paper.

19

Figure 10 – Fundamental Systems Engineering Process

Figure 11 maps the need identification and solution response process (Figure 9) to

the fundamental systems engineering process (Figure 10). The fundamental systems

engineering’s sub-process of Process Input maps to the need identification and solution

response’s sub-processes of Identify Need through Develop Requirements. The

Requirements Analysis sub-process of each process map to each other. The fundamental

systems engineering’s sub-process of System Analysis and Control (Balance) maps to the

Formulate Solution Design Space sub-process of the need identification and solution

20

response process. The Functional Analysis And Allocation sub-process from

fundamental systems engineering process maps to the need identification and solution

response’s sub-process of Perform Solution Trade Analysis. The fundamental systems

engineering process activity of Synthesis maps to the Develop Solution activity of the

need identification and solution response process. The fundamental systems

engineering’s sub-process of Verification and Process Outputs map to the Verify and

Validate Solution and Present Results activities of the need identification and solution

response process.

21

Figure 11 – Need Identification and Solution Response Mapped To Fundamental

Systems Engineering Process

22

1.2 Mission Critical Release Readiness Methodology Applicability

A mission critical release readiness methodology would be applicable to

commercial and Department of Defense (DoD) projects developing software for mission

critical systems. The mission critical release readiness methodology’s applicable lifecycle

stages would span from Concept through Support for a commercial project as shown in

Figure 12 and Material Solution Analysis through Operations & Support for DoD

projects as shown in Figure 13. The development of the mission critical release readiness

methodology will focus on its applicability to DoD projects and the expansion to

commercial projects will be left for future work.

Life Cycle Stages
Concept

Development

Production

Utilization

Support

Retirement

Figure 12 – Lifecycle Stages (from INCOSE Handbook)

23

Figure 13 – The Defense Acquisition Management System (from DoD

Instruction 5000.2, December 8, 2008)

Focusing development of the mission critical release readiness methodology on

DoD projects simplifies calculations of project data as some factors such as time to

market, market share, etc. will not be included.

1.3 Using Systems Engineering To Improve The Software Release Decision

Process

Today’s complex systems are becoming more and more integrated, as evidence by

the growing field of System of Systems (SoS). Consequently, software is being

integrated with other processors within a subsystem and across interfaces within the total

system itself, increasing the: complexity of software; number of subsystems requiring

software; and the schedule nuances of performing a software release; emphasis placed on

integrated system releases of software; and the activities required to certify software for

release. Applying systems engineering processes and tools should improve the software

release decision process.

24

1.3.1 System of Systems Adds Complexity

System of systems, as the name implies, is a system comprised of other systems.

A system composed of other systems adds additional complexity, performance

constraints, and integration challenges. For instance, cars today may have 50

microprocessors controlling everything from the engine to the air bag [1]. Every

microprocessor runs its own software and probably interfaces with additional

microprocessors, driving additional complexity in the form of additional interfaces,

timing issues, subsystems requiring software, and countless unnamed integration

problems often resulting in reduced SoS reliability, safety, and higher risk. The Drive By

Wire [2] technology for future cars, will only increase a car’s complexity and integration

challenges. Drive By Wire is similar to the Fly By Wire flight control system for aircraft

where the mechanical linkage between the pilot controls and the surfaces are replaced

with wires that send the commands from the controls to the surfaces in order to move the

surfaces on the aircraft. In Drive By Wire, the mechanical linkage from the steering

wheel is replaced by wires that send the signals needed to steer the car. In the past cars

could be serviced by mechanically inclined individuals who did not mind getting their

hands dirty. Today, one needs an advanced understanding of software products to service

cars and the person making the car’s software release decision probably has an advanced

software or maybe even an advanced systems engineering degree assist them in making

the release decision.

 When the question is asked, “How much testing is required?” the answer is in the

form of as much resources as are available [85]. However, it is neither economical nor

25

cost effective to test the software in every conceivable operational condition. Beyond the

economical and cost constraints, it is just not possible [51].

1.3.2 Software Complexity

Not only are today’s systems of systems becoming more complex, but the

software for the SoS is becoming more complex almost on a daily basis. Software

complexity can be measured in many ways [[87], [88], and [89]]. The number of Lines

Of Code (LOC) influences the complexity calculations and by itself gives a relative idea

of software complexity, the more lines of code, the more complex the software. Looking

at operating systems line of code count shows an interesting trend [6]:

Real systems show no signs of becoming less complex. In fact, they are becoming

more complex faster and faster. Microsoft Windows is a poster child for this trend

to complexity. Windows 3.1, released in 1992, had 3 million lines of code;

Windows 95 has 15 million and Windows 98 has 18 million. The original

Windows NT (also 1992) had 4 million lines of code; NT 4.0 (1996) has 16.5

million. In 1998, Windows NT 5.0 was estimated to have 20 million lines of code;

by the time it was renamed Windows 2000 (in 1999) it had between 35 million

and 60 million lines of code, depending on who you believe.

Windows Vista® reportedly contains 50 million lines of code [7]. The number

of software releases for a product with 50 million lines of code has to be large.

26

Imagine performing only one software release for a product with 50 million lines of

code.

Figure 14 – Windows® Software Complexity Through Releases

1.3.3 Software Criticality

The very ubiquitousness of software makes it mission critical in many systems.

Adding to the criticality of software is the sheer complexity of today’s systems. The

complexity and integration requirements of a SoS affects the system’s software safety

and impacts the software’s criticality. As Leveson [3] points out:

Today we are building systems – and using computers to control them – that have

the potential for large-scale destruction of life and the environment: Even a single

accident may be disastrous.

27

Software criticality is given a new meaning when one works with application

software that could injure or kill someone. A software developer on the space shuttle

summed it up by saying, "If the software isn't perfect, some of the people we go to

meetings with might die.” [21] Today’s added complexity, additional requirements, and

criticality of software, means the decision of when to release software is becoming as

complex as the software itself. Add to the complexity the problem of multiple, integrated,

software releases for a single system and the software release decision is not a decision

that can be made easily. We will use systems engineering principles to develop an

integrated software release decision methodology that considers the complexity,

integrational aspects, and criticality of today’s systems to realize a successful software

release.

1.3.4 Software Releases

Many tools are available to assist in the planning of software releases. Mission

critical software complicates software release planning. If the software is released, and

does not function correctly, then the system may not support its intended purpose.

Software that does not support its intended purpose could cause cost, schedule, or

resource impacts to the developer or the customer of the software. Whereas various tools

for planning software releases exist, the recommendation to release mission critical

software is normally made by a team of experienced engineers, who have established that

the software development and release processes were followed and that the software can

support its intended purpose and may be partially based on the output of a tool – which

28

probably contains software itself. The team and tools provide recommendations to the

software release decision maker, who has the ultimate say in when to release the software.

In today’s developing environment, a systems engineer probably assisted in developing

the software development and release processes.

In order to reduce confusion, some definitions are required. A literature search

revealed many terms and definitions related to software releases [8, 9, 10, 11]. We

define production software release as a release to the end customer that has been

validated and verified through modeling, simulation, and test to meet the requirements for

that software release. An interim software release is defined as a release to a customer

that is not fully verified or validated to all of the requirements. Customer, as used here, is

defined as a user of the software. A customer could be internal or external to the

company. An end customer is the customer that receives the production software after all

verification and validation activities are complete.

Given today’s integrated environment, releasing production software is an

accomplishment in itself. With a production release, the design is complete, testing is

complete, requirements are verified, outstanding problems are mitigated, contractual

obligations have been met, the schedule no longer is a plan, it is the actuals for the

program, and significant management oversight is provided, making the path for a

production release familiar and the process well known. Accompanying a production

release is a sense of accomplishment for a job well done and possibly the end of the

program.

In today’s integrated, complex systems, including systems of systems

environment, it would be difficult, if not impossible, to proceed through a production

29

software program of any size with only a production software release. The complexity

and integrated nature of systems of systems almost requires interim releases before the

production release.

If the path to production release is well known and familiar, does it necessarily

follow that the production software release path/process is adequate for interim software

releases? The nature of an interim software release is that it contains partial functionality,

occurs before the design is complete, and requirements may not be complete. Because of

this nature, a production software release process where the design and testing are

expected to be complete and requirements are expected to have been validated and

verified, may not be the best process. Having a separate interim release path in the

software release process insures the incomplete nature of the release is taken into

consideration.

1.4 Dissertation Organization

This dissertation’s chapters follow the fundamental systems engineering process,

illustrated in Figure 4, sequentially. Chapter 1 introduces the problem. Chapter 2

expands on the problem and introduces the customer’s needs. Chapter 3 expands on the

customer needs and develops requirements for solving how to determine when to release

software. Chapter 4 is the analysis of the requirements into candidate solutions. Chapter

5 is the development of the analytically chosen solution. Chapter 6 describes the

development of the solution. Chapter 7 is verification and validation. Finally, chapter 8

summarizes the findings, presents the conclusions and future work.

30

The coverage of dissertation chapters versus the systems engineering fundamentals

process and the need identification and problem resolution process is shown in Figure

15Figure 11. The first two sections of each chapter will discuss the systems engineering

fundamentals and the systems engineering need identification and solution resolution

sub-processes attributed to that particular chapter.

31

 Figure 15 – Process Coverage By Dissertation Chapter

32

Chapter 2

2 CUSTOMER’S NEEDS/REQUIREMENTS

2.1 Process Inputs

The systems engineering fundamentals process requires inputs in the form of

customer needs/objectives/requirements. The identification of the Customer

Needs/Objectives/Requirements inputs to the systems engineering fundamentals was

tailored in the need identification and solution process and identified as the Research

Customer Needs sub-process. The customer is any user of the methodology, in our case

the main customers are the software release manager, software manager, and the program

manager. Other customers may use the data the methodology produces, but their needs

are not seen as driving the behavior of the methodology at this time. In this chapter, we

discus the Process Inputs sub-process by developing the needs of the customers and then

derive requirements from those needs.

2.2 Research Customer Needs

In the systems engineering approach to need identification and solution resolution

process, after a problem area has been researched and found to be lacking a solution, the

next sub-process is the Research Customer Needs. In the Research Customer Needs sub-

33

process the research performed earlier in the process is analyzed to determine customer

needs and requirements. The needs and requirements identified are then analyzed to

derive requirements for the methodology. All needs and requirements are identified with

a unique alpha-numeric sequence to allow tracking of the needs and requirements

throughout the research.

In order to identify customer needs and requirements the problem area is

examined further via literature searches and interviews with current customers of

software release data. Then customer needs are identified, followed by the

identification/derivation of the customer requirements. Finally, the identified and derived

customer needs and requirements are analyzed to derive implementation requirements.

2.3 Why Release Software?

Given the complexity of today’s systems and the complexity of software

contained in systems, and the added complexity caused by mission critical software, why

release software? The number one reason to release software is to make money.

Software is considered intellectual property and if the value of the intellectual property is

high, then the monetary value of the software increases, which means people (aka,

customers) will pay more money for the software [38].

Another reason to release software is to fulfill a need. The need could be fulfilled

without selling the software, as in the GNU Operating System, which is developed as

freeware by a pool of people dedicated to developing and supporting a free operating

system for anyone anywhere to use [39]. Or perhaps the software is released to fulfill the

34

customer’s expectations regarding the intended purpose of the software – said in another

way, a bug fix provided under the software’s warranty period.

2.4 Customer Needs

The customers of the software release decision methodology have been identified

as the software release manager, software manager, and the program manager. The main

customer is the software release manager – the person actually making the decision to

release the software. The software release manager’s needs will have the largest impact

on the methodology, but all of the customers needs will be considered.

The decision to release software in accordance with the program’s development

schedule normally falls to one person, the software release manager. The software

release manager decides when to release the software and then receives program approval

for releasing the software. The software release manager uses their understanding of

program processes, program state, and personal history to choose to release software

from several options provided by engineering, all the while trying to balance the

intricacies of software releasing versus program goals. Given the importance and timing

of when to release software, it is apparent that the decision of when to release software is

not always cut and dry. What about a release option that was considered but never

provided by engineering? What about another release option that engineering and the

software release manager had not considered? Do the options provided follow the

approved software release process? Are any requirements in danger of non-compliance

due to the chosen release date? Does the chosen option support the intended purpose of

the released software? Looking at the software release decision it is apparent that

35

choosing the release date is not an easy process. If a release readiness metric was to

assist in the software release decision process, it is readily apparent that the software

release manager would have several needs with regards to the release readiness metric.

The software manager manages the software design and development. The

software manager needs a current status of the software release decision and factors

affecting the release so the software team can adequately plan their resources to insure

the success of the software release. In some organizations, the software manager may

also be the software release manager.

The program manager is the ultimate decision authority on releasing changes to

the system and therefore on releasing software. When dealing with complex systems the

program may consist of various tiers and each tier may have a software release manager

that manages the software release decisions for that tier. All the software and hardware

changes roll up to the top level tier and the program manager decides whether to proceed

with the system release. Figure 16 illustrates a tiered organization with multiple

software release managers and a program manager at tier 1.

Figure 16 – Tiered Organization

36

The customer needs were derived through a modified systems engineering

requirements elicitation process. The needs elicitation process involved researching the

software release decision process, analyzing the software release, software, and program

manager job duties through research and current job listings, and interviewing managers.

The needs elicitation process is shown in Figure 17.

Figure 17 – Needs Elicitation Process

The needs elicited through the needs elicitation process are shown in Table 1,

along with their unique program identifier. The customer’s needs are used as the basis

for the methodology requirements in the next section. The customer’s needs and

methodology requirements are then analyzed for derived implementation requirements in

a later section. The customer’s needs are further elicited in the following paragraphs.

37

Customer, as used in the following paragraphs, refers to a user of the methodology or the

data produced by the methodology.

Table 1 – Customer Needs For Software Release Decision Methodology

Identifier Statement of Need

N1 The customer needs to have timely access to decision analysis support
results.

N2
The customer needs concurrence that the approved software release
process is being followed during the release of the current software
version.

N3 The customer needs accurate information to assist in the release
decision.

N4 The customer needs some measure of the ability of the software to
support its intended purpose based on the chosen release option.

N5 The customer needs to know what effect the software has on
requirements verification and validation.

N6 The customer needs to know if additional processing/testing is required
when releasing the software.

N7 The customer needs to know the costs involved with releasing the
software.

N8 The customer needs to know the software is secure.
N9 Software needs to be stable.

Assuming the program timeline is changing, which if a decision is needed on

releasing software would be a safe assumption, the customer needs timely access to data

to assist him/her in the software release decision process. If the program is in flux and

changes are happening, it would not be a good time to take 3 or 4 days to analyze the

software release problem and then finally present analytical results that might assist the

customer in their decision making. Every day it takes to decide when to release the

software could be a days slip in the program and most program managers will not hesitate

38

to make a decision, without any supporting data analysis, on replacing the software

release decision maker for taking too long to decide whether to release the software.

Another need of the customer is to the need to follow company processes

regarding releasing software. Today’s software development environment almost

requires a company to be Capability Maturity Model Integration (CMMI) certified to

manage the complexities found in developing software [41]. If a particular software

release path does not follow the company process, it is important for the software release

decision maker and program management to know the process was not followed and be

able to evaluate the release for problems.

Timely information and meeting company processes are important needs of the

customer, but if the data provided meets the processes and is timely, but not accurate,

other problems arise. Decision analysis using bad data may result in a bad decision. The

customer needs accurate information to assist in the release decision making process.

In order to make an informed decision on releasing software, the customer needs

to have some measure of the software’s ability to support its intended purpose when it is

released. The software’s intended purpose may change during its developmental life

cycle. Software may be in development to control a car, but that does not mean the

software must be used for that purpose for every release. Perhaps the software is needed

to support integration of dashboard displays in the laboratory. In this case, the software

team may release a test only version of software that is used to support the laboratory

testing. The intended purpose is support integration of the dashboard displays; it does not

have to be capable of controlling an automobile just that it is capable of supporting the

dashboard displays testing in the laboratory. Making a decision to release software with

39

some measure of the software’s goodness and/or its ability to perform the function it is

intended is a definite need of the customer.

The needs of the customer do not end when the software is released. In order to

make an informed decision, the customer needs to know what effect the software release

will have on requirements Verification and Validation (V&V). When developing

complex systems, it is possible that releasing software that will support its intended

purpose, but not support requirement V&V. The affect on V&V either as part of the

software’s intended purpose now or a future purpose is a signification need of the

customer.

Deciding when to release software would be a fairly easy task assuming the

software was released the same way every time. But an organization may have multiple

release options: lab, integration, test, production, etc. and the releases may require

different processing and/or testing based on the release option. The customer needs to

know not only what the intended purpose of the release option is, but also, any special

requirements placed on the software release based on the release option.

Should the customer consider the cost of releasing software? One would think

that the cost to release software would be fairly well fixed and known, right. It should be

known how long it takes to build the software, release the software from development to

test, test the software, and then release the software for its intended purpose. Barring any

major findings during the process, it should proceed at a fairly consistent basis allowing

the cost of release to be known and tracked by the customer.

40

Today’s environment forces a need for the customer to know if the software

released will be secure. Similar to a chain breaking at its weakest point, a system’s

security is only as secure as its weakest software point [4].

Another need of the customer is to know the stability of the software [43].

Experience has shown that end users are not happy when the software provided is

unstable. The customer needs to understand the stability of the software about to be

released.

2.5 Customer Needs to Requirements

Using the customer needs as the basis, methodology requirements can be derived

from the needs and the methodology requirements derived are shown in Table 2.

41

Table 2 – Methodology Requirements

Parent
Ident

Req
ID Requirement Text

N1 R1
Once the methodology has been initialized, it shall take no more than 4
hours for the methodology to produce decision analysis support
results.

N2 R2 The methodology shall indicate whether the software release follows
the software release process.

N3 R3 The methodology shall provide the date the methodology analyzed the
software release.

N4 R4 The methodology shall provide a qualitative measure on the software
release's ability to perform its intended purpose.

N5 R5 Software releases containing severity 1 or 2 problem reports affecting
requirement V&V shall be identified.

N6 R6 The methodology shall list software releases requiring additional
processing or testing as part of the release process.

N7 R7 The methodology shall permit the software release manager to track
the cost of the software release.

N8 R8 The release options requiring security processing shall be identified

N9 R9 The released software shall be capable of supporting its intended
purpose.

2.6 Summary of Customer’s Needs/Requirements

Nine customer needs regarding software release decision making have been

identified using systems engineering processes and following the need identification and

problem resolution process. Nine corresponding methodology requirements have been

derived from the nine needs. The next step, according to the system engineering

fundamental and the need identification and problem resolution process processes, is to

perform requirements analysis. The requirements analysis is shown in the next chapter.

42

Chapter 3

3 REQUIREMENTS DEVELOPMENT

3.1 Requirements Analysis

In the previous chapter, the customer needs were researched and identified,

methodology requirements were derived from the needs, and these needs and

requirements now become the inputs to the Requirements Analysis sub-process. The

inputs will be analyzed to develop requirements that envelop the minimum performance

objectives, while detailing the constraints of the system under development. Typically

the systems engineering fundamentals process is iterative with the process being

performed at every level of the organization until all requirements are identified and

flowed down. In this case, there is only one level and the process will only be applied

once and not iteratively.

3.2 Requirements Analysis

The need identification and problem resolution process sub-process of

Requirements Analysis is similar to Requirements Analysis sub-process of the systems

engineering fundamentals process. The customer needs and methodology requirements

are used as inputs to the analysis needed to develop requirements for implementing the

43

methodology. The developed requirements will determine the minimum objectives and

detail any constraints of the decision process. The output of this sub-process shall be a

set of derived requirements, verification methods for the derived requirements,

performance measures for the methodology, and any identified methodology constraints.

Requirements analysis at this phase is not meant to generate all the methodology

requirements, but to produce an understanding of the methodology and its objectives and

constraints to allow the process to continue under reduced risk [44].

3.3 Verifiability of Requirements

One aspect of a good requirement is that the requirement must be verifiable [45],

therefore, the first step in the requirements analysis process performed was analyzing the

customer requirements for verifiability. The verifiability analysis was performed by

examining the requirement and determining if a verification method could be attributed to

that requirement. A requirement can be verified through one of four possible methods:

analysis, demonstration, inspection, or test. Only two verification methods were

identified for verifying the methodology requirements test and inspection. The unique

development environment for the methodology does not lend itself to a demonstration

verification method and the current requirements have not required analysis as a method

of verification at this point in the process. The methodology requirements, verification

methods, and verification comments are shown in Table 3.

44

Table 3 – Methodology Requirements Verification Methods

Parent
Ident

Req
ID Requirement Text

Verification
Method Verification Comments

N1 R1

Once the methodology has
been initialized, it shall take
no more than 4 hours for the
methodology to produce
decision analysis support
results.

Test

Initialized is defined as the
methodology has been set up to
run within the constraints of the
release process.

N2 R2

The methodology shall
indicate whether the software
release follows the software
release process.

Inspection

N3 R3

The methodology shall
provide the date the
methodology analyzed the
software release.

Inspection Possible derived requirements.

N4 R4

The methodology shall
provide a qualitative measure
on the software release's
ability to perform its
intended purpose.

Inspection

Base measure on current problem
reports and requirements data.
Severity 1/2 and/or large numbers
of open problem reports would
indicate less ability to support its
intended purpose.

N5 R5

Software releases containing
severity 1 or 2 problem
reports affecting requirement
V&V shall be identified.

Inspection

N6 R6

The methodology shall list
software releases requiring
additional processing or
testing as part of the release
process.

Inspection

N7 R7

The methodology shall
permit the software release
manager to track the cost of
the software release.

Inspection

N8 R8
The release options requiring
security processing shall be
identified

Inspection Internal releases may not require
the security processing options.

N9 R9
The released software shall
be capable of supporting its
intended purpose.

Inspection
Work arounds are permitted as
long as software supports its
intended purpose.

45

3.4 Derived Requirements

The methodology requirements were analyzed for clarifications and/or

implementation specific requirements. If a clarification of a methodology requirement

was required, a new derived requirement was developed. The list of derived

requirements is shown in Table 4.

Table 4 – Derived Requirements

Parent
Identifier Req ID Requirement Text

Verification
Method

R3 DR1
The methodology shall use
contractual obligations as an
input.

Inspection

R3 DR2
The methodology shall use the
current software release plan as
an input.

Inspection

R3 DR3
The methodology shall use the
current problem reports as an
input.

Inspection

R3 DR4 The methodology shall use the
current software requirements. Inspection

R3 DR5
The methodology shall use
current resource availability as
an input.

Inspection

R3 DR6
The methodology shall use the
current software release process
as an input.

Inspection

R7 DR7
The methodology shall use the
cost of releasing software as an
input.

Inspection

46

3.4.1 Minimum Performance

A Technical Performance Measurement (TPM) provides the capability for

measuring attributes of a system to determine how well the system is meeting specified

requirements [46]. Due to the time critical nature of the software release decision, the

time it takes the methodology to produce decision analysis support results will be the

technical performance measurement used to determine how well the methodology is

meeting its requirements. The technical performance measurement is shown below:

TPM1 – The mission critical release readiness methodology shall provide

analytically based, release decision support to the user with an objective of less

than 1 hour and a not to exceed threshold of 4 hours from the time of

initialization, after methodology set-up.

Initialization is defined as the methodology has been given the current set of

inputs needed to analyze the software release under consideration. TPM1 is meant to

measure the time it takes for the methodology to analyze a specific software release. It is

not meant to include the time spent gaining access to required inputs or the time required

to format inputs for the methodology’s use.

3.4.2 Software Release Decision Methodology Constraints

At this point, the software release decision methodology consists of customer

needs, methodology requirements, derived implementation requirements, verification

methodologies for the requirements, and a technical performance measure. Analysis of

47

the software release decision methodology does not indicate any methodology constraints

at this time.

3.5 Summary of Requirements Development

In this chapter, the nine methodology requirements were analyzed for

verifiability, and completeness. All the methodology requirements were identified with

a verification method. Additionally, seven derived requirements were developed to

provide clarification of the methodology inputs from the methodology requirements and

identified with a verification method. No design constraints were identified at this time

and one technical performance measurement was developed regarding the time required

for the methodology to provide decision analysis support results.

48

Chapter 4

4 METHODOLOGY DESIGN SPACE AND ANALYSIS

4.1 Systems Analysis and Control

 The following activities are of the Systems Analysis and Control sub-process as

described in the Systems Engineering Fundamentals guide [17]:

“Systems Analysis and Control include technical management activities required
to measure progress, evaluate and select alternatives, and document data and
decisions. These activities apply to all steps of the systems engineering process.
System analysis activities include trade-off studies, effectiveness analyses, and
design analyses. They evaluate alternative approaches to satisfy technical
requirements and program objectives, and provide a rigorous quantitative basis
for selecting performance, functional, and design requirements. Tools used to
provide input to analysis activities include modeling, simulation, experimentation,
and test.
Control activities include risk management, configuration management, data
management, and performance-based progress measurement including event-
based scheduling, Technical Performance Measurement (TPM), and technical
reviews.”

In this case, the Systems Analysis and Control sub-process activities correspond to

the technical management activities for evaluating and selecting alternative

methodologies for the system engineering the mission critical software release decision.

49

4.2 Formulate Solution Design Space

With the customer’s needs, methodology requirements, and derived requirements

identified and developed, now the need identification and problem resolution process

executes the Formulate Solution Design Space sub-process. This sub-process is used to

formulate multiple feasible design solutions and then map those solutions to provide a

visual representation of the total design space for the system under analysis.

4.3 Candidate Methodology Designs

In order to assist in bounding the how to decide when to release software

methodologies design space, research of current software release methodologies was

performed. Once the research was complete, a brainstorming/white boarding activity was

performed on possible methodology designs in order to work outside the comfortable

“box” [48] and insure the design space adequately represented possible designs.

4.3.1 Software Release Methodology Research

A literature survey of software related books was performed as a starting point for

the research on software release methodologies [[3], [6], [7], [25], [29], [38], [58], [66],

and [67]]. The literature survey found the majority of the books did not mention

software release, much less a software release decision methodology, but one book did,

Software Release Methodology. It does not contain any references and although it

discusses many aspects of releasing software, only generic philosophical release

methodologies are presented with no consideration for resources (both laboratories and

personnel) and risk.

50

The next step in researching software release methodologies was to perform web

searches. The search sites of Google and Google Scholar and websites for IEEE and

Crosstalk were all searched using combinations of software release methodology, release

methodology, and software release. As the search returned items of interests, the items

were archived for later, more rigorous research. Also, as items of interest were returned,

the searches were expanded with software release methodology processes and/or tools.

Software release was also used as search criteria in the ProQuest Dissertations &

Theses databases. The ProQuest search returned 34 items, but only nine appeared to be

related to software release when examined closer. The nine items were identified for

later, more rigorous research.

The most significant software release methodology processes and/or tools

returned from the web and ProQuest searches are shown in a later section entitled Formal

Decision Methodologies.

4.3.2 Software Release Methodology Brainstorming/White Boarding

In addition to the literary survey and web searches, software methodologies were

the topic for several brainstorming/white boarding activities. During brainstorming/white

boarding all ideas, no matter how seemingly off subject, are thrown out and documented.

Then the ideas are sorted for relevance and the relevant ideas are further refined into a

listing of ideas to consider. Brainstorming/white boarding produced several relevant

software development and software planning methodologies (Agile, Program Evaluation

and Review Technique (PERT) and the COnstrunctive COst Model (COCOMO)), but no

additional formal software release methodologies. However, several informal software

51

methodologies were identified during the brainstorming/white boarding activities.

Although the informal software release methodologies are included in the design space,

their informal nature limits the amount of reference material available on the

methodologies and therefore limits their consideration as candidates for a software

release decision methodology. The informal software release methodologies are

identified in the following section.

4.3.3 Informal Software Release Methodologies

Several informal software release methodologies have been used to assist in

deciding to release software. These methodologies are listed as informal due to being

based in the qualitative area of decision making and because of their lack of quantitative

analysis to support the decision making. These informal decision methodologies were all

identified during the brainstorming/white boarding activities of the previous section.

4.3.3.1 Bunch Of Guys Sitting Around a Table

Bunch Of Guys Sitting Around a Table (BOGSAT) is not only a software release

decision methodology, but a common decision making methodology. The decision

maker (the Software Release Manager in the case under study) gathers the Subject Matter

Experts (SMEs) around a table and asks for inputs regarding releasing the software.

Once the inputs have been received, the decision maker decides whether to release the

software or not.

The major problem with BOGSAT as a software release decision methodology is

its reliance on people and their current interpretation of the software development

52

lifecycle and release process. Also, BOGSAT involves multiple people, but are the

proper SMEs sitting around the table? Have all aspects of the software release decision

been considered? Is the BOGSAT methodology working with the latest data? Are all the

problem reports being considered? Are requirements being considered? What is the

definition of consensus to release? Etc.

4.3.3.2 Squeaky Wheel Gets The Grease

Deciding to release software is sometimes dominated by the person or group that

complains the loudest, hence, the squeaky wheel gets the grease [49]. In this case the

grease is a software release benefitting the person or group that complained the loudest.

Besides being a one-sided decision making process, deciding when to release by the

squeaky wheel methodology means the software release decision benefits mainly the

squeaky wheel and not the whole program. Releasing software to benefit the minority

could have unattended effects on the rest of the team and adversely affect the program

schedule. The squeaky wheel methodology also tends to silo the various groups on the

team as they learn to squeak louder than the other groups to the benefit of their group.

4.3.3.3 Releasing Per the Plan

Releasing per the plan is a release methodology where the original program plan

with its schedule of releases is used as the sole means of deciding when to release the

software. Just taking into consideration one factor, the original plan, for deciding when

to release software is an archaic methodology, especially with today’s complex software

and systems. The plan developed at the start of the program or even one developed last

week, does not have the most up to date and current data to determine whether the

53

software should be released. Releasing per the plan is sticking to a plan, because it is the

plan and therefore it must be correct and is of little benefit to any program.

4.3.3.4 Schedule-Driven Development Program

The schedule-driven development program is one of the more basic approaches,

given a schedule; release the software as scheduled. True schedule-driven programs are

rare [50]. If a schedule-driven program is properly managed, and the reasons for using

the methodology have been communicated to the team, the schedule-driven methodology,

if properly resourced, can deliver the same capability before the standard approach.

However, schedule-driven development is not a software release methodology; it is a

development process and as a development process, it is not considered any further.

4.3.4 Formal Software Release Methodologies

Researching software release methodologies provides insight into software

releasing decision making and the current trends of software release methodlogies. Most

of these formal methodologies have some quantitative analysis built into their

methodologies. The formal software release methodologies researched are listed in the

following sections.

4.3.4.1 6C

The 6C methodology combines a software reliability growth model with other

quality metrics, such as risk and reliability, to determine when to release the software.

The 6c’s are [61]:

54

1. Consider the target reliability.

2. Collect and model failure date.

3. Classify the defect data and run a SRGM fitness test.

4. Capture Trend.

5. Certify by considering parameters such as risk.

6. Consolidate different solution alternatives.

The first C – Consider target reliability is accomplished by first calculating the

target reliability for the project λ(final), using the following equations:

Where:

λ(final) = project specific target reliability
λ(overall) = overall reliability
λ(final) = expected reliability of hardware and acquired software components
A(t) = desired availability of the system over a period of time
tm = average downtime per failure

The second C – Collect and model failure data is accomplished by collecting and

analyzing failure/defect data. The third C – Classify the defect data and run a SRGM

fitness test classifies the defect data collected and then runs a fitness to be able to

estimate the remaining defects. The fourth C – Capture trend performs trend analysis on

55

the failure data to track the project’s relation to the target level reliability. The fifth C –

Certify by considering parameters such as risk analyzes when the target reliability is met

and with what level of risk. The sixth C – Consolidate different solution alternatives

provides and opportunity for the decision maker to consider the data collected in the

preceding steps and the project dependent factors to make final decisions.

The 6C methodology uses reliability as the major release decision factor. While

acknowledging other project dependent factors exist, they other factors do not factor into

the methodology other than consideration by the decision make. Although reliability is

important, there are other needs of the software release manager and 6C does not meet all

the needs.

4.3.4.2 Agile Software Development

Many different methodologies fall under Agile Software Development: Dynamic

Systems Development Method (DSDM), Scrum, Adaptive Software Development

(ASD), and XP [62]. Agile methodologies are used to respond quickly, with the user in

mind, while developing software in small increments normally developed via customer

developed use cases, with the software being built nearly every day and the software

released every month or so [63].

Agile software development was identified in several of the searches and the

brainstorming/white boarding activity. Agile is a software development methodology,

not a software release methodology. The agile software development methodology does

include references to software releases, but not in any great detail. While researching

agile software development, several aspects of software release from different agile

56

methodologies were identified: multiple frequent builds; monthly (or so) software

releases; and passing all release testing with no failures, before releasing the software.

Due to its prevalence in the brainstorming/white boarding activity and the literature

search, agile software development will be included in the release methodology analysis

to insure completeness and to compare and contrast to a software release methodology.

4.3.4.3 COnstrunctive COst Model (COCOMO)

The COnstrunctive COst Model (COCOMO) was originally developed in 1981 by

Dr. Barry Boehm [59]. The COCOMO user guide has the following description of the

model:

COCOMO (COnstructive COst MOdel) is a screen-oriented, interactive software

package that assists in budgetary planning and schedule estimation of a software

development project. Through the flexibility of COCOMO, a software project

manager (or team leader) can develop a model (or multiple models) of projects in

order to identify potential problems in resources, personnel, budgets, and

schedules both before and while the potential software package is being

developed [55].

COCOMO’s underlying general cost model is [70]:

where,
PM = person months.
A = calibration factor.
Size = measure(s) of functional size of a software module that has an
additive effect on software development effort.
B = scale factor(s) that has an exponential or nonlinear effect on software
development effort.

57

EM = effort multipliers that influence software development effort.

The brainstorming/white boarding activity and the literature search both identified

COCOMO as a possible software release methodology. Further research indicates

COCOMO is for software project planning and not software releasing. Due to its

prevalence in the brainstorming/white boarding activity and the literature search,

COCOMO will be included in the release methodology analysis to insure completeness

and to compare and contrast to a software release methodology.

4.3.4.4 EVOLVE

EVOLVE is a methodology for planning incremental software releases using an

iterative, genetic based algorithm [60]. EVOLVE was developed for use in planning

incremental software developments using the requirements, constraints, and user based

priorities. The EVOLVE methodology is meant to be applied after every iteration to

arrive at the optimal release solution.

The following presents a summary of the genetic algorithm developed for use in

EVOLVE [60].

Input:

Sseed = Initial seed solution

m = population size

cr = crossover rate

mr = mutation rate

Output:

The solution with the highest fitness score from the final population

58

Variables:

Sn =A Solution

P =current Population as a set of (Solution, fitness score) pairs = {(S1,v1), ,(S2,

v2)….(Sm,vm)}

Sparent1 = first parent selected for crossover

Sparent2 = second parent selected for crossover

SOffspring = result from crossover/ mutation operation

Functions:

NewPopulation(Sseed,m): Sseed→P , Returns a new population of size m.

Evaluate(S) provides a fitness score for a given solution, S.

Select(P) chooses from population P, based on fitness score, a parent for the

crossover operation.

Crossover(Si,Sj,cr) performs crossover of solutions Si and Sj at crossover rate cr.

Mutation(Si, mr) performs mutation on solution Si at mutation rate mr.

IsValid(Si) checks validity of solution Si against the user-defined constrraints

BackTrack(Soffspring) = proprietary backtracking operation on a given solution.

This backtracks towards the first parent until a valid solution is created or a user-

defined number of backtrack operations is reached.

Cull(P) removes the (m+1)th ranked solution from the population, P.

CheckTermination() is a Boolean function which checks if the user’s terminating

conditions have been met. This may be when a number of optimizations have

been completed, when there has been no change in the best fitness score over a

given number of optimizations, a given time has elapsed or the user has

59

interrupted the optimization.

Max(P) returns the solution in population P that has the highest fitness score.

Algorithm:

BEGIN

P := NewPopulation(seed);

TerminateFlag := FALSE;

WHILE NOT (TerminateFlag)

BEGIN

Sparent1 := Select(P);

Sparent2 := Select(P/ Sparent1);

SOffspring := Crossover(Sparent1, Sparent2, cr);

SOffspring := Mutation(SOffspring, mr);

If NOT IsValid(SOffspring) THEN BackTrack(SOffspring);

IF IsValid(SOffspring)

BEGIN

P := P ∪ {(SOffspring, Evaluate(Soffspring)}};

Cull(P);

END;

TerminateFlag = CheckTermination();

END;

RETURN(Max(P));

END.

60

EVOLVE is a planning tool for determining the functions to include in the next

software release increment, it is not a software release methodology. EVOLVE was

included in the release methodology analysis to insure completeness and to compare and

contrast to a software release methodology.

4.3.4.5 Program Evaluation and Review Technique

Developed for the Navy’s Polaris Project, the Program Evaluation and Review

Technique (PERT), is a network model that uses task timing to develop the critical path

of the program [56]. With the critical path identified, a program can easily identify

where to spend resources to reduce the program’s risk and required time.

PERT uses three estimations on activity completion times: optimistic time – the

minimum time required to complete the activity; most likely time – the time with the

highest probability of activity completion; and pessimistic time – the longest time

required to complete an activity. PERT calculates an expected time for activity

completion and uses that to calculate the programs critical path. Expect time is calculated

using the three time estimates as follows:

Expected Time = (Optimistic Time + 4 x Most Likely Time + Pessimistic Time) / 6

PERT only deals with activity timing and scheduling, which does not meet all the

needs for software releasing.

61

4.3.4.6 ShipIt

ShipIt is a calculated software release readiness metric that incorporates the

completion status of the various software development stages and multiple relevant

metrics related to producing software [69]. The metric is calculated in a 0 to 1 scale, with

1 indicating the software is complete and ready to release. ShipIt uses seven major

components in factoring the metric:

1. Requirement Analysis Design Stage

2. Coding

3. Testing

4. Quality assurance

5. Manuals and Documentation

6. Supervision

7. Support

Of the seven components, five (Requirement Analysis Design Stage, Coding,

Testing, Manuals and Documentation, and Supervision) are computed strictly on a

percentage complete basis and two of the components (Quality Assurance and Support)

are computed using other metrics. The ShipIt coefficient calculation is shown below:

ShipIT = [(WRAD x RAD) + (WCODE x CODE) + (WTEST x TEST) + (WQA

x QA) + (WMD x MD) + (WSV x SV) + (WSP x SP)] / 100

Where:

62

WRAD, WCODE, WTEST, WQA, WMD, WSV, WSP Є [0, 100]
RAD, CODE, TEST, QA, MD, SV, SP Є [0, 1].
WRAD + WCODE + WTEST + WQA + WMD + WSV + WSP = 100

ShipIt computes a zero to one metric that can be used to asses the status of the

software for releasing. Although ShipIt considers several factors affecting the ability to

release software, the complete listing of software release manager needs are not

accounted for by ShipIt. Providing a metric or coefficient to indicate the status of the

software releasability has considerable merit and will be considered as the software

release decision methodology is developed.

4.3.4.7 Stopping Rule or Software Reliability Growth Model

Deciding when to release software using the stopping rule problem is similar to

the Software Reliability Growth Model (SRGM) process. The SRGM process minimizes

the total average cost to determine the optimal time to release software once the software

is through development, testing, and error correction [52]. The stopping rule adds fault

corrections to the SRGM process and the software is released at the optimal time

determined by analyzing the costs involved to continue testing, versus the benefits of

releasing the software [53]. Both processes may apply various SRGMs: Jelinski-

Moranda; Goel-Okumoto; exponential; modified exponential; or S-shaped distribution.

The Goel-Okumoto model is shown here and its use to determine software reliability.

The derived economic cost model as it applies to the stopping model with fault

corrections is given by [[53], [71]]:

63

Where,

md(tr) is expected number of faults detected at time tr.
mc(tr) is expected number of faults corrected at time tr.
φ is the expected execution time of the software release per field site.
l is the number of field sites.
C1 is the cost of testing activities.
C2 is the cost of resolving a failure.
C3 is the cost of removing a fault and verifying the failure no longer occurs.
C4 is the cost of fixing a fault which causes failures in the operational phase.
C5 is the cost to customer operations in the field.
a is the expected number of faults detected.
b is related to the reliability growth rate of the testing process.

The stopping rule method for software release is based on the economic benefits

of continuing software testing versus stopping testing to decide when to release software.

Although the stopping rule factors in costs with the testing, the lack of consideration for

the other software release manager needs, limits the stopping rule methods use as the

MCRRM.

4.3.4.8 System Evaluation and Estimation of Resources – Software Estimating Model

The System Evaluation and Estimation of Resources – Software Estimating

Model (SEER-SEM) is a software project estimation model that uses the output of

several models to provide levels of: effort; duration; staffing; and software defects for a

given software project [54]. SEER-SEM estimates software size as follows:

Se = NewSize + ExistingSize x (0.4 x Redesign +0.25 x Reimpl = 0.35 x Retest)

SEER-SEM also translates function-based sizing metrics into Unadjusted

Function Points (UFP) and converts them into software size as:

64

Se = Lx x (AdjFactor X UFP)(Entropy/1.2)

Where,

Lx is a language dependent expansion factor.
AdjFactor considers phase at estimation, operating environment, application
type and complexity.
Entropy depends upon the type of software being developed.

SEER-SEM also performs effort and duration calculations as:

K = D0.4(Se/Cte)1.2

td = D-0.2(Se/Cte)0.4

Where,

K is basic effort.
td is duration.
Se is effective size.
Cteis effective technology.
D is staffing complexity.

The brainstorming/white boarding activity identified SEER-SEM as a possible

software release methodology. Further research indicates SEER-SEM is for software

project planning and not software releasing. SEER-SEM was included in the release

methodology analysis to insure completeness and to compare and contrast to a software

release methodology.

65

4.3.4.9 Zero-Failure Method

The zero-failure method of software release specifies a number of testing hours

that must be completed with zero failures found before releasing the software. If a failure

is found during the test time, the planned release is cancelled and testing continues [68].

The basic assumption of this software release methodology is that zero failures over a

specific, calculated, period of testing indicates a lower probability of additional failures in

the software. The zero-failure method is based on the exponential model problem rate

shown below:

To calculate the hours required with zero failures, three inputs are required: the t

projected average number of failures received by the customer, the total number of

failures detected during test, and the total testing hours up to the last failure. These three

inputs are used in the zero-failure calculation as below:

The zero-failure method for software release depends solely on the number of

hours with no failures as a decision method of when to release software. The reliance on

finding problems, no matter how severe the problem or what the effect, and the lack of

66

consideration for the other software release manager needs, limits the zero-failure

methods use as the MCRRM. As the author of the zero-failure method states [68]:

“Finally, no one tool or method should be relied on to arbitrarily make the final

determination of whether a software product should be released. Other factors

may be at least as important to achieve the ultimate goal of quality assurance:

total customer satisfaction.”

4.4 Design Space Mapping Of Researched Software Release Methodologies

The candidate software release methodologies identified and analyzed in the list

each have their own strengths and weaknesses and the methodologies may not even be

applicable to deciding when to release mission critical software. In the problem under

consideration, releasing mission critical software from test for its intended purpose,

analyzing each identified methodology against the requirements would indicate the

researched methodologies applicability to deciding whether to release mission critical

software.

Analyzing each methodology to the requirements was accomplished by reviewing

the methodology and deciding whether the methodology is a candidate to meet the

requirement. The requirements and derived requirements were then used as the X and Y

axis on a XY chart and the methodologies were plotted on the chart based on how many

requirements and derived requirements the methodology was a candidate for meeting.

The resulting design space mapping is shown in Figure 18 – Identified Candidate

Methodologies Vs. Requirements.

67

Figure 18 – Identified Candidate Methodologies Vs. Requirements

Using this type of design space mapping, the candidate methodologies that meet

all the requirements would be shown plotted in the upper right corner and those that meet

none of the requirements would be plotted in the lower left corner of the plot. The

specific requirements that each methodology is a candidate for meeting, or not, are not

shown. But the visual representation of the methodology’s ability to meet a number of

requirements is shown, providing the reviewer with the ability to rank the methodologies

against one another with respect to their ability to meet a number of requirements.

Analysis of the design space mapping indicates none of the identified candidate

methodologies are plotted in the upper right corner, indicating that no candidate

68

methodologies meet all the requirements and derived requirements for the mission critical

release readiness methodology. None of the methodologies are plotted in the right half of

the plot, indicating the methodologies did poorly against their ability to meet the

requirements. Several of the methodologies are plotted in the upper left section,

indicating those identified candidate methodologies did well with their ability to meet

derived requirements (BOGSAT, EVOLVE, and SEER-SEM), but none of the identified

candidate methodologies met all of the derived requirements.

The analysis of the design space mapping indicate there was no one identified

candidate methodology that meets all the requirements and derived requirements for the

mission critical release readiness methodology. At this point there are three paths that

one could follow to develop an improved methodology for releasing mission critical

software: 1) Perform additional research to determine if a software release methodology

has been developed that would meet all or at least more of the requirements; 2) Attempt

to combine two or more methodologies to meet more requirements; or 3) Develop a

methodology that better meets the mission critical release readiness methodology

requirements.

The decision as to which path to take appears to be clear after reviewing the

options. Research performed to date has not been exhaustive, but the results are not

promising for the amount of research performed to the number of requirements met by

the researched methodologies. Combining methodologies does, at first glance, show

some promise, but analyzing the set of requirements met by the methodologies taken as a

whole, indicates several requirements were not met, meaning the requirements will not be

met by any combination of methodologies. With the outcomes of the first two paths in

69

question after a quick review, the third path appears to be the logical path to follow –

develop the methodology.

4.5 Methodology Development Requirements

Deciding to develop the mission critical readiness release methodology does not

change the problem identified or the requirements for the methodology. However, new

requirements may be required to cover the development of the mission critical release

readiness methodology. Before researching whether the requirements require updating,

the goals of the methodology will be discussed. Additional requirements analyses will be

re-examined after the goal discussion.

4.5.1 Decision Analysis

Since the overarching goal of the mission critical release readiness methodology

is to assist the software release manager in deciding when to release mission critical

software, the methodology requires a basis in decision analysis. For the software release

manager, after analyzing the software release decision and evaluating the possible

outcomes, a decision must still be made [75].

The software release decision must take into account both quantitative and

qualitative issues. Decision automation is only possible when quantitative analysis is

used without qualitative issues, but in most situations, quantitative analysis will be used

as an aid to make decisions [57]. Wasson would place the software release decision as

analytical decision support practice [40].

70

4.5.1.1 Mission Critical Release Readiness Methodology As A Decision Tool

The mission critical release readiness methodology will be required to consider

the incomplete state of the program that exists for an interim release and factors that

could affect a software release such as cost, customer satisfaction, problem reports,

resources, requirements, risk, software criticality, software security, and schedules. The

mission critical release readiness methodology will assist system development programs

in determining the optimal time to release an interim software release that supports its

intended purpose, given multiple integrated software products, while considering the

factors mentioned above.

The proposed mission critical release readiness methodology is not meant to

replace software release planning, but aid in the software release decision process. The

methodology will use the software plan as an input to the decision matrix to assist in

determining the optimal release time for a specific interim software release. The mission

critical release readiness methodology is not meant to solve the question of when to

release the software, but to assist the decision makers in their decision making process of

when to release software by incorporating the program’s current state, software release

process, current software plan, resource availability, software dependencies, problem

reports, and requirements into an analytical factor. The methodology’s benefits will be

especially useful as the decision of when to release software becomes more difficult:

More difficult decision problems are naturally more difficult to analyze. This is

true regardless of the degree to which formal analysis (i.e., use of models as a

decision aid) or intuitive appraisal (i.e., in one’s head) is used. However, as

71

complexity increases, the efficacy of the intuitive appraisal decreases more

rapidly than formal analysis [9].

Software release decisions are difficult by themselves, but when combined with

the problems of multiple integrated software products, and the ever changing

development environment, there may be too much information for the decision maker to

process the software release decision analytically. The decision maker may then use

simplified mental strategies, without using decision analysis methods [10]. The mission

critical release readiness methodology will analyze the data provided and provide an

analytical aide to assist in the decision making process, with the goal of replacing non-

productive, subjective, decision methodologies currently in use, like BOGSAT.

4.5.2 Reducing The Number Of Software Releases

 Ideally, the mission critical release readiness methodology’s analytical basis will

aid in the software release decision process by providing analytical recommendations for

releasing software. By basing software releases on analytical factors, the software

released will be better able to support its intended purpose, which should reduce the

number of releases not able to support their intended purpose and therefore reduce the

number of software releases.

A goal of the mission critical release readiness methodology is to reduce software

releases. That’s a good thing, right? If it is just software, why not release it anytime?

While it is true that software can be released anytime, cost and schedule normally

constrain the number of software releases for a particular program. Releasing software

incurs schedule and monetary costs while reducing resource availability. It takes a finite

72

amount of time to make, build, release, document, and test a software release. During the

release, the resources used (people, computers, labs, etc.) are not available to perform

other tasks (incurring schedule costs and reducing the resource’s availability) and

personnel must be paid for their time (incurring monetary cost). Consequently, reducing

the number of software releases performed due to poor software release decisions reduces

the overall cost of the program.

4.6 Requirements Update

The goals of the mission critical release readiness methodology development are

to assist in deciding to release software via an analytical basis and to reduce the number

of software releases. The goals of developing the mission critical release readiness

methodology are covered by the previously developed requirements and therefore no new

requirements will be added, nor will any requirements require an update at this time.

Ideally, the mission critical release readiness methodology should be able to meet all the

requirements and therefore plot in the upper right corner of the design space mapping

chart. A new design space mapping with the mission critical release readiness

methodology will be completed in a later section, after the requirement verification to

show where the developed methodology maps against the identified candidate

methodologies.

Analyzing the design space mapping points out another reason to develop the

mission critical release readiness methodology rather than researching or combining

methodologies, because the requirements are unique to the problem under consideration,

it is doubtful that any single or even combination of methodologies could have met all the

73

requirements. Knowing what the requirements are and being able to design the mission

critical release readiness methodology to meet the problem specific requirements further

indicates that developing a methodology is the most logical path.

4.7 Methodology Risk

The Risk Management Guide For DoD Acquisition defines risk as “a measure of

future uncertainties in achieving program performance goals and objectives within

defined cost, schedule and performance constraints” [65]. The five steps of risk

management, as identified by the Department of Defense (DoD), are identification,

analysis, mitigation planning, implementing risk mitigation plans, and risk tracking. The

DoD risk process is shown in Figure 19. Risks for the mission critical release readiness

methodology are identified, mitigations planned, and risks tracked via a modified DoD

risk process.

74

Figure 19 – DoD Risk Management Process

Risk tracking is accomplished by plotting the risks on a two axis, 5 x 5 matrix.

The axes of the matrix are the risk consequence and the likelihood of the risk occurring.

A sample risk matrix is shown in Figure 20. The consequence of the risk is shown in the

“X” axis and the likelihood of the risk is shown in the “Y” axis. The matrix uses colors

to identify low, medium, and high risks. Low risks are shown in green, medium in

yellow, and high risks are shown in red.

75

Figure 20 – Risk Matrix

The likelihood axis of the matrix is the likelihood or probability of a risk

occurring. The likelihood levels and their probabilities, as developed for the software

release decision methodology, are shown in Table 5.

Table 5 – Risk Likelihood

LIKELIHOOD

Level 1 2 3 4 5

Probability 0 to 15% 15 to 40% 40 to 60% 60 to 85% 85 to 100%

76

Typically, the consequences of a risk occurring would be ranked across technical

performance, schedule, and cost, but due to the nature of the mission critical release

readiness methodology development, only technical performance is a valid risk

consequence category. The risk consequence levels, as developed for the mission critical

release readiness methodology, are shown in Table 6.

Table 6 – Risk Consequence

CONSEQUENCE

Level 1 2 3 4 5

Consequence Minimal or
no impact on
using
methodology.

Affect on
usage is

tolerable,
with little to
no impact to
timeliness.

Workarounds
required to

use
methodology

and/or
methodology
requires up to

2 hours to
process.

Affect on
methodology

usage is
almost

intolerable
and/or

methodology
processing

greater than 2
hours.

Methodology
is not usable.

Two risks were identified related to the software release decision methodology:

1. If the methodology is inefficient at gathering and processing the

methodology inputs, then the effect on the methodology would be to

use workarounds or add up to 2 additional hours to the processing.

(Medium Risk)

77

2. If the methodology does not easily apply to a wide variety of software

development methodologies and tools, then the methodology will not

be widely acceptable and the methodology would be considered

almost unusable. (High Risk)

The software release decision methodology identified risks are shown plotted on a

risk matrix in Figure 21. The risks and their mitigation plans developed to aide in the

reduction of the risks as the software release decision methodology is designed and

implemented are shown in Table 7 – Methodology Risk Mitigations.

Figure 21 – Methodology Risks

78

Table 7 – Methodology Risk Mitigations

RISK MITIGATION PLAN

1. If the methodology is inefficient at
gathering and processing the
methodology inputs, then the affect
on the methodology would be to use
workarounds or add up to 2
additional hours to the processing.
(Medium Risk)

1. Design methodology to use common
tools and interfaces.

2. Automate portions of methodology
as time allows.

3. Provide standardize data entry forms.

2. If the methodology does not easily
apply to a wide variety of software
development methodologies and
tools, then the methodology will not
be widely acceptable and the
methodology would be considered
almost unusable. (High Risk)

1. Use generic software development
labels on data entry forms.

2. Design in methodology
customization, where possible.

4.8 MCRRM Design Space and Analysis Summary

Methodologies for releasing software were researched and compared against the

requirements developed for the mission critical release readiness methodology. The

design space mapping of the methodologies against the number of requirements and

derived requirements that the identified candidate methodology might meet indicated

none of the methodologies met all the requirements and the best methodologies only met

just over half of the requirements. Further analysis indicated redundancies in

requirements met by the individual methodologies. These redundancies in meeting

requirements indicate that combining identified candidate methodologies for additional

requirement coverage does not appear to be a feasible pursuit, nor did further research on

79

additional software release methodologies. Consequently, it was decided that developing

a unique methodology would be required to meet the requirements of mission critical

release readiness methodology.

Goals for developing the mission critical release readiness methodology were

developed as a check for requirement coverage against existing requirements. The goals

identified were analytical decision analysis – assist in the decision of when to release

mission critical software – and reducing the number of software releases. A review of the

goals against the requirements previously developed for the mission critical release

readiness methodology did not uncover any needed new requirements or updates to

existing requirements.

A risk management methodology for development of the mission critical release

readiness methodology is introduced and two risks for developing the mission critical

release readiness methodology are identified. The risks are ranked as medium and high

risk. The risk mitigation plans are developed for both of the identified risks and will be

used as the mission critical release readiness methodology is developed to reduce the risk

levels.

80

Chapter 5

5 METHODOLOGY DESIGN

5.1 Functional Analysis/Allocation

The systems engineering fundamentals process’ Functional Analysis/Allocation

sub-process decomposes functions into lower-level functions, producing a description of

the product and its performance, with its outputs used to optimize physical solutions [17].

5.2 Choose Solution

In the need identification and problem resolution process the Choose Solution

sub-process identifies the best solution from the design space formulated in the formulate

solution design space sub-process performed earlier. A variety of tools may be used to

assist in choosing the solution (Design Space Mapping, Quality Function Deployment

(QFD), Functional Flow Block Diagrams (FFBD), AHP (Importance), TRIZ, Design

Selection, etc.) The best solution may be found by using any one or combination of the

tools mentioned.

Once the problem solution method has been chosen, the solution’s inputs and

outputs are identified. Identifying the Inputs/Outputs (I/O) form the basis for the solution

development carried out in later sections.

81

5.3 Analyzing the Design Space

Analyzing the final design space mapping from chapter 4 indicates those

methodologies with multiple inputs, SEER-SEM, EVOLVE, COCOMO, and even

BOGSAT, met more requirements than those methodologies with fewer inputs. This

indicates that the MCRRM will require multiple inputs to meet the requirements and the

inputs must be considered during development of the methodology. Reviewing the

derived requirements confirms this result, as all seven derived requirements define inputs

to the methodology.

5.4 More ARSD Functional Flow Block Diagramming

With the research accomplished on software release methodologies and the

software release manager’s roles, the sub-function analyze software release decision for

the top level software development process is developed into its sub-functions. Figure 22

– Analyze Software Release Decision shows the top-level software development

process’s functional flow block diagram with the analyze software release decision sub-

functions, which are: 5.1.1 – Provide Inputs; 5.1.2 – Verify Software Release Process

Followed; 5.1.3 – Analyze Release Against Requirements; 5.1.4 – Calculate Release

Readiness; 5.1.5 Output Release Analysis.

82

Figure 22 – Analyze Software Release Decision

As shown in Figure 22, the analyze software release decision sub-function

includes two and-summing blocks. The first and-summing block is directly out of sub-

function provide inputs and indicates that the inputs go to all three of the next sub-

functions and that all three sub-functions must be completed before continuing in the

function flow. The next and-summing block is anding the outputs of verify software

release process followed, analyze release against requirements, and provide inputs. This

and-summing block indicates all three of the previous sub-functions (provide inputs,

verify software release process followed, and analyze release against requirements)

outputs are required before completing the calculate release readiness sub-function.

83

The analyze software release decision sub-functions are discussed in more detail

in the following chapter, during the design of the mission critical release readiness

methodology however, top-level overviews of the sub-sections and their functions are

provided in the following sections.

5.4.1 Provide Inputs

The analyze software release decision sub-function provide inputs needed to

perform the verification, analysis, and calculations of the analyze software release

decision sub-functions.

5.4.2 Verify Software Release Process Followed

As mentioned earlier, following a process for software development and release is

a key step to generating reliable and dependable mission critical software. The verify

software release process followed sub-function provides the software release manager the

verification that the software release process is being followed for the software release

under consideration.

5.4.3 Analyze Release Against Requirements

The sub-function analyze release against requirements, analyzes the software

release against the requirements for that software release to insure the software is able to

perform its intended function.

84

5.4.4 Calculate Release Readiness

The sub-function calculate release readiness is where the decision to release or not

is calculated. The sub-function uses the provided inputs to produce a release readiness

that assists the software release manager in the decision to release software or not. This

sub-function and the output release decision analysis sub-function are key to the mission

critical release readiness methodology.

5.4.5 Output Release Decision Analysis

The previous sub-function calculated the software release readiness, the output

release decision analysis sub-function presents the calculated release readiness for the

software release manager’s use in deciding whether to release the software or not.

5.5 Input/Output (I/O) System Diagram

In the analyze software release decision sub-function, two sub-functions, provide

inputs and output release decision analysis, are associated with the input and output of the

function. An Input/Output (I/O) System Diagram of the analyze software release

decision sub-function is developed to understand the function and to assist in the design

and development of the MCRRM in later chapters.

 The I/O Diagram for the analyze software release decision sub-function was

developed by; analyzing the requirements developed in section 4 for inputs and/or

outputs; reviewing the software release, software, and program manager’s job duties for

any duties that required inputs and/or outputs; and analyzing the Analyze Software

Release Decision FFBD, Figure 22, for input and/or output requirements. The research

85

into the function inputs discovered seven inputs, all of which could be considered normal

program data for a program developing mission critical software.

The analyze software release decision sub-function output research discovered

five outputs for the function. Four of the five function outputs were to simply answer

questions. The questions are related to additional functions required to be performed or

affect the ability to release the software itself. The I/O System Diagram developed is

shown in Figure 23. The inputs and outputs shown in the diagram are discussed in greater

detail in the following sections.

86

Figure 23 – Analyze Software Release Decision I/O System Diagram

87

5.6 Analyze Software Release Decision Inputs

The analyze software release decision sub-function requires timely, accurate, and

relevant input data as the function calculates the software’s release readiness to assist the

software release manager in deciding to release software. In order to assist in the release

decision making process, the analyze software release decision sub-function receives

inputs from various other functions and/or activities, (problem reporting, test, program

management, etc.). These inputs are currently available to the software release manager,

but not in a format that can be used for analytical decision making purposes. The analyze

software release decision sub-function receives the inputs, analyzes them and uses them

to provide the required outputs including an analytically based software release readiness

output, all in a format the software release manager can use to assist in deciding when to

release software.

The analyze software release decision sub-function does not require the creation

of data for inputs. It uses existing program data as its inputs. The analyze software

release decision sub-function inputs are shown below:

1. Contractual Obligations

2. Cost

3. Problem Reports

4. Resources

5. Software Release Process

6. Software Requirements

7. Software Release Plan

88

The function inputs are briefly described in the following sections. Additional

details will be provided in later sections as needed.

5.6.1 Contractual Obligations

The contractual obligations input to the analyze software release decision sub-

function includes all contractual items that are affected by the software under

consideration for release. Contractual obligations may be requirements flowed down

from the contract to the software under development or perhaps a milestone in the project

schedule. Requirements are also input to the analyze software release decision sub-

function, but the contractual nature of these requirements requires extra scrutiny by the

software release manager. For instance, a contractual obligation may require customer

participation/review of the obligation and non-contractual obligations may permit the

customer to participate/review the obligation, but customer participation is not required.

The contractual obligations input will be a listing of obligations that will be supported by

the software under consideration for release and their dates.

5.6.2 Cost

Costs vary not only from project to project, but from industry to industry. A

multi-thousand line software development project’s cost will be very large compared to a

one line software change to fix a bug. However, assuming the two releases are from the

same project, the release costs for the multi-thousand line software development and the

bug fix are probably the same and the bug release’s development costs may be equaled

89

by the cost of releasing the software [64]. As software projects grow in size and

complexity, so do the costs to release software. Additionally, the criticality of the

software being released affects the cost of the release. The space shuttle’s software

release cost will be very different from a hobbyist’s release cost for a simple iPhone

game.

Software release costs could be calculated by adding up the time a person spent

gathering the software, compiling the software, and filling out the release documentation.

This release cost calculation may work fine for a small, less complex project.

However, the time spent gathering, compiling, and documenting the release is a

small part of the release cost for a complex system. Besides releasing the software, the

release must be tested. Software may go through several tests: unit, standalone,

integrated, system, and depending upon the software’s intended purpose: ground, flight,

acceptance, and/or security. The release test duration for a complex system can be

anywhere from several hours of testing to several weeks. Additionally the release must

be documented for the maintainers and the operators of the system and the support and

operator’s manuals documentation may take several weeks to complete, adding to the

release cost and schedule. For the mission critical release readiness methodology, it is

suggested that the cost be a roll up of man hour costs for testing, documenting and

releasing the software. Additional project specific cost data can be added to the

recommend cost data, as required.

90

5.6.3 Problem Reports

When a problem is found during the software development process, the problem

is written up and tracked. The problem discovered may go by many names: bug;

software problem report; software problem anomaly report; problem report; defect; etc.

The identified problems are tracked in a problem reporting system that tracks the

description of the problem and key information regarding the problem and its status in the

system.

The analyze software release decision sub-function’s problem reports input is

derived directly from the problem reporting system. The problem reports input may vary

by project depending upon the project’s criticality, safety requirements, and problem

reporting process. The number and severity of problem reports may affect the software

release decision. For instance: high severity problem reports for the space shuttle

software do not allow testing to begin [42].

Further details on the problem reports inputs will be provided during the

development of the methodology in a later section, but recommended minimums for the

analyze software release decision problem reports input would be a listing of all open and

closed problem reports including problem report status, subsystem/system affected,

software versions affected by the problem, problem report severity, subsystem/system

functions affected, planned software release implementation, and any mitigations in

place. Due to their affects on software’s ability to perform its intended function,

problem report severity and mitigations are discussed in the next sections.

91

5.6.3.1 Problem Report Severity

Problem report severity is an attribute of a problem report and is provided as an

input to the analyze software release decision sub-function via the problem reporting

process. The American Heritage® Dictionary of the English Language defines severity

as “The state or quality of being severe.” Typically the severity of a problem report is

broken into a fixed number of states of varying consequences describing the problem

reports effect on the system or program. The exact number of the states and their

definitions is somewhat of a subjective science and various methods are used to

determine them [7]. There is a fine line between too many states and too few, previous

experiences have shown that somewhere between 4 and 6 states are ideal. Given 5 states,

the consequence of the severity may be applied in to different aspects of the program in a

manner similar to how NASA applies criticality categories [3]. NASA has three

categories, with each of the first two categories having subcategories for redundant

hardware elements.

By building upon the NASA usage and amending the categories, an example of

problem report severity states and consequence definitions is developed for use in the

analyze software release decision sub-function. Five severities are identified, 1 through 5,

with 1 being the most critical severity. Additionally, severities 1 and 2 have two

subcategories Intended Purpose (I) and Safety (S). The developed problem reporting

severity states developed are shown in Table 8 – Example Problem Reporting Severity

States.

92

Table 8 – Example Problem Reporting Severity States

Severity SubCategory Consequence
I Software is not able to complete intended purpose. 1 S Possible loss of life.
I Intended purpose is severely affected. 2 S Injury to personnel

3 Intended purpose affected, but a work-around is known.
4 Nuisance affects but intended purpose is still supported.
5 None of the above.

To properly classify the severity of a problem report of severity 1 or 2, the

subcategory must accompany the severity number.

5.6.3.2 Mitigate Problem Reports

If a high severity problem report, say a one or two from the examples in the

previous section, is assigned to software about to be released, the software may be unable

to support its intended purpose and therefore not be releasable. Conversely, a high

severity problem report written against software does not mean the software can not be

released. The project may have mitigations in place that would negate the implications

of a high severity problem report. For instance, that function may be disabled in the

software release under consideration or words may be added to the operator’s manual that

prohibited the use of the system in a manner which may cause the problem report to

repeat. If mitigations are in place, the severity of the problem report may be reduced to

allow the software to be released. The checking of problem reports for mitigatibility

should be incorporated into the normal project problem reporting process and not

incorporated as part of the analyze software release decision sub-function. The

93

understanding of mitigatability is an important aspect of the software release manager’s

job and the software release decision process.

5.6.4 Requirements

The requirements input to the analyze software release decision sub-function are

the applicable requirements for the current software under consideration for release. The

analyze software release decision sub-function analyzes the applicable requirements

against the problem reports against the software to output whether the software release

under consideration can support its intended purpose and whether requirement

verification and validation are impacted by the software release. The actual data input to

the sub-function are requirement wording, requirement status, subsystem(s)/function(s)

implementing the requirement, and planned requirement verification and validation dates.

5.6.5 Resources

The analyze software release decision resources inputs are those resources that

affect the software release decision. The resources affecting the software release decision

may vary by project size and complexity, but in general will include, but not be limited

to: personnel; testing laboratories; test articles; test facilities; hardware; release software;

test software; support software.

5.6.6 Software Release Plan

The software release plan input to the analyze software release decision sub-

function is the project plan for releasing software. The software release plan will include

94

the scheduled release date for the software under release consideration and allow the

mission critical release readiness methodology to analyze the planned schedule against

current events and the projected scheduled release of software.

5.6.7 Software Release Process

It is critical for the software release manager to insure the software release

process is followed when releasing software. For this reason, the software release

process is an input to the analyze software release decision sub-function to insure the

software release plan followed the release process and to insure the software release

manager and project management know when processes are being followed and more

importantly, when processes are not being followed.

5.7 Analyze Software Release Decision Sub-Function Outputs

The analyze software release decision sub-function receives the inputs discussed

above, analyzes them, and calculates outputs to assist the software release manager in

deciding when to release the software. The analyze software release decision sub-

function outputs are derived from an analytical basis and not only assist in the decision

making process but also allow the software release manager to present an analytical basis

for the software release decision to management. There are five analyze software release

decision sub-function outputs and they are listed below:

1. Software Release Process Followed?

2. Software Able To Support Intended Purpose?

95

3. Software Release Affects Requirement V&V?

4. Software Release Requires Security Processing?

5. Software Release Readiness

The analyze software release decision sub-function outputs are briefly described

in the following sections with additional details provided in later sections, as needed.

5.7.1 Software Release Process Followed?

The knowledge of whether a software release follows the software release process

is important when dealing with critical software, be it safety or mission critical software.

The analyze software release decision sub-function will provide an output that indicates

whether the release process was followed or not. Just because a release option does not

follow the release process does not mean the software release manager will choose not to

release the software.

 If the software release process was not followed, it would be an indication that

the release process may require modification. Not all software release decisions will be

yes or no; some may to work in the grey area of release processes.

For instance:

• Given a software release process that requires release testing be complete

before releasing the software;

• The customer is in to validate the system displays – which have been

thoroughly tested – for one day only;

96

• Release testing is not complete;

• Then the software could be released to support customer validation of the

system displays and the release testing could be identified as complete for

the intended purpose, system displays validation.

In the example presented, there is a compelling reason to release software without

completing full release testing, but by declaring the release testing to be the subset of

testing that supports the software’s intended purpose, the software can be released within

the existing software release process, albeit by operating in a process grey area. Another

solution, instead of operating in a process grey area, would be to modify the software

release process to allow modification of the set of release tests required before release.

Processes are open to change and even when dealing with critical software, the software

release process can be amended to allow a release option to follow a modified software

release process.

5.7.2 Software Able To Support Intended Purpose?

A key factor incorporated into any decision on releasing software is “can the

software support its intended purpose?” The more complex a system is, the harder it

becomes to determine if the software can support its intended purpose. Depending on

the system, the software’s intended purpose may change from release to release. One

software release may be intended as a test release to test the software build process, the

next release as a lab release to test basic functions, the next release a ground test only

release for integrating the software on the ground, then, depending on the system, maybe

97

a flight test release for flight testing, and then, finally, a production software release for

delivery to the customer, but maybe with limited functionality – meaning yet more

releases. The mission critical release readiness methodology will analyze the provide

inputs and calculate a ranking against the software’s intended purpose to assist the

software release manager in deciding when to release software.

5.7.3 Software Release Affects Requirement V&V?

Although Verification and Validation (V&V) could be considered an intended

purpose for the software, they are such key activities for most projects with wide ranging

implications; affecting V&V is broken out as a separate analyze software release decision

output. If a software release affects the ability to perform V&V the software release

manager will be notified and able to factor that information in the software release

decision making process.

5.7.4 Software Release Requires Security Processing?

Software security is a major concern in today’s software environment. If a

software release requires security processing, additional activities are required to insure

the software is secure. The analyze software release decision sub-function outputs

whether the software requires additional security processing to insure the software release

process is followed and that the software release manager understands additional

processing is required before releasing the software. The security processing required

will vary from project to project and for the software’s intended purpose. A lab release

98

requires may not require security processing, whereas a production release to the

customer will require the extra processing.

5.7.5 Software Release Readiness

The analyze software release function calculates the software’s release readiness

and outputs it to provide an analytical basis to assist the software release manager in

deciding when to release software. Given all the data regarding releasing software and

multiple outputs from the analyze software release decision sub-function; having an

analytical based ranking of the software release readiness will assist in the software

release decision making process. The software release readiness output is the key output

in the analyze software release function and the mission critical release readiness

methodology. The development of how the software release readiness output is

calculated and presented to the software release manager, while providing a managerial

role-up of the methodology results are shown in the next chapter.

5.8 I/O Functional Flow Block Diagrams

The inputs and outputs for the analyze software release decision sub-function

identified in the previous sections are added to the top-level software release process

functional flow block diagram in Figure 24.

99

Figure 24 – I/O FFBD

The input/output portion of the analyze software release decision sub-function is shown

in Figure 25.

100

Figure 25 – Analyze Software Release Decision

101

5.9 Methodology Design Summary

The design space mapping performed earlier is the basis for additional

methodology developmental activities. A function flow block diagram and I/O diagram

were constructed to assist in the development of the analyze software release decision

sub-function, the key function for the mission critical release readiness methodology.

The functional flow block diagram identified several sub-functions of the analyze

software release decision sub-function. The I/O diagram identified the inputs and outputs

for the analyze software release decision sub-function while providing a graphical

representation of the inputs and outputs for use during the development of the mission

critical release readiness methodology.

The analyze software release decision inputs and outputs are discussed in generic,

basic terms, over several sections. Discussing even the basics behind the I/O forms

factual representations of how the data will be used by the analyze software release

function and the mission critical release readiness methodology and why the inputs and

outputs were chosen. The identified inputs and outputs are used to develop a final

software development process functional flow block diagram. The release software

function’s, the analyze software release decision sub-function’s, the provide inputs sub-

function’s, and the output software release readiness sub-function’s functional flow block

diagrams are shown on the software development process functional flow block diagram.

The design space mapping, function flow block diagrams, input/output diagram

and discussions on the inputs and outputs are required for the development of the mission

critical release readiness methodology, detailed in the next chapter.

102

Chapter 6

6 DEVELOPING THE METHODOLOGY

6.1 Design Synthesis

The systems engineering fundamental process’ Design Synthesis sub-process is

focused on the development of the physical architecture [17]. Typically developing the

physical architecture is a combination of defining the hardware and software for the

system under consideration. In this particular case, the development of a methodology,

there is no hardware involved. For this case the Design Synthesis sub-process will focus

on the development of the process behind the methodology and the analytical methods

that support the methodology.

6.2 Develop Solution

The Develop Solution sub-process in the need identification and problem

resolution process develops the solution selected under the Choose Solution sub-process.

Upon completion of the Develop Solution sub-process, the selected solution shall be

sufficiently developed and quantified to allow the testing of the solution to begin.

103

6.3 Development

Development of the mission critical release readiness methodology will be

described in this chapter. The user needs, methodology requirements, methodology

derived requirements, methodology development risks, process functional flow block

diagrams, input/output diagram, and the basic analyze software release decision inputs

and outputs have already been developed in previous chapters. In this chapter the

previously accomplished research, analysis, and design are used to develop the mission

critical release readiness methodology.

As described earlier, the mission critical release readiness methodology develops

the processes and analytic methodologies for implementing the analyze software release

decision sub-function in the release software function from the software development

process. As the software development process was analyzed in the previous chapters, the

inputs and outputs of the analyze software release decision were researched and

developed. The analyze software release decision inputs and outputs are the basis for the

mission critical release readiness methodology and its development and will be reviewed,

as necessary, before developing the methodology.

 As the mission critical release readiness methodology is developed: the analytical

methodologies for calculating the outputs will be developed; a user interface for the

methodology inputs will be developed; the final presentation of the mission critical

release readiness methodology will be developed; as development proceeds, areas for

future work will be indentified.

104

6.4 Inputs and Outputs Review

The inputs of the analyze software release decision sub-function are described

generically as contractual obligations, cost, problem reports, resources, software release

process, software requirements, and software release plan. The generic descriptors

included some suggested data inclusion items regarding the inputs, but still generic basic

software development project items. These generic descriptions follow the risk

mitigation plan for the software development methodologies and tools risk item. The

software development methodologies and tools risk item, with its mitigation plan is

shown in Table 9. The use of the generic terminology allows the program using the

mission critical release readiness methodology to apply their program specific input data

and increases the likelihood of broader application of the methodology. Where possible,

the development of the mission critical release readiness methodology will be developed

with generic program data, allowing the programs to specify their inputs as the

methodology is applied to their program. A generic software release process is presented

in the next section as the software release process input to the mission critical release

readiness methodology.

105

Table 9 – Software Mehodologies And Tools Risk Item

RISK MITIGATION PLAN

1. If the methodology does not easily
apply to a wide variety of software
development methodologies and
tools, then the methodology will not
be widely acceptable and the
methodology would be considered
almost unusable. (High Risk)

1. Use generic software development
labels on data entry forms.

2. Design in methodology
customization, where possible.

6.4.1 Generic Software Release Process

The software release process is a required input to the methodology, based on

derived requirement DR6 – the methodology shall use the current software release

process as an input. Figure 26 – Generic Software Release ProcessFigure 26 is a generic

software release process that will be used during the proofing of the mission critical

release readiness methodology. It is expected that a program would input their unique

software release process when using the methodology, but a software release process is

needed to continue developing the mission critical release readiness methodology.

106

Figure 26 – Generic Software Release Process

The generic software release process identifies additional processing and testing

required dependant upon whether the software release is a production release or requires

security processing. The release process does not permit releasing software with out

release document, with out release testing being complete or with severity 1 or 2 problem

reports.

107

6.4.2 Outputs

The analyze software release decision sub-function outputs align well with the

mission critical release readiness methodology requirements and will be the starting basis

for the methodology’s outputs.

6.5 Sub-Functions

This section will describe the development of the analytical methodologies for the

release readiness metric as part of the mission critical release readiness methodology. In

the analyze software release decision sub-function, shown in Figure 27 for reference,

there are three sub-functions: 5.1.2 – Verify Software Release Process Followed; 5.1.3

Analyze Release Against Requirements; and 5.1.4 – Calculate Release Readiness. These

sub-functions will be developed in the following sections.

Figure 27 – ARSD FFBD

108

6.5.1 Verify Software Release Process Followed

The verify software release process followed sub-function answers the question

whether or not the software release process was followed. The sub-function uses the

software release process as its input and outputs whether the process was followed or not.

The verify software release process followed functional flow block diagram is shown in

Figure 28.

Figure 28 – Verify Software Release Process Followed

The verify software release process followed sub-function’s methodology will be

a simple answering of the question, “Was the software release process followed?” The

answer will be input to the calculate release readiness sub-function and then presented to

the user in the output release decision analysis sub-function.

109

6.5.2 Analyze Software Release Requirements

The analyze release against requirements sub-function uses the applicable

software requirements and the problem reports as inputs and outputs whether any

requirements verification and validation may be affected by the software release. This

analysis assists the customer by giving providing quantifiable data regarding the

verification and validation activities and whether any modifications to the activity will be

required. The quantifying of the software’s ability to meet the verification and validation

activities also will be a factor in the ability of the software to meet its intended purpose.

The analyze release against requirements function flow block diagram is shown in Figure

29.

Figure 29 – Analyze Release Against Requirements

The analyze release against requirements sub-function’s analyzes the open,

applicable problem reports and the functions they affect, against the requirements and the

110

functions they implement. The sub-function factors the problem report’s severity and the

level of verification and validation of the requirement in determining whether the

software release affects verification and validation activities.

6.5.3 Calculate Release Readiness Metric

As was stated in during the research, a metric based approach has considerable

merit with regards to assisting the software release manager decide when to release

software. As a decision problem with multiple decision criteria, the software release

decision is classified as a Multi-Attribute Decision Making (MADM) problem. A

method for solving multi-attribute decision making problems is the methodology

proposed by Hwang and Yoon, the Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) [76]. The TOPSIS method calculates one number that is an indication

of an alternative’s distance away from the ideal and negative-ideal solutions. The

TOPSIS calculated number forms the basis for the mission critical release readiness

metric. The TOPSIS technique is described below [72]:

Given m alternatives, A, and n criteria to rank the alternatives against perform the

following:

1. Construct a decision matrix with the alternatives and criteria. The matrix will

be described as follows:

111

Where, m alternatives, i, are denoted as i = 1, 2, 3, …, m; the n criterion, j,

are denoted as j = 1, 2, 3, …, n; and xij is the performance rating of each

alternative with respect to each criterion.

2. Calculate a normalized decision matrix, R(=[rij]). The normalized values r,

are non-dimensional criteria, converted from the performance rating, x, as

follows:

Where, i = 1, 2, 3, …, m; j = 1, 2, 3, …, n. The normalized decision matrix,

R, is described as follows:

112

3. Calculate the weighted normalized decision matrix, V(=[vij]). The weighted

normalized matrix is calculated by multiplying the normalized decision matrix

by a set of weights W = (w1, w2, w3, …, wn) and (Σwj = 1), where j = 1, 2, 3,

…, n and wj is the weight of the jth criterion. The weighted normalized value,

vij, is calculated as:

Where, i = 1, 2, 3, …, m; j = 1, 2, 3, …, n. The weighted normalized decision

matrix, V, is described as follows:

4. Calculate the ideal, A*, and negative-ideal, A-, alternatives as:

113

A* = max(vij) for positive criteria; min(vij) for negative criteria for j = 1, 2, 3, …, n

A* = [v1*, v2*, v3*, …, vn*]

A- = min(vij) for positive criteria; max(vij) for negative criteria for j = 1, 2, 3, …, n

A- = [v1-, v2-, v3-, …, vn-]

5. Calculate the separation measure using n-dimensional Euclidean distance

method of each alternative from the ideal, Si*, and negative-ideal, Si-,

alternatives. The distance from the ideal alternative is calculated as:

The distance from the negative-ideal alternative is calculated as:

6. Calculate the relative closeness to the ideal solution. The relative closeness of

an alternative Ai with respect to the ideal solution A* is calculated as:

114

Where, 1 > MCRRMi* > 0 and i = 1, 2, 3, …, m. MCRRMi* values close to 1

indicate better alternative performance.

The mission critical release readiness methodology’s use of TOPSIS will use

three alternatives (m = 3): the ideal solution; the negative ideal solution, and the current

release. The criterion are the inputs to the analyze software release decision sub-function

and there will be a minimum of seven criterion (n > 7). The criterion number is a

minimum due to the number of resources and the software release process inputs may

vary from program to program. The actual number of inputs will depend upon the

program’s desires. Allowing customization of the mission critical release readiness

methodology broadens the application of the methodology and assists in lowering the

software methodology and tools risk item. The set of weights, W, are still required to

complete the TOPSIS calculations.

Weighting can be accomplished via an equal weighting system, where in the case

of seven inputs, each input is weighted the same; meaning the weighting would be

0.14285 for each input and the seven weightings total to approximately one. Weighting

can also be accomplished via a disciplined trade study process called Analytic Hierarchy

Process (AHP) [73], [78]. Analytic Hierarchy Process was developed by T.L. Saaty and

is a systematic procedure that allows pairwise comparison while prioritizing items [77],

115

[80]. Due to its analytical basis and widespread use, Analytic Hierarchy Process will be

used to calculate the weighting of the criterion.

The Analytic Hierarchy Process steps are described below [79]:

1. Define the problem and determine the kind of knowledge sought.

2. Structure the decision hierarchy from the top with the goal of the decision,

then the objectives from a broad perspective, through the intermediate

levels (criteria on which subsequent elements depend) to the lowest level

(which usually is a set of the alternatives).

3. Construct a set of pairwise comparison matrices. Each element in an

upper level is used to compare the elements in the level immediately

below with respect to it.

4. Use the priorities obtained from the comparisons to weigh the priorities in

the level immediately below. Do this for every element. Then for each

element in the level below add its weighted values and obtain its overall or

global priority. Continue this process of weighting and adding until the

final priorities of the alternatives in the bottom most level are obtained.

Comments on the Analytic Hierarchy Process steps, as applied to the mission

critical release readiness methodology are as follows:

1. The big-problem definition is assisting the software release manager in

deciding when to release software. The AHP problem definition is

116

developing a weighting methodology to weight the mission critical release

readiness methodology’s inputs.

2. The decision hierarchy for the mission critical release readiness

methodology is one level, with the methodology inputs all at the same

level.

3. There is only one level and thusly, one pairwise comparison matrix for the

mission critical release readiness methodology.

4. For the mission critical release readiness methodology, there is only one

level and AHP is being used to develop the weighting of the inputs against

one another, not select an input (considered an alternative by AHP) over

another.

Step 3 in Analytic Hierarchy Process uses a scale and their reciprocals to pairwise

compare the variables under analysis. Saaty’s rating scale is shown in Table 10 [79].

The scale allows the user to indicate one variable’s importance over another variable by

inputting the whole number in the lower left half of the pairwise matrix and the reciprocal

in the upper right half of the matrix.

117

Table 10 – Saaty's Analytic Hierarchy Process Rating Scale

The analytical process behind the Analytic Hierarchy Process is described below

[79], [81]:

Given an AHP pairwise comparison matrix, A:

118

The variables under analysis are A1, …, An and the matrix entries are the absolute

importance of one variable to that of another variable. There exists a scale w

that can be found using the following:

or,

Given, I the identity matrix:

119

If n is an eigenvalue of A, then A – nI vanishes and w is the eigenvector of the

matrix A and the absolute importance of the variables from matrix A.

Using Analytic Hierarchy Process the weighting of the criterion can be calculated

and using TOPSIS, a software release readiness metric can be calculated based on the

criterion, their weightings, and the current release, non-ideal, and ideal alternatives, as

shown in Figure 30. The complete mission critical release readiness methodology

functional flow block diagram is shown in Figure 31.

Figure 30 – Calculate Release Readiness

120

Figure 31 – Complete Mission Critical Release Readiness Methodology

The next step in the mission critical release readiness methodology development

is to develop a prototype for the user interface. The user interface will not only display

the software release readiness metric to the software release manager, but also allow the

methodology to use the required inputs and present the required outputs of the

methodology.

121

6.6 User Interface

The output of the mission critical release readiness methodology is critical to the

successful application of the methodology. In order to assist the software release

manager in the software release decision, the output of the methodology must be easily

accessible via ubiquitous methods. Due to the accessibility, types, and uses of the

methodology outputs, the decision was made to use Excel® to proof the methodology

and its user interface. Using Excel® also provides a platform for performing the required

analysis and computations during the development of the mission critical release

readiness methodology. The user interface for the mission critical release readiness

methodology consists of three distinct parts: 1) Analytic Hierarchy Process analysis on

inputs; 2) TOPSIS analysis to calculate the mission critical release readiness metric; and

3) Output. The following sections discuss the mission critical release readiness user

interfaces in detail.

6.6.1 Analytic Hierarchy Process User Interface

The mission critical release readiness methodology Analytic Hierarchy Process

user interface is used to collect the project ranking on the methodology inputs and to

weight the inputs for use in the TOPSIS analysis. Excel® was used to develop the

Analytic Hierarchy Process user interface and the methodology was developed using

Visual Basic®. The Analytic Hierarchy Process user interface allows the user to enter

the pairwise rankings in the interface and then run a macro to calculate the matrix

normalized eigenvectors which are the criterion weightings. The interface is shown in

Figure 32. The user inputs the pairwise comparisons in the lower, left hand corner of the

122

matrix shaded in yellow. The blue shaded areas are the criterion names on the left hand

and top side and the inverse to the user input from the yellow shaded area. The black

shaded area is the diagonal and is set to 1 for the user. The tan shaded area is where the

calculated normalized weighting is written.

Figure 32 – Analytic Hierarchy Process User Interface

The Analytic Hierarchy Process calculations involve matrix multiplication,

totaling rows, and normalizing with the row totals. The eigenvector of the matrix was

found using the power method [82]. The power method involves sequentially squaring

the matrix and calculating a normalized eigenvector until the eigenvector matches, to

some degree of accuracy, the previous eigenvector. The matrix multiplication formula is

shown below:

123

Where, i = 1, 2, 3, …, n and indicates the row; j = 1, 2, 3, …, n and indicates the

column.

The source code for the matrix multiplication is shown below:

 'Loop through, multiplying the A matrix times itself

 For i = 1 To n

 For j = 1 To n

 For k = 1 To n

 'Multiply A times A and store in B

 B(i, j) = B(i, j) + A(i, k) * A(k, j)

 Next k

 Next j

 Next i

The source code for the Analytic Hierarchy Process calculation is presented in

Appendix A.

6.6.2 TOPSIS User Interface

The mission critical release readiness methodology TOPSIS user interface is

shown in Figure 33 – MCCRM TOPSIS Worksheet UI. Similar to the Analytic

Hierarchy Process user interface, the yellow shaded area is where the user inputs the

criterion objective (maximize or minimize) and the data regarding the current, non-ideal,

124

and ideal alternatives and the blue shaded area includes the criterion and now the

alternatives. The weightings, shaded in tan, are taken from the AHP worksheet. The

mission critical release readiness metric is calculated using the TOPSIS methodology

developed in Visual Basic® and is shown as shaded in green. Metrics are similarly

provided for the negative-ideal and ideal alternatives shaded in tan.

Figure 33 – MCCRM TOPSIS Worksheet UI

Again, the TOPSIS calculations were developed in Visual Basic® and once the

data is input to the user interface, a macro is run to perform the calculations and fill in the

metric data. The TOPSIS source code is presented in Appendix A.

A user interface was developed for TOPSIS criterion data entry. The software

release plan user interface includes data regarding the software to be released, the pre-

release testing required, the build time required to release the software, the resources

required and effort to release the software, the planned and calculated software release

125

days, and the planned and calculated software release cost. The software release plan

user interface is shown in Figure 34.

Figure 34 – Software Release Plan User Interface

126

The calculated release date is a computational entry derived using: the project

starting date; adding the maximum software development time added with the

appropriate pre-release test time and software build time; and adding the software release

test effort. The calculated release date formula is given below:

 Where:

 i = 1, …, n is the subsystem software being released;

 td is the time to develop the subsystem software;

tbi is the time to build the subsystem software;

tti is the time to pre-release test the subsystem software;

The calculated release cost is a computational entry that multiplies the number of

pre-release testing times the subsystem’s personnel, adds the software build time –

assumes one personnel required to build the software, and adds the release testing effort

times the required release personnel all times the personnel cost per hour. The formula is

given below:

 Where:

127

 i = 1, …, n is the subsystem software being released;

 tbi is the time to build the subsystem software;

tti is the time to pre-release test the subsystem software;

tr is the time to release test the software;

pi is the subsystem personnel required for pre-release testing;

pr is the personnel required for release testing;

cph is personnel cost per hour.

The software release plan user interface is the source of several inputs on the

TOPSIS worksheet. The resources: laboratories and resources: hardware are input onto

the TOPSIS worksheet as binary results: 1 – indicates there are resources available for the

software release; 0 – indicates there are not enough required resources available for the

software release. The resources: personnel – number of personnel required is a direct

input to the ideal alternative entry on the TOPSIS worksheet and the resources: personnel

– number of personnel available is directly input to the current alternative entry. Release

schedule – expected release date is a direct entry of 0 into the ideal alternative entry on

the TOPSIS worksheet and the release schedule – calculated release date, is the integer

days difference between expected release date and calculated release date and is directly

input into the current alternative entry. The ideal alternative entry on the TOPSIS

worksheet for cost is a direct entry from the release cost – expected release cost and the

current entry for cost is directly from the release cost – calculated release cost.

128

6.6.3 Output User Interface

The mission critical release readiness methodology output user interface –

mission critical release readiness dashboard – is shown in Figure 35. Although the

TOPSIS worksheet and the dashboard share the same input data, the dashboard is used to

present the mission critical release readiness methodology results. The dashboard

presents the expected and current/projected data, the mission critical release readiness

metric, and answers the four questions required of the methodology, with color

enhancement, without adding the TOPSIS required data of weighting, objectives,

negative ideal and ideal alternatives.

129

Figure 35 – Dashboard User Interface

The dashboard user interface also allows the project to program the interface to

indicate the goodness of the expected data against current data and to program a color

indicator for the mission critical release readiness metric. An example of cost data and

the mission critical release readiness metric exceeding project selected thresholds and

indicated in red is shown in Figure 36.

130

Figure 36 – Dashboard Color Coding Example

The color coding gives an additional indication of areas of concern for the

software release under consideration. A dashboard item with its Current/Projected Value

background color: Green indicates no concerns; Yellow indicates slight concern; Red

indicates a major concern. The color-coding is project controlled and in the example

shown in Figure 37, the project chose to use a ratio of expected to current/projected

values as the key indicator. The ratio values shown with a gray background indicate

maximize values, the light blue background indicate the minimize values, and the light

green background indicate discrete values. The conditional formatting option in Excel®

131

was used to color codes the dashboard Current/Projected Values with the values shown in

the Green, Yellow, and Red columns.

Figure 37 – MCRRM Conditional Formatting Data

Figure 38 is an example of the conditional formatting for the mission critical

release readiness metric value. The metric uses the same values as those for the Current

Release headers, which are indicated as cells D3, E3, F3, and G3 in the

example and the metric value is in cell J15.

132

Figure 38 – Conditional Formatting Equations

In addition to providing the user with the expected value, the current/projected

value, and the metric value, the mission critical release readiness methodology output

user interface includes the answers to the four questions:

• Software Release Affects V&V?

• Software Release Process Followed?

• Software Requires Security Processing?

• Software Able To Perform Intended Purpose?

The first question (Software Release Affects V&V?) is an output of the analyze

release against requirements sub-function. The analyze release against requirements sub-

function’s methodology compares the problem reports and the functions they affect

133

against the requirements and the functions they implement. The methodology will factor

the problem report’s severity and the level of verification and validation of the

requirement in determining whether the software release affects verification and

validation activities. For the proof of the mission critical release readiness methodology,

the analysis of problem reports and requirements is accomplished and any requirements

with severity 1 or 2 problem reports written against the requirement’s implemented

functions are highlighted. The question regarding the software release affecting

verification and validation is then answered based on the results of the analysis.

 The next questions are regarding the software release process and whether the

release requires security processing. Both of these questions will be answered via yes/no

responses. Modeling the project specific software release process and automating the

answering of whether the software release process is followed is left for future work of

the mission critical release readiness methodology.

The last question is regarding the ability of the software to support its intended

purpose. This question will be answered by one of three responses: Highly Probable;

Probable; Improbable. The answer will be derived through analysis of the mission

critical release readiness metric, analyzing the software affects verification and validation

response, analyzing whether the software release process was followed, and analyzing the

stability of the software.

Software stability analysis is accomplished by comparing the previous 6 weeks

moving average of problem reports per week versus the current 6 weeks moving average

of problem reports per week. The three responses and their determinations are shown

below:

134

• Highly Probable – Software release process followed, mission critical

release readiness metric is above 0.94, no warnings or cautions indicated

in the metric calculation, and the current 6 weeks moving average of

problem reports per week is less than or equal to 110% of the previous 6

weeks moving average of problem reports per week.

• Probable – Software release process followed, mission critical release

readiness metric is between 0.86 and 0.94 with no warnings indicated in

the metric calculation, and the current 6 weeks moving average of problem

reports per week is less than 125% of the previous 6 weeks moving

average of problem reports per week.

• Improbable – Software release process not followed, mission critical

release readiness metric below 0.86, software release affects V&V, and/or

the current 6 weeks moving average of problem reports per week is greater

than 125% of the previous 6 weeks moving average of problem reports per

week.

The data for the software release will be analyzed and using the guidelines above,

the software’s ability to support its intended purpose question will be answered.

6.7 Developing The Methodology Summary

The mission critical release readiness methodology’s analytical methodologies

and user interfaces are developed after a review of the methodology’s inputs and

135

producing the functional flow block diagram for the methodology. The methodology

inputs are weighted using Analytic Hierarchy Process and the weightings are then used as

part of the TOPSIS methodology for developing the mission critical release readiness

metric. Excel® is used to develop the Analytic Hierarchy Process and TOPSIS

worksheets and analyses with the source code provided in Appendix A.

The user interface for the mission critical release readiness methodology is

developed in Excel® allowing for development of both a user interface and analytic

computational procedures. Three user interfaces are developed: 1) Analytic Hierarchy

Process analysis on inputs; 2) TOPSIS analysis to calculate the mission critical release

readiness metric; and 3) Output. The user interfaces are developed and the interfaces and

specific features are provided.

The analytical process behind the mission critical release readiness methodology

and the calculation of the mission critical release readiness metric is provided in detail, as

is the calculation and presentation of the methodology’s required outputs. With the

development of the methodology complete, verification of the methodology’s analytical

processes and verification and validation that the methodology meets the software release

manager’s needs and requirements is required. Verification and validation of the mission

critical release readiness methodology is covered in the next chapter.

136

Chapter 7

7 VERIFICATION AND VALIDATION OF METHODOLOGY

7.1 Verification

The Verification sub-process is where formal testing and evaluation are performed

on the developed product [17]. The test results are used to evaluate the capability of the

system under development, to adequately meet the requirements of the system, verifying

the system works as intended. The test results are also used to evaluate the system’s

ability to meet the needs of the user, validating the system.

7.2 Verify And Validate Solution

In the need identification and problem resolution process’ Verify and Validate

Solution sub-process, the system under development is tested, the test results are used to

verify the system requirements, and finally, the product is validated using the test results

to insure the system satisfies the customer’s needs.

7.3 Analytic Hierarchy Process Verification

The development of the Analytic Hierarchy Process user interface for the mission

critical release readiness methodology requires verification of the developed analytical

137

methodology. The Analytic Hierarchy Process analytical methodology was verified in

two steps.

First, the matrix multiplication code was verified against the MMult function in

Excel® for 2 by 2, 3 by 3, 5 by 5, and 9 by 9 matrixes. The matrix multiplication

developed and coded for the Analytic Hierarchy Process analytical methodology, exactly

matched the MMult function.

Second, the eigenvector calculations were verified using MATLAB®,

Mathematica, and an online matrix calculator [83]. The eigenvector calculated using the

power method for the mission critical release readiness methodology matched the

MATLAB®, Mathematica, and online matrix calculator results, upon normalization, out

to the fifth decimal place.

With the matrix multiplication and eigenvector calculations verified, the mission

critical release readiness methodology developed Analytic Hierarchy Process analytical

methodology passes verification.

7.4 TOPSIS Methodology Verification

The development of the TOPSIS user interface for the mission critical release

readiness methodology requires verification of the developed TOPSIS analytical

methodology. The TOPSIS analytical methodology was verified dynamically by

inputting data and insuring the analytical methodology produced logical results and by

comparison with a commercial TOPSIS calculator. For dynamic testing, the developed

TOPSIS analytical methodology’s outputs were verified against known inputs to insure

138

the developed methodology was creating logical results. The dynamic testing indicated

the TOPSIS analytical methodology produced expected results for known inputs.

The Statistical Design Institute (SDI) produces a suite of software that includes a

TOPSIS calculator [84]. The mission critical release readiness developed TOPSIS

analytical methodology was compared against the SDI TOPSIS calculator and the

developed analytical methodology’s output matched the output of the SDI toolset.

With the TOPSIS analytical methodology passing dynamic and comparison

testing, the mission critical release readiness methodology developed TOPSIS analytical

methodology passes verification.

7.5 Methodology Verification

Verification of the mission critical release readiness methodology is accomplished

via test and inspection, per the methodology requirements verification methods detailed

in Table 3 and Table 4. The mission critical release readiness requirements verified by

test are discussed first. The inspection method of verification is documented in a

Verification Cross Reference Matrix (VCRM). The verification cross reference matrix

documents the requirements, the requirement verification methods, and documents the

verification of the requirement. Two verification cross reference matrixes are provided,

one for the mission critical release readiness requirements and one for the mission critical

release readiness methodology derived requirements.

139

7.5.1 Methodology Testing

Mission critical release readiness methodology testing is accomplished via

dynamic testing – performing case studies using the methodology and insuring the

methodology produces logical results. A generalized testing case study is presented next.

7.5.1.1 Case Study: Release Plan User Interface

The software release plan user interface for the case study is shown in Figure 39.

The mission critical release readiness methodology is applied on the 2/25/2010, the day

the software is to be released, to provide the software release manager an analytical basis

for assisting in deciding to release the software and its ability to perform its intended

purpose. The software release plan user interface provides the data for software release

version 0.9.1, which consists of a system generically noted as S1 and three subsystems

generically noted as SS1, SS2, and SS3, implementing function A1. The software release

consists of 10,000 source lines of code distributed over the three subsystems.

Subsystem SS1 is developing 3000 source lines of code, estimating to take 100

days with 3 people, pre-release testing will take 3 days at 8 hours a day, and 0.5 day is

required to compile and build the software.

Subsystem SS2 develops 6300 source lines of code, estimating to take 180 days

with 4 people, pre-release testing will be 5 days, and 1 day is required to compile and

build the software.

Subsystem SS3 develops 700 lines of code, estimating to take 30 days with 1

person, pre-release testing will be 1 day, and 0.1 day is required to compile and build the

software.

140

Figure 39 – Case Study SW Release Plan

141

The resources required to release software version 0.9.1 are as follows: two

laboratories; five subsystems (2 SS1, 2 SS2, and 1 SS3); and eight personnel. All

required resources are available to support software version 0.9.1 release.

The software version 0.9.1 project started on 8/8/2009. Development of the

software was expected to take 180 days. Pre-release testing and compile and build

activities were expected to take 6 days and release testing of the total system was

expected to take 15 days. The expected release date is 2/25/2010, with a calculated

release date of 2/25/2010. The calculated release date is calculated as follows:

 Where:

 i = 1, …, n is the subsystem software being released;

 td is the time to develop the subsystem software;

tbi is the time to build the subsystem software;

tti is the time to pre-release test the subsystem software;

The calculated release cost of $22,740 equals the expected release cost. The

calculated release cost formula is as follows:

142

 Where:

 i = 1, …, n is the subsystem software being released;

 tbi is the time to build the subsystem software;

tti is the time to pre-release test the subsystem software;

tr is the time to release test the software;

pi is the subsystem personnel required for pre-release testing;

pr is the personnel required for release testing;

cph is personnel cost per hour.

The case study calculated release cost is calculated as below:

The software release plan user interface provides a overview of the software

under consideration for release, next the Analytic Hierarchy Process worksheet is

presented for the case study.

7.5.1.2 Case Study: Analytic Hierarchy Process Worksheet

The Analytic Hierarchy Process worksheet for the case study is shown in Figure

40. Inputs from the case study were input in the lower left section of the worksheet

highlighted in yellow. The inverse number was automatically filled in by the worksheet

in the corresponding upper right. Upon entering all the data in the yellow section, the

developed Analytic Hierarchy Process code was ran and produced the calculated

normalized weightings shown with the tan highlights. The normalized weightings

143

indicate contractual obligations and cost are the two highest weighted criterions followed

by software release plan and resources: personnel.

Figure 40 – Case Study AHP Worksheet

The normalized weightings from the Analytic Hierarchy Process worksheet are

used by the TOPSIS worksheet and using the magic of Excel® are automatically copied

into the TOPSIS worksheet in the weighting row. The case study TOPSIS worksheet is

shown in the next section.

7.5.1.3 Case Study: TOPSIS User Interface

The inputs for the TOPSIS worksheet come from several different sources. The

weightings are calculated in the Analytic Hierarchy Process worksheet and copied

directly from the Analytic Hierarchy Process worksheet to the weightings inputs on the

TOPSIS worksheet. The criterion objectives are input by the project and the case study

144

objectives are to maximize all criterion except cost, problem reports, and software release

plan which are minimized.

The contractual obligations are input by the project with a 1 indicating the

contractual obligations will be met and a 0 indicating they will not be met – the case

study’s contractual obligations are being met, therefore a 1 is input in the current and

ideal alternative entries and a 0 in the negative ideal alternative. The cost inputs for the

current and ideal alternatives are input from the case study’s software release plan user

interface and the negative ideal cost input for the case study is about 10% greater than the

ideal cost. The problem reports inputs are input by the project using the project’s

problem report data – Table 11 shows the relevant case study problem reports. The case

study’s problem reports ideal alternative input 8 and the current alternative of 10 is the

total number of open problem reports against the function A1. The case study chose 25

for the negative ideal problem report input.

Table 11 – Case Study Relevant Problem Reports

145

 The current and ideal alternative resources inputs are all input directly from the

software release plan user interface. The negative alternative inputs for hardware,

laboratories, and personnel a well as software release process are all 0.9. The current and

ideal alternative inputs for software release process are both 1 indicating the process is

being followed for the case study. There are 12 software requirements for the case

study’s 0.9.1 version release and all 12 are able to be verified. The current and ideal

alternatives inputs for software requirements are both 12 with the negative ideal input

being 5. The software release plan inputs for current and ideal alternative are input

directly from the software release plan user interface and both are 0 representing 0 days

away from the planned release date of 2/25/2010 for the case study. The negative ideal

input is 6 days away from the planned release date of 2/25/2010 or 3/3/2010 for the case

study. TOPSIS user interface for the case study is shown in Figure 41.

Figure 41 – Case Study TOPSIS Worksheet

146

The TOPSIS worksheet inputs are used to generate the mission critical release

readiness methodology dashboard for the software under release consideration. The

dashboard for the case study is shown in the next section.

7.5.1.4 Case Study: Dashboard

The data from the case study’s TOPSIS worksheet is copied directly to the

mission critical release readiness methodology dashboard. The dashboard for the case

study is shown in Figure 42. The dashboard indicates that although the mission critical

release readiness metric is 0.9901 and not indicating a caution or warning for the overall

metric, the current/projected value of the problem reports has exceeded the case study’s

selected value for caution and is consequently highlighted in yellow.

147

Figure 42 – Case Study MCRRM Dashboard

The case study dashboard indicates all the questions required of the mission

critical release methodology have been answered. The software release does not affect

verification and validation and security processing is not required. The software release

process was followed to release version 0.9.1 and due to a cautionary indication with the

problem reports, the question about the software able to perform its intended duty is

answered with a probable.

The case study dashboard provides an analytical metric of the release readiness of

the software, a qualitative metric on the software’s ability to perform its intended

148

purpose, and identifies areas of concern with respect to the software release – problem

reports. Based on the case study’s mission critical release readiness dashboard it would

be recommended to release the software, with a cautionary note that the current problem

reports are slightly more than the expected value.

7.5.2 Verification Cross Reference Matrixes

A verification cross reference matrix maps requirements to the verification

activities that verify the requirement. By mapping the requirement to the verification

activity, the matrix allows a program to status the verification activity and insures all

requirements have verification activities assigned. Verification cross reference matrixes

were developed for the methodology requirements and the derived implementation

requirements.

The methodology requirement verification cross reference matrix is shown in

Table 12. The table maps the methodology requirements to the section in this document

that verifies the requirement. All methodology requirements are linked to verification

activities and are considered verified.

The mission critical release readiness methodology derived implementation

requirement verification cross reference matrix is shown in Table 13. The table maps the

derived implementation requirements to the section in this document that verifies the

requirement. All derived implementation requirements are linked to verification

activities and are considered verified.

149

Table 12 – Requirement Verification Cross Reference Matix

Parent
Ident

Req
ID Requirement Text

Verification
Method Verifying Section

N1 R1

Once the methodology has been
initialized, it shall take no more
than 4 hours for the
methodology to produce
decision analysis support
results.

Test

By using Excel® and using automation
through built in Excel® functions, macros,
and coding portions of the mission critical
release readiness methodology, upon
initialization (all inputs provided) the
analysis and providing decision analysis
support results occur upon entry of the last
data input with no recognizable delays.

N2 R2

The methodology shall indicate
whether the software release
follows the software release
process.

Inspection

6.6.3 – The MCRRM output user interface
indicates an output of the methodology is
whether the release follows the software
release process.

N3 R3
The methodology shall provide
the date the methodology
analyzed the software release.

Inspection
6.6.1, 6.6.2, & 6.6.3 – The user interfaces
for the methodology all include a date field
for when the analysis was accomplished.

N4 R4

The methodology shall provide
a qualitative measure on the
software release's ability to
perform its intended purpose.

Inspection

6.6.3 – The MCRRM output user interface
indicates an output of the methodology is
whether the release can perform its
intended purpose and how the qualitative
measure is answered.

N5 R5

Software releases containing
severity 1 or 2 problem reports
affecting requirement V&V
shall be identified.

Inspection

6.6.3 – The MCRRM output user interface
indicates an output of the methodology is
whether the release affects requirement
V&V.

N6 R6

The methodology shall list
software releases requiring
additional processing or testing
as part of the release process.

Inspection

6.4.1 & 6.6.3 – The generic software
release process used as an input to the
MCRRM has decision points for additional
processing or testing and the MCRRM
output user interface indicates whether the
release followed the software release
process.

N7 R7

The methodology shall permit
the software release manager to
track the cost of the software
release.

Inspection
6.6.3 – The MCRRM output user interface
indicates an input of the methodology is
both expected and projected cost.

N8 R8
The release options requiring
security processing shall be
identified

Inspection

6.6.3 – The MCRRM output user interface
indicates an output of the methodology is
whether the release requires security
processing.

N9 R9
The released software shall be
capable of supporting its
intended purpose.

Inspection

6.6.3 – The MCRRM output user interface
indicates an output of the methodology is
whether the software release is able to
support its intended purpose and the
calculation of the answer includes a
measure of software stability.

150

Table 13 – Derived Requirements Verification Cross Refernce Matrix

Parent
Ident

Req
ID Requirement Text

Verification
Method Verifying Section

R3 DR1
The methodology shall use
contractual obligations as an
input.

Inspection

6.6.3 – The MCRRM
output user interface
indicates an input of
contractual obligations.

R3 DR2
The methodology shall use
the current software release
plan as an input.

Inspection

6.6.3 – The MCRRM
output user interface
indicates an input of the
software release process.

R3 DR3
The methodology shall use
the current problem reports
as an input.

Inspection

6.6.3 – The MCRRM
output user interface
indicates an input of
problem reports.

R3 DR4
The methodology shall use
the current software
requirements.

Inspection

6.6.3 – The MCRRM
output user interface
indicates an input of
current software
requirements.

R3 DR5
The methodology shall use
current resource availability
as an input.

Inspection

6.6.3 – The MCRRM
output user interface
indicates inputs of
resources.

R3 DR6
The methodology shall use
the current software release
process as an input.

Inspection

6.6.3 – The MCRRM
output user interface
indicates an input of the
software release process.

R7 DR7
The methodology shall use
the cost of releasing
software as an input.

Inspection

6.6.3 – The MCRRM
output user interface
indicates inputs of both
expected and projected
cost.

151

7.6 Sensitivity Analysis

Sensitivity analysis is the study of a system in response to changes in data and

parameters [90]. Sensitivity analysis was performed on the mission critical release

readiness methodology by: 1) varying the values of the criterion and studying the

response of the dashboard to the values; 2) randomly varying the pairwise comparison of

the criterion and studying the response of the mission critical release readiness metric;

and 3) randomly varying the values of the criterion and randomly varying the pairwise

comparison of the criterion and studying the response of the methodology. Figure 43 is

a plot of some of the test runs accomplished during sensitivity testing. Over 11536 runs

were accomplished. The criterion test points are points were the criterion was varied or

the criterion and pairwise comparison varied. The combinational plot line are test points

that varied more than one criterion and/or pairwise comparison, or were test cases run

against other case studies.

152

Figure 43 – Sensity Test Runs

The following sections describe the sensitivity analyses in detail.

7.6.1 Criterion Values

The criterion sensitivity analysis in this section was performed by varying the

case study criterion and recording the results in the methodology’s dashboard. All of the

case study criterions were reset to the “Ideal” alternative values before starting a run to

insure only the effect of the criterion under evaluation was analyzed. The “Resources:

Personnel” criterion was chosen as an example of the analysis to include here, the

remaining analysis results are shown in Appendix B. “Resources: Personnel” criterion

was chosen to sweep from a higher number than the ideal alternative, down to 0 and

capturing the dashboard for all changes in the criterion value. All other methodology

153

criterions will only capture the dashboard for the first change in the dashboard, not the

entire range of criterion values.

The criterion sensitivity analysis process started with all the current criterions

equal to the case study ideal alternative criterions values, as shown in Figure 44 and

Figure 45. Using the ideal alternative values for the current alternative criterions meant

that the current and ideal alternatives were equal to begin sensitivity analysis. Then the

current criterion was decreased or increased, depending upon whether the criterion

objective was to maximize or minimize, and the dashboard captured when significant

levels were reached.

Figure 44 – Criterion Sensitivity Analysis Starting Point

154

Figure 45 – Dashboard Starting Point

7.6.1.1 Resources: Personnel

As a demonstration of what occurs when a maximize criterion was increased over

the ideal alternative criterion value, the “Resources: Personnel” criterion was increased to

9 to start the sensitivity analysis. Figure 46 shows the effect of increasing a maximize

criterion above the ideal alternative value, the current alternative becomes the ideal

alternative and the methodology measures how far the ideal alternative is from the

current alternative. Figure 47 is the dashboard for increasing the number of personnel to

9.

155

Figure 46 – Personnel Increased to 9

Figure 47 – Dashboard For 9 Personnel

Figure 48 is the dashboard for decreasing the “Resources: Personnel” criterion to

7. The dashboard indicates a mission critical release readiness metric value of 0.9357,

indicating a cautionary value, in this case due to resources being below the level required

156

to support the release plan as indicated by the red highlight on the “Resource: Personnel”

criterion. Although having 7 personnel to produce this release produces a cautionary

metric, the metric is indicating release the software, but the actual release date may be in

danger of slipping due to a shortage of the required personnel. The “Improbable” answer

to the question “Software Able To Perform Intended Purpose?” is due to a warning

occurring in the dashboard for too few personnel.

Figure 48 – Dashboard For 7 Personnel

The effect of reducing the “Resources: Personnel” to 6 is shown in Figure 49.

With the personnel reduced to 6, the methodology is producing a cautionary value of

0.8705, indicating the software release may not be able to support its intended purpose, in

this case the release date, at its current state of personnel.

157

Figure 49 – Dashboard For 6 Personnel

Reducing the “Resources: Personnel” criterion value to 5 produces warning

metric value of 0.8057 indicating the release cannot support its intended release date, as

shown in Figure 50. At values below 5, a lower mission critical release readiness metric

value is derived, but will have the same consequences on the release decision, just in

more severe cases. Reducing personnel values from 4 to 0 are shown in Figure 51,

Figure 52, Figure 53, Figure 54, and Figure 55.

158

Figure 50 – Dashboard For 5 Personnel

Figure 51 – Dashboard For 4 Personnel

159

Figure 52 – Dashboard For 3 Personnel

Figure 53 – Dashboard For 2 Personnel

160

Figure 54 – Dashboard For 1 Personnel

Figure 55 – Dashboard For 0 Personnel

161

7.6.2 Pairwise Comparison

The pairwise comparison analysis was performed in multiple steps. First, the

pairwise comparisons were varied randomly with fixed criterion values. Then the

pairwise comparisons were varied randomly with multiple randomly varied criterion

values. Finally, the pairwise comparisons were varied randomly while randomly varying

all the criterion.

7.6.2.1 Random Pairwise Comparisons And Fixed Criterion

The pairwise comparison sensitivity analysis was performed by inputting random

pairwise comparison values into the Analytic Hierarchy Process spreadsheet, running the

AHPCalc macro to calculate the weightings, transferring the weightings to the TOPSIS

spreadsheet, running the TOPSISCalc macro to calculate the mission critical release

readiness metric, storing the random and metric values, and then performing statistical

analysis on the resulting metric values. The pairwise comparison sensitivity analysis was

repeated 100 times for every test using Excel and visual basic code. The code for the test

is provided below:

'***
'*
'* AHPSense randomly assigns values to the
'* AHP spreadsheet, calculates the criterion
'* weighting based on the random data, calculates
'* the TOPSIS value for the new AHP weightings,
'* and stores the random assignments and TOPSIS
'* results in the "Sensitivity.RND" spreadsheet.
'*
'* Author: Tim Woods September 2010
'*
'***

162

Sub AHPSense()

 'car is an array to hold the number
 'individual inputs to insure even
 'distribution
 Dim car(17) As Double
 Dim c As Double

 'Run 100 times
 For s = 1 To 100

 'Row and column starting points
 rw = 5
 cl = 3

 'Initialize counter
 cnt = 0

 'c is 1/17 for the number of AHP entries
 c = 0.05882353

 'n*n data entries for AHP
 'Upper Right and diagonal taken care of
 For i = 1 To ((n * n) - n) / 2

 'Random data
 t = Rnd()

 'Use Random data to input ranking
 Select Case t

 Case Is <= c
 va = 1 / 9
 car(1) = car(1) + 1

 Case Is <= 2 * c
 va = 1 / 8
 car(2) = car(2) + 1

 Case Is <= 3 * c
 va = 1 / 7
 car(3) = car(3) + 1

 Case Is <= 4 * c
 va = 1 / 6

163

 car(4) = car(4) + 1

 Case Is <= 5 * c
 va = 1 / 5
 car(5) = car(5) + 1

 Case Is <= 6 * c
 va = 1 / 4
 car(6) = car(6) + 1

 Case Is <= 7 * c
 va = 1 / 3
 car(7) = car(7) + 1

 Case Is <= 8 * c
 va = 1 / 2
 car(8) = car(8) + 1

 Case Is <= 9 * c
 va = 1
 car(9) = car(9) + 1

 Case Is <= 10 * c
 va = 2
 car(10) = car(10) + 1

 Case Is <= 11 * c
 va = 3
 car(11) = car(11) + 1

 Case Is <= 12 * c
 va = 4
 car(12) = car(12) + 1

 Case Is <= 13 * c
 va = 5
 car(13) = car(13) + 1

 Case Is <= 14 * c
 va = 6
 car(14) = car(14) + 1

 Case Is <= 15 * c
 va = 7
 car(15) = car(15) + 1

164

 Case Is <= 16 * c
 va = 8
 car(16) = car(16) + 1

 Case Is <= 17 * c
 va = 9
 car(17) = car(17) + 1

 Case Else
 End Select

 'Store in AHP worksheet
 Worksheets("AHPCalc").Cells(rw, cl).Value = va

 'Store in Sensitivity worksheet
 Worksheets("Sensitivity.RND").Cells(i + 2, 2 + s).Value = va

 'Increase the row
 rw = rw + 1

 'Do not go above n + 3 rows
 If rw > 3 + n Then
 cnt = cnt + 1
 rw = 5 + cnt
 cl = cl + 1
 End If

 Next i

 'Run the AHP calculation sub
 AHPCalc

 'Store the AHP calculations
 For ahp = 3 To n + 3 - 1

 Worksheets("Sensitivity.RND").Cells(i + ahp, 2 + s).Value =

Worksheets("AHPCalc").Cells(ahp + 1, n + 3).Value
 Worksheets("Sensitivity.RND").Cells(i + ahp + n, 2 + s).Value =

Worksheets("TOPSISCalc").Cells(7, ahp + 1).Value

 Next ahp

 'Activate the TOPSIS sub
 TOPSISCalc

165

 'Store the TOPSIS results
 Worksheets("Sensitivity.RND").Cells(i + 2, 2 + s).Value =

Worksheets("TOPSISCalc").Cells(7, n + 4).Value
 Worksheets("Sensitivity.RND").Cells(93 + s, 2).Value =

Worksheets("TOPSISCalc").Cells(7, n + 4).Value

 'Capture the dashboard and store it
 If s = 1 Then

 Worksheets("MCRRM").Range("A2:M22").CopyPicture xlPrinter
 Worksheets("Sensitivity.RND").Paste _
 Destination:=Worksheets("Sensitivity.RND").Cells(167 + s, 8 + s)

 End If

 Next s

 'Store the number of the separate entries
 For i2 = 1 To 17

 Worksheets("Sensitivity.RND").Cells(119 + i2, 5).Value = car(i2)

 Next i2

End Sub

The mission critical release readiness metrics from running the pairwise

comparison sensitivity analysis against the sample case study are shown in Table 14 and

the statistical analysis of the results are shown in Table 15. As the statistical analysis

indicates, the mean of the 100 runs is 0.918877, the minimum value is 0.8830665, the

range is 0.1070358, and the maximum value is 0.990102. The 100 random runs show the

influence random pairwise assignments would have on the methodology. By limiting

random assignments of pairwise comparisons to a moderate influence, low of 0.8830665

166

to a high of 0.990102, the methodology demonstrates the importance of correct pairwise

comparisons to the software release decision.

Table 14 – Sensitivity Analysis Results

167

Table 15 – Results Analysis

Pairwise comparison sensitivity analysis was repeated multiple times using

multiple scenarios. Overall, the results indicated the weightings affected the mission

critical release readiness metric and that properly selected weightings produced results in-

line with customer expectations.

7.6.2.2 Random Pairwise Comparisons And Varying Criterion

The mission critical release readiness methodology was run while randomly

generating pairwise comparisons and randomly varying numbers of criterion. The code

from above was modified to include randomly varying up to 5 of the 9 case study

criterion. The results indicate that as more criterion are randomly varied, the harder it is

to have a successful mission critical release readiness metric. Random selections of

pairwise comparisons and criterion have a large effect on the mission critical release

168

readiness metric and their values must be correctly chosen for the methodology to

produce meaningful results.

7.6.2.3 Random Pairwise Comparisons And Varying All Criterion

Randomly varying the pairwise comparisons and all criterion produced worst case

scenarios during the sensitivity testing. With multiple criterion able to be less than ideal,

the mission critical release readiness metric had a mean of 0.036 for 1000 runs and a

maximum value of 0.468. The value of the methodology is shown when the pairwise

comparisons and criterion are correctly chosen.

7.7 Validation

Validation is ensuring the customer needs and expectations are met by the system.

By developing the software release manager’s needs through research and interviews,

developing those needs into requirements the mission critical release readiness

methodology must meet, and verifying the methodology meets the requirements, the

customer needs for the mission critical release readiness methodology are validated

against the research accomplished. Dynamically testing and applying the mission critical

release readiness methodology to real world case studies and producing logic, relevant

results provides additional assurance of the methodology’s ability to meet the customer’s

needs against the research accomplished.

169

7.8 Status

The following sections will be status updates on the mission critical release

readiness methodology design space, development, verification and validation, risk, and

technical program measures.

7.8.1 Design Space

In section 4.4, the software release methodologies design space was plotted with

the candidate software release methodologies plotted against the number of requirements

met on the X axis and the number of derived requirements met on the Y axis. The design

space is updated to include the mission critical release readiness methodology in Figure

56. The mission critical release readiness methodology is plotted in the upper right of

the plot indicating the methodology meets all the requirements and derived requirements.

170

Figure 56 – Design Space Status

7.8.2 Development

 The development of the Analytic Hierarchy Process and TOPSIS analytical

methods have been documented, tested, and verified. The user interface for the

methodology has been documented, tested, and verified. The mission critical release

readiness methodology development phase is considered complete.

7.8.3 Verification And Validation

Section 7.5.2 documents the mission critical release readiness methodology

requirements and derived requirements verification cross reference matrixes. All

171

relevant requirements and derived requirements are verified and the verification is

considered complete.

The mission critical release readiness methodology was dynamically tested and

applied in case studies for validation purposes. Validation of the mission critical release

readiness methodology is considered complete.

7.8.4 Risk

Two risks were identified with regard to the mission critical release readiness

methodology. The risks and their mitigation plans are shown in Table 16 below for

reference. By following the mitigation plans and developing the methodology using

common tools and interfaces, using automation, and providing standardized user

interfaces for methodology inputs, the likelihood of occurrence for Risk 1 has decreased.

During development of the mission critical release readiness methodology, the ease of

modification and generic basis behind the methodology facilitated research into other

areas to apply the methodology, thus reducing the consequence of Risk 2.

172

Table 16 – Methodology Risks and Mitigation Plans

RISK MITIGATION PLAN

1. If the methodology is inefficient at
gathering and processing the
methodology inputs, then the affect
on the methodology would be to use
workarounds or add up to 2
additional hours to the processing.

1. Design methodology to use common
tools and interfaces.

2. Automate portions of methodology
as time allows.

3. Provide standardize data entry forms.

2. If the methodology does not easily
apply to a wide variety of software
development methodologies and
tools, then the methodology will not
be widely acceptable and the
methodology would be considered
almost unusable.

1. Use generic software development
labels on data entry forms.

2. Design in methodology
customization, where possible.

Although the risks are still valid for the mission critical release readiness

methodology, they have been reduced in likelihood and/or consequence and are plotted

on the risk matrix for their final status as shown in Figure 57.

173

Figure 57 – Updated Risk Items

7.8.5 Technical Performance Measure

One technical performance measure was developed for the mission critical release

readiness methodology and it is described below:

TPM1 – The mission critical release readiness methodology shall provide

analytically based, release decision support to the user with an objective of less

than 1 hour and a not to exceed threshold of 4 hours from the time of

initialization, after methodology set-up.

174

Based on dynamic testing and applying the methodology to use cases

demonstrating a near instantaneous calculation upon methodology set-up, the technical

performance measure for the mission critical release readiness methodology meets the

objective of less than 1 hour.

7.9 Verification And Validation Of Methodology Summary

The mission critical release readiness methodology developed Analytic Hierarchy

Process and TOPSIS methodologies are verified via dynamic testing and comparison

with commercial analytical tools. A case study application of the mission critical release

readiness methodology is presented. The mission critical release readiness

methodology’s requirements are verified via their verification objectives of either test or

inspection. The verification cross reference matrixes for both the requirements and

derived requirements and partial validation of the mission critical release readiness

methodology are presented. The mission critical release readiness methodology

development, verification and validation, risks, and technical performance measure were

updated. Summary and conclusions are provided in the next chapter.

175

Chapter 8

8 SUMMARY AND CONCLUSIONS

8.1 Process Output

The Process Output sub-process is outputting any and all data that characterizes

the product or the processes required to develop the product [17]. The output for

developing the mission critical release readiness methodology is the process and the

conclusions derived from the design, development, verification, and validation of the

methodology.

8.2 Present Results

The Present Results sub-process of the need identification and problem resolution

process summarizes the design, development, verification, and validation of the mission

critical release readiness methodology. Additionally, the Present Results sub-process

summarizes any future work identified during the methodology development.

8.3 Summary

Research was accomplished to determine existing analytical software release

decision methodology. The accomplished research found literature lacking for an

176

existing analytical software release decision methodology, therefore systems engineering

processes and analysis were employed to develop a mission critical release readiness

methodology.

The process followed was documented and aligned with the systems engineering

fundamental process. After researching existing analytical software release decision

methodology, user needs were researched, methodology requirements were developed

from the user needs, and the requirements were analyzed for missing or derived

requirements. With the user needs and methodology requirements developed and

documented, brainstorming, analysis, and detailed research were accomplished into

possible solutions. A combinational analytical technique was applied to determine if

multiple existing methodologies could be combined to meet the needs and requirements.

The analytic technique did not reveal a combinational solution and the decision was made

to develop the mission critical release readiness methodology.

Additional research and analyses were accomplished regarding the development

of the methodology. Development of a metric type methodology ensued. Applying both

Analytic Hierarchy Process and TOPSIS analytical methodologies produced an

acceptable analytical metric for an analytical software release decision methodology.

The analytical basis and user interfaces behind the methodology were developed and the

source code for the methodology presented. Throughout research, analysis, and

development of the mission critical release readiness methodology, the functional flow

block diagrams were developed for the methodology. The final functional flow block

diagram for the methodology is shown in Figure 58.

177

Figure 58 – Complete Methodology

Dynamic testing of the analytical basis of the mission critical release readiness

methodology was accomplished and a case study application presented. The results of

the dynamic testing and case study application were used during verification of the

methodology. A partial validation of the methodology was presented.

178

The mission critical release readiness methodology dashboard presents the

outputs of the methodology in a logical manner, is capable of highlighting cautionary and

warning areas for the release, and answers relevant questions required of the software

release manager thus providing the software release manager with an analytical decision

support methodology to assist in deciding when to release software.

To summarize - in true systems engineering fashion: a need was discovered

without a viable solution; a process for responding to the need was developed and aligned

with the systems engineering fundamental process; research was accomplished on

customer needs and possible solutions; needs were developed into requirements; analysis

was accomplished on requirements, derived requirements, and methodology development

risks; technical performance measure identified; detailed research and brainstorming

were accomplished to define the possible solution design space; a make or “buy” decision

was made; the mission critical release readiness methodology was developed; the

analytical methodologies behind the mission critical release readiness methodology were

verified; methodology testing and case study application ensued; requirements were

verified and validated; risks and technical program measures were updated and statused.

8.4 Conclusions

One indication of the usefulness of a methodology is its ease of change. Even

with multiple analytical methodologies providing the basis for the mission critical release

readiness methodology results, the ease with which the methodology was changed and

improved during the development was a relative surprise. Easily updating the

179

methodology lends the methodology to additional areas of applications outside of the

software release decision.

The criticality of software in today’s complex systems drives the need for rigor

for all phases of the software lifecycle. Research showed a critical need for an

analytically based, quantitative mission critical software release decision methodology of

direct benefit to the developing complex systems. The developed mission critical release

readiness methodology is unlike anything uncovered in a comprehensive literature search

or in current known practice. The mission critical release readiness methodology

provides a valuable, analytical basis for the mission critical software release decision.

8.5 Future Work

The mission critical release readiness methodology is developed as a proof of

concept. Now that the concept has been developed and proofed, the mission critical

release readiness methodology should be extended beyond proof of concept. Several

ideas for extending the methodology were presented and are collected below:

• A generic methodology was presented with regards to a DoD centric

project – showcasing the methodology on commercial specific projects

would assist in acceptance of the methodology commercially.

• Automatically query for the inputs to the methodology. This automation

would insure the data used was current and assist in meeting the customer

need N3 – accurate data. Automation would also assist in meeting

customer need N1 – timely access to data support.

180

• Modeling the release process for use with the methodology, which would

assist in both customer needs N1 and N2 – timely running of the

methodology and answering whether the software release follows the

release process.

• Research into correlating the mission critical release readiness

methodology outputs for a particular software release and the problem

reports discovered after the software release would make for interesting

and appealing future work.

• Applying the analytical basis behind the mission critical release readiness

methodology to other decision areas outside of software release is an

intriguing area for additional future work.

181

APPENDIX

A - Mission Critical Release Readiness Methodology Source Code

 Public Const n As Integer = 9
 Public Const m As Integer = 3

__

'***
'*
'* AHPCalc subroutine calculates the AHP weightings
'* for criterion based on data from
'* a spreadsheet.
'*
'* Author: Tim Woods April 2010
'*
'***

Sub AHPCalc()

 Dim cnt As Integer
 Dim x As Integer
 Dim A(n, n) As Double
 Dim B(n, n) As Double
 Dim RTot(n) As Double
 Dim RNorm(n) As Double
 Dim RNormOld(n) As Double
 Dim RSum As Double
 Dim Ce As Boolean

 '***
 'Initialize For AHP Calculations

 'Not Close enough, yet, so initialize to False

182

 Ce = False

 'Set counter to -1
 cnt = -1

 'Clear Weights
 For i = 1 To n

 Worksheets("AHPCalc").Cells(3 + i, 3 + n).Value = ""
 RNorm(i) = 0

 Next i
 '***

 'Iterative process, repeat until close enough
 Do While Ce = False

 'Counter = 0 first time through and x places printouts
 cnt = cnt + 1
 x = 3 + cnt * (n + 2)

 'Load the A matrix and clear the B
 For i = 1 To n

 For j = 1 To n

 A(i, j) = Worksheets("AHPCalc").Cells(x + i, 2 + j).Value
 B(i, j) = 0

 Next j

 Next i

 'Clear the Row sum variable
 RSum = 0

 'Loop through, multiplying the A matrix times itself
 For i = 1 To n

 'Keep track of row totals in RTot
 RTot(i) = 0

 For j = 1 To n

183

 For k = 1 To n

 'Multiply A times A and store in B
 B(i, j) = B(i, j) + A(i, k) * A(k, j)

 Next k

 'Total rows
 RTot(i) = RTot(i) + B(i, j)

 'Write B matrix for results
 Worksheets("AHPCalc").Cells(2 + x + n + i, 2 + j).Value = B(i, j)

 Next j

 'Record Row totals
 Worksheets("AHPCalc").Cells(2 + x + n + i, 2 + j).Value = RTot(i)

 'Sum up the row totals in RSum
 RSum = RSum + RTot(i)

 Next i

 'Record the row totals sum
 Worksheets("AHPCalc").Cells(2 + x + n + i, 2 + j).Value = RSum

 For i = 1 To n

 'Store the old weightings
 RNormOld(i) = RNorm(i)

 'Calculate new weightings and store them
 RNorm(i) = RTot(i) / RSum
 Worksheets("AHPCalc").Cells(2 + x + n + i, 2 + j + 1).Value = RNorm(i)

 'If old and new weightings are within 0.000005, close enough
 If Abs(RNormOld(i) - RNorm(i)) < 0.000005 Then

 Ce = True

 Else

 Ce = False

 End If

184

 Next i

 'If looped this many times, cut it off
 If cnt = 2 * n Then

 Ce = True
 Worksheets("AHPCalc").Cells(3 + i, 2 + j).Value = "Did not Converge on

common values after " & cnt & " attempts."

 Else

 'If close enough, write weightings to spreadsheet
 If Ce = True Then

 For i = 1 To n

 Worksheets("AHPCalc").Cells(3 + i, 2 + j).Value = RNorm(i)

 Next i

 End If

 End If

 Loop

 'Record the date the analysis was completed
 TDate = Date
 Worksheets("AHPCalc").Cells(2, 11).Value = TDate

End Sub

__

'***
'*
'* TOPSISCalc subroutine calculates the TOPSIS
'* alternative rankings based using data from
'* a spreadsheet.
'*
'* Author: Tim Woods April 2010
'*
'***

185

Sub TOPSISCalc()

 Dim cnt As Integer
 Dim x As Integer
 Dim D(m, n) As Double
 Dim V(m, n) As Double
 Dim RTot(m) As Double
 Dim RTot2(m) As Double
 Dim CTot(n) As Double
 Dim CTot2(n) As Double
 Dim Ai(n) As Double
 Dim Ani(n) As Double
 Dim Si(m) As Double
 Dim Sni(m) As Double
 Dim MCRRM(m) As Double
 Dim Wts(n) As Double
 Dim Obj(n) As String

 '***
 'Initialize For TOPSIS Calculations

 'Clear Variables, Initialize Weights and Objectives
 x = 5

 For i = 1 To m

 RTot(i) = 0
 RTot2(i) = 0
 Si(i) = 0
 Sni(i) = 0
 MCRRM(i) = 0

 Next i

 For j = 1 To n

 CTot(j) = 0
 CTot2(j) = 0
 Wts(j) = Worksheets("TOPSISCalc").Cells(x, 3 + j).Value
 Obj(j) = Worksheets("TOPSISCalc").Cells(x + 1, 3 + j).Value

 Next j

 'Clear the MCCRM Metric and Negative-Ideal and Ideal Alternative Results

186

 For i = 1 To m

 Worksheets("TOPSISCalc").Cells(x + 1 + i, 4 + n).Value = ""

 Next i

 '***

 'Load the arrays and total the sum of the squares for the rows and columns
 For i = 1 To m

 For j = 1 To n

 D(i, j) = Worksheets("TOPSISCalc").Cells(x + 1 + i, 3 + j).Value
 V(i, j) = 0
 RTot(i) = RTot(i) + D(i, j) ^ 2
 CTot(j) = CTot(j) + D(i, j) ^ 2

 Next j

 RTot2(i) = RTot(i) ^ 0.5

 Next i

 'Calcualte the normalized matrix
 For i = 1 To m

 For j = 1 To n
 CTot2(j) = CTot(j) ^ 0.5
 V(i, j) = Wts(j) * (D(i, j) / CTot2(j))
 Worksheets("TOPSISCalc").Cells(x + 6 + i, 3 + j).Value = V(i, j)

 'Depending upon the Criterion Objective, find the max or min of the

criterion
 If i = m Then

 If V(1, j) >= V(2, j) Then

 MaxV = V(1, j)
 MinV = V(2, j)

 Else
 MaxV = V(2, j)

187

 MinV = V(1, j)

 End If

 If V(3, j) >= MaxV Then

 MaxV = V(3, j)

 ElseIf V(3, j) < MinV Then

 MinV = V(3, j)

 End If

 'Load the correct alternative
 If Obj(j) = "Maximize" Then

 Ai(j) = MaxV
 Ani(j) = MinV

 Else 'Objective is to minimize

 Ai(j) = MinV
 Ani(j) = MaxV

 End If

 Worksheets("TOPSISCalc").Cells(x + 8 + i, 3 + j).Value = Ai(j)
 Worksheets("TOPSISCalc").Cells(x + 9 + i, 3 + j).Value = Ani(j)

 End If

 Next j

 Next i

 For i = 1 To m

 For j = 1 To n

 Si(i) = Si(i) + (V(i, j) - Ai(j)) ^ 2
 Sni(i) = Sni(i) + (V(i, j) - Ani(j)) ^ 2

 Next j

188

 'Calculate the alternatives distance from ideal and negative ideal
 Si(i) = Si(i) ^ 0.5
 Sni(i) = Sni(i) ^ 0.5
 Worksheets("TOPSISCalc").Cells(x + 13 + i, 4).Value = Si(i)
 Worksheets("TOPSISCalc").Cells(x + 13 + i, 5).Value = Sni(i)
 MCRRM(i) = Sni(i) / (Si(i) + Sni(i))

 'Write the distance in as the MCRR Metric
 Worksheets("TOPSISCalc").Cells(x + 1 + i, 4 + n).Value = MCRRM(i)

 Next i

 'Record the date the analysis was completed
 TDate = Date
 Worksheets("TOPSISCalc").Cells(2, 12).Value = TDate

End Sub

189

B - Mission Critical Release Readiness Methodology Sensitivity Analysis

Sensitivity analysis was completed by varying each of the criterion and examining

the effect the criterion’s value had on the final output of the methodology. The case

study weightings and inputs were the basis for the analysis and the following figures are

the results of the sensitivity analysis.

Figure 59 – Contractual Obligations Metric Warning

190

Figure 60 – Cost Dashboard Caution

Figure 61 – Cost Metric Caution

191

Figure 62 – Cost Metric Warning

Figure 63 – Problem Reports Dashboard Caution

192

Figure 64 – Problem Reports Metric Caution

Figure 65 – Hardware Metric Warning

193

Figure 66 – Laboratories Metric Warning

Figure 67 – Software Release Process Metric Warning

194

Figure 68 – Software Requirements Dashboard Caution

Figure 69 – Software Requirements Metric Caution

195

Figure 70 – Software Requirements Metric Warning

Figure 71 – Software Release Plan Dashboard Caution

196

Figure 72 – Software Release Plan Metric Warning

197

REFERENCES

[1] Karim Nice (2001, April 11) How Car Computers Work, Retrieved April 09, 2007

from http://auto.howstuffworks.com/car-computer.htm.

[2] Forte, Rob (2005, May 9) Driving By Wire Autonet.ca, Retrieved September 30,

2007, from

http://www6.autonet.ca/Parts/Systems/story.cfm?story=/Parts/Systems/2005/05/10/1

033945.html.

[3] Leveson, Nancy G., Safeware System Safety and Computers, Addison-Wesley

Publishing Company, Inc., New York, New York, ISBN 0-201-11972-2, © 1995.

[4] Schneier, Bruce (2000, March, 15). Software Complexity and Security. Crypto-

Gram Newsletter, Retrieved September 29, 2007, from

http://www.schneier.com/crypto-gram-0003.html.

[5] Lohr, Steve and Markoff, John (2006, March, 15). Windows Is So Slow, but Why?

New York Times , Retrieved September 29, 2007, from

http://www.nytimes.com/2006/03/27/technology/27soft.html?_r=1&oref=slogin#.

198

[6] Summerville, Ian, Software Engineering, Seventh Edition, Pearson Education

Limited, Essex England, ISBN 0-321-21026-3, © 2004

[7] Bays, Michael E., Software Release Methodology, Prentice Hall PTR, Upper Saddle

River, New Jersey, ISBN 0-13-636564-7, © 1999.

[8] RTCA/DO-178B. “Software Considerations in Airborne Systems and Equipment

Certification”, December 1, 1992.

[9] IEEE Software Engineering Coordinating Committee,(SWECC). 2001. Software

Engineering Book of Knowledge. http://www.swebok.org/.

[10] Keeney, Ralph L., “Decision Analysis: An Overview” Operations Research, Vol.

30, Iss. 5, pp. 803-838, September 1982.

[11] Goodwin, Paul and Wright George, Decision Analysis for Management Judgment,

Third Edition, John Wiley & Sons Ltd., West Sussex, England, ISBN 0-470-86108-8,

© 2004.

[12] "severity." The American Heritage® Dictionary of the English Language, Fourth

Edition. Houghton Mifflin Company, 2004. Answers.com 19 Aug. 2006.

http://www.answers.com/topic/severity

[13] Wikipedia, the Encyclopedia of the Internet, “Definition of Software Release”,

Wikipedia Foundation, Incorporated, Text is licensed under the GNU Free

Documentation License, http://en.wikipedia.org/wiki/Software_Release

199

[14] “software.” (2008). In Merriam-Webster Online Dictionary. Retrieved September

15, 2008, from http://www.merriam-webster.com/dictionary/software

[15] “Systems Engineering” (2008) from INCOSE website. Retrieved September 15,

2008, from http://www.incose.org/practice/whatissystemseng.aspx

[16] Kockler, Frank R., Withers, Thomas R., Poodiack, James A, Gierman, Michael J.,

Systems Engineering Management Guide, Defense Systems Management College,

1990.

[17] U.S. Department of Defense (DoD) Systems Management College, Systems

Engineering Fundamentals, Defense Acquisition University Press, Fort Belvoir,

Virginia 22060-5565, January 2001

[18] Pre-Milestone A and Early-Phase Systems Engineering: A Retrospective Review and

Benefits for Future Air Force Acquisition http://www.nap.edu/catalog/12065.html

[19] Blanchard, B.S., Systems Engineering Management. 3rd Ed., Hoboken, New Jersey:

John Wiley & Sons, Inc., 2004.

[20] Blanchard, B.S. and Fabryky, W.J., Systems Engineering and Analysis: (2nd ed.).

Englewood Cliffs, N.J.: Prentice Hall, 1990.

[21] Fishman, Charles, “They Write the Right Stuff” Issue 06| Dec 1996/Jan 1997 | Page

95 Retrieved September 16, 2008, From:

http://www.fastcompany.com/magazine/06/writestuff.html?page=0%2C0

200

[22] Robat,Cornelis, editor, “The History of Software” retrieved October 17, 2008, from

http://www.thocp.net/software/software_reference/introduction_to_software_history.

htm

[23] Babcock, Daniel L., Managing Engineering and Technology: an introduction to

management for engineers, Prentice Hall, Englewood Cliffs, New Jersey, ISBN 0-

13-552233-1, © 1991.

[24] Cohen, Bob, and Lykins, Howard, “Modeling and Systems Engineering Working

Group Report”, INCOSE INSIGHT, Volume 4 Issue 2, July 2001.

[25] Beck, Kent, Extreme Programming Explained: Embrace Change, Addison-Wesley,

Boston, Massachusetts, ISBN 0-321-27865-8, © 2005.

[26] Tyson, Jeff, “How BIOS Works”. Retrieved October 21, 2008, from

http://computer.howstuffworks.com/bios1.htm

[27] Newby, Timothy J., Stepich, Donald A., Lehman, James D., and Russel, James D.,

Educational Technology for Teaching and Learning – 3rd ed. Pearson Merrill

Prentice Hall, Upper Saddle River, New Jersey, ISBN 0-13-046714-6, © 2006.

[28] Franklin, Curt and Coustan, Dave, How Operating Systems Work. Retrieved

October 21, 2008, from http://computer.howstuffworks.com/operating-system.htm.

201

[29] Pfleeger, Shari Lawrence, Hatton, Les, and Howell, Charles C., Solid Software,

Pearson Merrill Prentice Hall, Upper Saddle River, New Jersey, ISBN 0-13-091298-

0, © 2002.

[30] Haskins, Cecilia, ed., “INCOSE Systems Engineering Handbook Version 3”, © 2006.

[31] Brief History of Systems Engineering, Retrieved November 2, 2008, from

http://www.incose.org/mediarelations/briefhistory.aspx.

[32] Frey, Dan, Clausing, Don, and Hale, Pat, ESD.33 --Systems Engineering Session #1,

“Course Introduction: What is Systems Engineering?”, Retrieved November 2, 2008,

from http://ocw.mit.edu/NR/rdonlyres/Engineering-Systems-Division/ESD-

33Summer2004/1E55A228-F8A6-4217-AA9D-

BBC21E600310/0/s1_cors_intro_v7.pdf.

[33] “Genesis of INCOSE”, Retrieved November 2, 2008, from

http://www.incose.org/about/genesis.aspx.

[34] “A Consensus of the INCOSE Fellows”, Retrieved November 2, 2008. from

http://www.incose.org/practice/fellowsconsensus.aspx.

[35] “About INCOSE”, Retrieved November 7, 2009, from

http://www.incose.org/about/index.aspx.

[36] Boehm, Barry, A Spiral Model of Software Development and Enhancement, IEEE

Computer, vol.21, #5, May 1988, pp 61-72.

202

[37] U.S. Department of Defense (DoD) Instruction 5000.2, “Operation of the Defense

Acquisition System,” May 12, 2003.

[38] McCarthy, Jim and McCarthy, Michele, Dynamics of Software Development, 2006

Edition, Microsoft Press, Redmond Washington, Library of Congress Control

Number 2006924464, © 2006.

[39] Free Software Foundation, Inc., “The Free Software Definition”, Retrieved on

November 5, 2008 from http://www.gnu.org/philosophy/free-sw.html.

[40] Wasson, Charles S, System Analysis, Design and Development, John Wiley & sons,

Inc., Hoboken, New Jersey, ISBN-13 978-0-471-39333-7, © 2006.

[41] Chrissis, Mary Beth, Konrad, Mike, and Shrum, Sandy, CMMI: guidelines for

process integration and product improvement, 2nd edition, Pearson Education, Inc.,

Boston Massachusetts, ISBN – 0-321-27967-0, © 2007.

[42] Hermann, Brian G. and Russel, Jim, "Are You Ready to Deliver? To Ship? To

Test?”, STSC – CrossTalk, The Journal of Defense Software Engineering, August

1998

[43] Kerkhoff, Wimm, “Software Release Management”, Retrieved on November 16,

2008 from http://www.nyetwork.org/wiki/srm.pdf.

[44] Bach, James, “Reframing Requirements Analysis”, Retrieved on November 30, 2008,

from http://www.satisfice.com/articles/reframing_requirements.pdf.

203

[45] Hooks, Ivy, “Writing Good Requirements (A Requirements Working Group

Information Report)”, Proceedings of the Third International Symposium of the

NCOSE - Volume 2, 1993.

[46] Roedler, Gary, J. and Jones, Cheryl, “Technical Measurement, A Collaborative

Project of PSM, INCOSE, and Industry”, Retrieved on November 30, 2008, from

http://www.incose.org/ProductsPubs/pdf/TechMeasurementGuide_2005-1227.pdf

[47] Ruhe, Günther and Saliu, Moshood Omolade, “The Art and Science of Software

Release Planning”, November/December 2005 IEEE SOFTWARE, Pages 47-53.

[48] Prince, Frank A., C and the Box, A paradigm Parable, Pfeiffer & Company, San

Diego, California, ISBN: Hardcover 0-88390-364-4, © 1993.

[49] “Idiom: Squeaky wheel gets the grease”, UsingEnglish.com, Retrieved on

December 3, 2008, from

http://www.usingenglish.com/reference/idioms/squeaky+wheel+gets+the+grease.ht

ml

[50] Neves, Sue and Strauss, Jack, “Survival Guide for Truly Schedule-Driven

Development Programs”, AT&L: July-August 2008, Pages 21-23.

[51] Siok, Michael F., Whittaker, Clinton J., and Tian, Jeff, "Exposing Software Field

Failures”, STSC – CrossTalk, The Journal of Defense Software Engineering,

November 2006.

204

[52] Bai,Do S., Yun,Won Y., “Optimal Software Release Policy with Random Life

Cycle”, IEEE Transactions on Reliability, vol R-39, 1990 June, pp 167-170.

[53] Gokhale, Swapne S., “Optimal Software Release Time Incorporating Fault

Correction”, Proceedings of the 28th Annual NASA Goddard Software Engineering

Workshop (SEW’03), 2003.

[54] Fischman, Lee, McRitchie, Karen, and Galorath, Danial D., "Inside SEER-SEM”,

STSC – CrossTalk, The Journal of Defense Software Engineering, April 2005.

[55] “USC COCOMO II 2000 Software Reference Manual” Retrieved on January 6, 2009

from

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf.

[56] “PERT” Retrieved on January 11, 2009 from

http://www.netmba.com/operations/project/pert.

[57] Render, Barry, Stair, Ralph M. Jr., and Hanna, Michael E., Quantitative Analysis for

Management (Eighth ed.). Upper Saddle River, New Jersey, ISBN: 0-13-066952-0

Prentice Hall, 2003.

[58] Platt, David S., Why Software Sucks…and what you can do about it, Upper Saddle

River, New Jersey, ISBN: 0-321-46675-6, Addison-Wesley, 2007.

[59] “COCOMO II”, Retrieved January 18, 2009 from

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html.

205

[60] Greer, D. and Ruhe, G., “Software release planning: an evolutionary and iterative

approach”, Information and Software Technology, Volume 46, Issue 4, 15 March

2004, Pages 243-253.

[61] Bhawnani, P., Far, B. H., and Ruhe, G., “Explorative Study to Provide Decision

Support for Software Release Decisions”, Proceedings of the 21st IEEE

International Conference on Software Maintenance (September 25 - 30, 2005),

ICSM, IEEE Computer Society, Washington, DC.

[62] Highsmith, J., “What is Agile Software Development”, STSC – CrossTalk, The

Journal of Defense Software Engineering, October 2002.

[63] Paulk, Mark C., “Agile Methodologies and Process Discipline”, STSC – CrossTalk,

The Journal of Defense Software Engineering, October 2002.

[64] Jansen, Slinger and Brinkkemper, Sjaak, “Ten Misconceptions about Product

Software Release Management explained using Update Cost/Value Functions”,

Proceedings of the International Workshop on Software Product Management

(IWSPM’06), September, 2006

[65] U.S. Department of Defense (DoD), “Risk Management Guide for DoD Acquisition”,

Version 1.0, OUSD (AT&L) Defense Systems/Systems Engineering/Enterprise

Development, August, 2006.

[66] Wysocki, Robert K., Effective Software Project Management. Indianapolis, Indiana,

ISBN -13: 978-0-7645-9636-0 Wiley Publishing, Inc., 2006.

206

[67] Lyu, Michael R., Handbook of Software Reliability Engineering, McGraw-Hill

Companies, New York, NY, 1996, ISBN 0-07-039400-8.

[68] "Is Your Software Ready for Release?," IEEE Software, vol. 6, no. 4, pp. 100, 102,

108, July/Aug. 1989, doi:10.1109/MS.1989.10039

[69] Satapathy, Piyush Ranjan “Evaluation of Software Release Readiness Metric [0,1]

across the software development life cycle”, Retrieved on March 5, 2010 from

http://www.cs.ucr.edu/~piyush/SoftwareProj_Report.pdf.

[70] Boehm, Barry, Valerdi, Ricardo, Lane, Jo Anne, and Brown, A. Winsor, "COCOMO

Suite Methodology and Evolution”, STSC – CrossTalk, The Journal of Defense

Software Engineering, April 2005.

[71] Hong, G. Y., Xie, M., Zhao, M., and Wohlin, Claes, "Interval Estimation in Software

Reliability Analysis", Proceedings 4th International Applied Statistics in Industry

Conference, pages 105-112, Kansas City, Missouri, USA, 1997.

[72] Mahmoodzadeh, S., Sharhrabi, J., Pariazar, M., and Zaeri, M. S., "Project Selection

by Using Fuzzy AHP and TOPSIS Technique”, International Journal of Human and

Social Sciences, Volume 1, Number 3, pages 135 – 140, 2007.

[73] Saaty, Thomas L., "Relative Measurement and its Generalization in Decision

Making: Why Pairwise Comparisons are Central in Mathematics for the

Measurement of Intangible Factors - The Analytic Hierarchy/Network Process".

207

RACSAM (Review of the Royal Spanish Academy of Sciences, Series A,

Mathematics), Volume 102, Number 2, pages 251–318, 2008.

[74] PERT, Program Evaluation Research Task, Phase I Summary Report, vol. 7, Special

projects office, Bureau of Ordinance, U.S. Department of the Navy, Washington,

D.C., 1958.

[75] Thuesen, G. J. and Fabryky, W.J., Engineering Economy: (8th ed.). Englewood

Cliffs, N.J.: Prentice Hall, 1993.

[76] Devi, Kavita, Yadav, Shiv P., and Kumar, Surendra, “Extension of Fuzzy TOPSIS

Method Based on Vague Sets”, International Journal of Computational Cognition,

vol.7, no.4, pages 58-62, December 2009.

[77] Wagner, J. F., “An Implementation of the Analytic Hierarchy Process (AHP) on a

Large Scale Integrated Launch Vehicle Avionics Systems Engineering Architecture

Trade Study”, Proceedings of the Ninth Annual Symposium of the International

Council on Systems Engineering, Volumes 1 & 2, June 6–11, 1999, Brighton,

England.

[78] Daniels, J., Werner, P.W., and Bahill, A.T., “Quantitative Methods for Tradeoff

Analyses” , Systems Engineering The Journal of the International Council on

Systems Engineering, Volume 4 Number 3, pages 190–212, 2001.

[79] Saaty, T.L., “Decision Making with the Analytic Hierarchy Process”, International.

Journal Services Sciences, Volume 1, Number 1, pages 83-98, 2008.

208

[80] Lintner, Thomas M., Smith, Steven D., Smurthwaite, Scott, “The Aerospace

Performance Factor: Utilization Of The Analytical Hierarchy Process To Develop A

Balanced Performance And Safety Indicator Of The National Airspace System For

The Federal Aviation Administration”, Proceedings of the 10th International

Symposium on the Analytic Hierarchy/Network Process, July 29 – August 1, 2009,

Pittsburgh, Pennsylvania.

[81] Watkins, John C., Ghan, L. Scott, “AHP Version 5.1 User’s Manual”, Prepared for

Division of Systems Research, U.S. Nuclear Regulatory Commission, DOE Contract

No. DE-AC07-76ID01570, 1990, by Idaho National Engineering Laboratory, Idaho

Falls, Idaho.

[82] Carlen, Eric A., “Additional notes on the power method for finding eigenvectors”,

MATH 2605 Course Outline and Calendar, Retrieved on April 16, 2010 from

http://people.math.gatech.edu/~carlen/2605S04/Power.pdf.

[83] Bluebit, Online Matrix Calculator, online at http://www.bluebit.gr/matrix-

calculator/default.aspx.

[84] “TOPSIS”, Retrieved on April 17, 2010 from http://stat-design.com/topsis-sdi.php.

[85] Jones, E.L., “The SPRAE Framework for Teaching Software Testing in the

Undergraduate Curriculum”, Proceedings of ADMI 2000, June 1-4, 2000.

[86] IEEE Standard Glossary of Software Engineering Terminology, IEEE Standard

610.12-1990, 1990.

209

[87] McCabe, Thomas J., “A Software Complexity Measure”, IEEE Transactions on

Software Engineering, Vol. 2, pp 308-320, 1976

[88] Costea, Adrian, “On Measuring Software Complexity”, Journal of Applied Quantitative

Methods, Volume 2, Issue 1, 2007.

[89] Clark, M., Brennan, D., Salesky, B., and Urmson, C., Measuring Software

Complexity to Target Risky Modules in Autonomous Vehicle Systems, AUVSI

Unmanned Systems North America, June 2008.

[90] Estep, Donald, “Calculus-Based Approaches to Sensitivity Analysis”, Retrieved on

September 5, 2010, from

http://www.math.colostate.edu/~estep/research/talks/nrel_lecture_1.pdf.

[91] Forsberg, Kevin and Mooz, Harold, The Relationship of System Engineering to the

Project Cycle, National Council On Systems Engineering (NCOSE) Conference,

Chattanooga, TN, 21–23 October 1991.

Microsoft, Excel, Visual Basic, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

