
CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

N-Version Architectural Framework for Application Security Automation (NVASA)

Majid Malaika, Suku Nair, Frank Coyle

SMU HACNet

Bobby B. Lyle School of Engineering, Dallas USA
{mmalaika, nair, coyle}@lyle.smu.edu

Abstract. In this paper, we expose application security issues by presenting the usage of N-
Version programming methodology to produce a new architectural framework to automate and
enhance application security. Web applications and cloud computing are dominating the digital
world; therefore, our goal is to build resilient systems that can detect and prevent both known
and zero-day application attacks. Automated process flow not only reduces security efforts
during the Software Development Life Cycle (SDLC), but also enhances the overall application
security. In addition, we propose compartmentalizing the application into separate components
and applying the N-Version methodology to the critical ones to reduce the additional overhead
introduced by the N-Version methodology.

1. Introduction

With the World Wide Web (WWW), online applications have become vital and more
compelling than ever. Many financial transactions are made from home/office without the need
to physically be present at the bank to finalize these transactions. Governments around the
world are digitizing most of their services to make the process more convenient for their
citizens. It is estimated that more than 60% of Internet users interact with government websites
to perform tasks such as completing applications, renewals or inquiring for information. In fact,
this number is increasing every year [1]. Online shopping has become more prevalent and
convenient to customers than ever. In 2011, it is estimated that more than a trillion U.S. dollars
were spent on online merchandise in the USA alone [2]. Rapid growth and huge improvements
in information technology have raised many challenges. One challenge is application security.

The Department of Defense (DoD) relies heavily on software to deliver instantly accessible
data to its users [3]. However, this makes remote malicious attacks a serious threat to DoD
systems and users. Methods investigated and presented in this paper will complement DoD
efforts in detecting and preventing these attacks through an application security framework
(NVASA) that uses the N-Version programming methodology.

1.1 The Security Problem

Today, the main problem with system security is that it is viewed by enterprises as a
commodity, where the usage of password patterns and the integration of anti-virus applications
and firewalls promote a false sense of security. This is because most cyber-attacks target the

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

application layer rather than the physical or network layer. Most annual security reports
demonstrate insufficient application security measures taken by both enterprises and individuals
[4, 5]. Some of the challenges in providing application security [6, 7] include: 1) System
Complexity, applications today have the capability to interact automatically with users and/or
other systems in a very complex fashion, therefore increasing the possibility of error injection
during the SDLC. 2) Ubiquitous networking, more systems are connected to the Internet
without appropriate security, thus becoming available online. 3) Built-in Extensibility, This is
a desired feature in software engineering because it would enable the flexibility to add new
components to the existing system in the future. Therefore, making it possible to inject
malicious code in to the system. 4) Common platforms, While common platforms reduce cost
and time when implementing new technologies or building an application, they also increase a
malicious user’s chances of exploiting more systems.

Most active attacks are carried out by exploiting existing vulnerabilities in the system. These
vulnerabilities could be: 1) architectural design, 2) implementation, or 3) operational and
platform vulnerabilities [8]. Human faults made during the design phase result in architectural
design errors into the model’s structure. Consequently, human faults made during the writing of
the code would result in implementation vulnerabilities. Finally, faults in configuration files are
operational and are considered platform vulnerabilities. The most dangerous vulnerabilities of
all categories are the ones leading to immediate unauthorized access of the application [9, 10,
11, 12]. Providing high levels of application security is paramount in ensuring network,
systems, and data security.

The remainder of the paper is organized as follows: Section II presents related work in the field
of application security followed by a description of the methodology of N-Version
programming. Section III presents the building blocks of our proposed N-Version Architectural
Framework for Application Security Automation. In section IV, we present a prototype of the
proposed NVASA framework and experimental results. In section V we introduce
compartmentalization to reduce overhead. Finally, section VI concludes with a look at future
research.

2. Related Work

Application security is often one step behind the latest cyber-attacks schemes for reasons
discussed in the previous section. The current emphasis on application security is to fix existing
implementation errors that could be exploited by publicly known attacks such as Buffer
Overflow, SQL Injection and Cross Site Scripting (XSS) [9, 11, 12]. Other related work
emphasizes extensive revisions to eliminate or reduce the injection of errors during the
application’s life cycle.

2.1 Application Security

Most current related work in the field of application security focuses on enforcing extensive
security guidelines during the SDLC [13, 14]. These guidelines focus on providing the
regulations needed to promote the development of secure applications through the SDLC. The
initial approach to application security espoused manual audits to the source code [15]. This
approach consists of reading the source code line by line to detect and fix existing
vulnerabilities. Another method is “fuzzing” testing, which is followed by inputting a distorted

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

or illegal input to the application and monitoring the behavior of the application. Sulley and
SPIKE frameworks [16] are two examples of “fuzzing” testing.

Runtime checking is another method for detecting and preventing the exploitation of existing
vulnerabilities. This method of testing is followed by adding special checks within the source
code to ensure the program behaves as desired. ProPolice framework [17] is a GNU Compiler
Collection (GCC) extension developed by IBM to protect against stack smashing that uses
runtime checking. Mudflap framework [18] is another GCC extension for pointer debugging
that uses runtime checking to detect and prevent exploitation of vulnerabilities.

These solutions are limited and have major disadvantages. First, actual security vulnerabilities
are triggered by a certain specific set of circumstances which makes it extremely hard to strike
using random “fuzzing” testing. A second limitation is latent security vulnerabilities that are
present within critical systems but concealed from the system’s stakeholders. These latent
vulnerabilities can damage an organization’s reputation and could lead to financial loss.
Further, it takes an average of 14 weeks to patch or fix an existing vulnerability after discovery,
which opens a window for additional attacks leading to more damages [5]. A third limitation is
the high cost of implementing a secure application because the enforcement of security training
as well as hiring special security testers and purchasing specific security tools adds enormously
to the total cost. A fourth limitation is the increased time-to-market since these solutions engage
in extensive training and thorough testing of the code. Finally, following these extensive
guidelines often results in the detection of known existing vulnerabilities. However, these
extensive guidelines have no scheme for detecting or preventing latent vulnerabilities from
being exploited.

2.2 N-Version Programming

The concept N-Version Programming was introduced in the late 1970’s by Liming Chen and
Algirdas Avizienis. It is defined as “the independent generation of N≥2 functionally equivalent
programs from the same initial specification.” [19].

The aim of the N-Version programming methodology is to improve software reliability. It is
introduced by the following proposal: “The independence of programming efforts will greatly
reduce the probability of identical software faults occurring in two or more versions of the
program.” [19].

Therefore, to build a pure N-Version model as shown in Fig. 1, two policies must be adopted:
1) All versions must share the exact same initial specification. The purpose of the initial
specification is to state the functional requirements that stakeholders want the application to
perform. They must be clear and detailed oriented to eliminate any confusion during the
development process. 2) Versions must be independently generated. This is achieved by
choosing different algorithms and programming languages for each version, as well as the
independent processes for generating the versions, which should be carried by N independent
individuals or groups that have no interaction with each other. This isolation of design and
process between groups, coupled with the diversity of choosing programming languages and
algorithms, greatly reduces the probability of producing identical software faults in two or more
versions [19, 20].

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

3. Building N-Versions Architectural Framework for Application Security
Automation (NVASA)

To build the NVASA framework, we first collect the initial specifications and requirements
from stakeholders. Second, we hand the specifications to N-Different programmers or groups of
programmers. Each group develops a separate version using a different language and algorithm
than the rest of the groups to satisfy the diversity of the N-Version methodology. Depending on
the language and specifications outlined by stakeholders, one of the groups will develop the
NVASA framework's layers mentioned below [21].

As shown in Fig. 2, the NVASA framework is constructed of four layers. The first layer is the
N-Version routing layer, the second layer is the N-Version environment layer, the third layer is
the N-Version decision layer, and the fourth layer is the backend application server layer.

3.1 N-Version Routing Layer

The N-Version routing layer connects the framework with users/applications over the network.
It is responsible for receiving requests from external users and routing the input to the N-
Versions in the environment layer to be executed. The routing layer is also responsible for
replying to requesters with the appropriate response after executing the request.

Figure 1. N-Version Model [21]

Figure 2. NVASA Framework Four Layers [21]

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

3.2 N-Version Environment Layer

The N-Version environment layer contains the N-Version applications where each version is
designed and developed by an independent individual or group using a unique algorithm and/or
programming language as mentioned in Section 2. Each version receives its execution
command along with the identical input of all N-Versions from the routing layer. All the
versions then execute concurrently, which eliminates any reduction in performance. The N-
Versions can be either loosely coupled running on different platforms in different physical
locations or tightly coupled running on the same physical machine; this is decided based on the
initial design specification of the NVASA framework.

Loosely coupled versions have many advantages: 1) The time overhead is reduced compared to
tightly coupled versions running on one machine. 2) There is no single point of failure within
the N-Version environment layer compared to tightly coupled versions. 3) Loosely coupled
systems scale better than tightly-coupled systems. On the other hand, loosely coupled versions
add more complexity to the development and testing phases of an application since messaging
schemes must be implemented to connect layers and components. Additionally, the
communication channels need to be protected through transport or network layer security
protocols. Depending on the type of applications, communication between various layers and
versions may cause additional time overhead.

3.3 N-Version Decision Layer

The N-Version decision layer is composed of two components: 1) The Response Comparator
component, and 2) The Data Read and Write (R/W) Component. The response comparator
component receives the N-Version outputs where a decision algorithm applies generic
consensus rules to determine a consensus output. The role of the decision algorithm is to
determine exploited versions by identifying conflicting output compared to the majority of the
versions and removing the exploited and breached versions from the pool, thereby eliminating
any malicious attempt to exploit the application. If necessary the response comparator
component then passes the consensus output to the data read and write (R/W) component to
generate the R/W command from the consensus output to be applied to the backend application
server layer. Finally, the data read and write component generates the output or confirmation
based on the initial request and passes it to the response comparator to be then sent to the
request route component to reply to the requester.

3.4 Backend Application Server Layer

For applications that read or write data to or from a server or database, the backend application
server layer is essential. It receives the consensus output from the data R/W component in the
decision layer, preventing any direct communications between the backend application server
layer and the N-Versions in the environment layer. This significant design requirement prevents
any successful exploits from modifying or leaking the information by a malicious request.

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

4. Implementation and Results

A prototype NVASA framework was implemented and testing conducted to validate the
protection provided by leveraging an N-Version service implementation in a distributed or web
application architecture. In order to develop a practical prototype that can produce reliable
results, we searched for pre-developed AES implementations online to be used as our N-
Versions. These N-Versions must be written in different languages and by different developers
in order to satisfy the diversity required in the N-Version programming methodology
mentioned earlier. Three AES versions were located and used, the three were similar in
structure and produced the same output. The first version was written in Java by Neal R.
Wagner [22].The second version was written in C# by James McCaffrey [23]. And the third
and final version was written in C/C++ by Niyaz PK [24].

As part of the AES framework implementation we exposed the C# and C/C++ versions as web
services to be able to integrate them with the NVASA Framework. Each web service would
accept a request with a 192-bit key and 128-bit clear text block and reply with the cipher text if
the encryption was successful. Since the interface was developed using the Java language, a
simple function call was sufficient to connect to the Java version which as well accept a request
with a 192-bit key and a 128-bit clear text block. Fig. 3 shows the structure of our AES
NVASA Framework implementation. We minimized our involvement in writing or modifying
any code as much as possible to satisfy the diversity required in the N-Version programming
methodology. Therefore, we used pre-developed implementations that matches each version's
language to integrate each with the NVASA framework.

For this prototype we wrote a java class to act as the Routing and Decision Layer (Layer 1 and
3 From Fig. 3). The java class simply accepts the user input then executes all three versions
simultaneously. Each version then produces its output which is then fed to the decision
algorithm. The decision algorithm then runs to reach a consensus output. If a consensus is
reached, the cipher text is written to a file and sent to the requester; otherwise, we have the
choice of either dropping the request or replying back to the requester with a "Request Denied"
message.

To test our NVASA implementation we developed a benchmark of a 100 test cases, each test
case included a key length, key, and a clear text block. We executed each standalone version
against each test case first, then executed the same set of test cases against the NVASA AES
implementation. Table 1. shows a segment of the failed test cases and a comparison between
the output of each version and our NVASA AES implementation.

Figure 3. NVASA Framework AES Implementation

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

Looking at table 1. we realize that in the first two test cases more than one version failed from a
total of three versions, but providentially the NVASA recovered from such an exploit due to the
fact that each version produced a different and unique output; therefore, the decision algorithm
couldn't reach a consensus output; thus, dropped the request and never propagated it through
the system. This step is essential because the decision algorithm will detect an attack and
prevent it from propagating through the system even if it was successful in exploiting most of
the versions.

This NVASA prototype shows how the new framework is able to improve Security by
detecting and preventing known and potential zero-day attacks using the N-Version
Programming methodology which revealed that the diversity of the languages and algorithm
used greatly reduces the probability of having identical vulnerabilities in two or more versions.
This was achieved without the need to modify the source code within the versions or install any
patches.

5. Overhead Reduction

We have demonstrated that the NVASA framework is effective in improving security by
detecting zero-day cyber attacks; however, the NVASA adds overhead to the development
phase in the SDLC compared to the single version implementation. Therefore,
compartmentalizing the application's architecture and applying the NVASA framework to the
critical components in terms of security can reduce the overhead while improving security.

There are standards produced to assist in identifying the critical components within an
application. The Common Criteria Information Technology Security Evaluation [25] (Common
Criteria, 1999) is an international standard widely used to identify the critical security
components. Other work has been done by Young, 1991. Also other work has been done by
Andrew Rae, and Colin Fidge [26] to improve Young's approach by making it more efficient.

Andrew's approach relies on the category of information manipulated by the component to
prioritize and identify the critical components. The assumption here is that the application

 Standalone
Number Test Case Test For C/C++ Java C# NVASA

1 "73204483711" Integer Over flow in Key
Length

   

2 “zz....” in the plaintext
or key field

Input Injection (Non
HEX) in the plaintext

and/or key field

   

3 Null Input (Command
Line or File)

Exception Handling with
plaintext and/or key

   

4 "Ree" instead of an
Integer

Type Injection in the Key
length field

   

5 Normal HEX 192 Key
and 128 Key

Normal Input    

6 Larger key than
specified (200 bits
instead of 192 bits)

Input Validation Key
Field

   

Table 1. Results of Testing NVASA Implementation Vs. the Standalone Versions
 Program Passed Test Case  Program Failed Test Case

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

architecture model consists of components and connections. These connections carry the
information from one component to another while the components can generate or manipulate
the information to achieve the application's goal.

Based on the carried information, components and connections are categorized into two
categories, First, Data Connection/Component where classified information is carried or
manipulated by the Data component/connection. Classified data is defined as critical and
sensitive data to the application or external world. Second, Control Connection/Component
where non-classified information is carried by the Control connection/component. Unclassified
information is defined as non-critical data to the application or external world. If a
component/connection acts as both 'Data' and 'Control', then we classify it as 'data' to protect
the classified information within.

Fig. 4 demonstrates N-Versioning the compartmentalized critical component highlighted in red.
The nFork acts as the interface layer, it executes the N-Versions with the incoming parameters
while the nJoin acts as the decision layer where it receives all N-Version outputs and executes
the decision algorithm to come to a consensus.

6. Conclusion and Future Work

The NVASA framework achieves better application security for critical web services, online,
and cloud computing applications and improves the overall system security by using the N-
Version programming methodology that comes to a consensus based on all the N-Versions
outputs before applying any of these commands to the Backend Application Server Layer. This
prevents any exploitation of the system which would lead to the destruction, modification or
leakage of the confidential information to malicious users.

We showed the effectiveness of the NVASA architecture via the AES implementation, and how
the decision layer is not only detecting attacks but also preventing the propagation of the effects
of an attack. We showed with regards to some test cases how the decision algorithm was able to
identify the irregularity among the N-Versions outputs, this was true even when all the N-

Figure 4. Applying the NVASA framework to the Critical Components

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

Versions failed. This was achieved because each version failed uniquely producing a distinct
output. Hence, enabling the decision algorithm to detect and prevent any of the malformed
outputs from propagating further through the system.

In addition, we demonstrated compartmentalizing the application and applying the NVASA
framework to the critical components as a method to reduce the added overhead associated with
the implementation of the N-Version methodology.

Future work involves dealing with attacks targeting the state of the machine, for example
backdoors etc. To that end we are further investigating the compartmentalization of
components and its effects to real world applications in conjunction with automated code
generation.

7. Reference

[1] Executive office of the President office of Management and Budget Washington, D.C. 20503
“E-Government Strategy” February 27, 2002.

[2] U.S. Department of Commerce, Washington, D.C. 20233, “Quarterly Retail E-Commerce Sales
1st Quarter of 2011”.

[3] Mr. Jeff Hughes, Dr. Martin R. Stytz, Ph.D. “Advancing Software Security– The Software
Protection Initiative”.

[4] IC3, “2008 Internet Crime Report”
http://www.nw3c.org/downloads/2008_IC3_Annual%20Report_3_27_09_small.pdf

[5] Networks and WhiteHat Security Solution, “Vulnerability Assessment Plus Web Application
Firewall (VA+WAF)” June 2008. F5

[6] John Viega & Gary McGraw. “Building Secure Software: How to Avoid Security Problems the
Right Way” (Chapter 1, Pages 9-13) Addison-Wesley Professional Computing Series, Addison-
Wesley, New York. 2001

[7] Schneier, Bruce “Secrets and Lies” (Chapter 23, Page 358), New York: John Wiley & Sons,
2000.

[8] Cowan, C. Wagle, F. Calton Pu Beattie, S. Walpole, J., “Buffer overflows: attacks and
defenses for the vulnerability of the Decade” 2000.

[9] Guy-Vincent Jourdan, “Command Injection” 2005.
[10] Chris Anley, “Advanced SQL Injection In SQL Server Applications” 2002.
[11] scut / team teso, “Exploiting Format String Vulnerabilities” 2001.
[12] President’s Information Technology Advisory Committee. “Cyber Security: A Crisis of

Prioritization19”: Report to the President. National Coordination Office for Information
Technology Research and Development, February 2005.

[13] DISA for the DoD, “Application Security and Development” STIG, V2R1.
[14] Richard Kissel & Kevin Stine & Matthew Scholl & Hart Rossman & Jim Fahlsing & Jessica

Gulick, “Security Considerations in the System Development Life Cycle” NIST Special
Publication 800-64 Revision 2, 2008.

[15] Alexander Ivanov Sotirov, “Automatic Vulnerability Detection Using Static Source Code
Analysis Thesis”, 2005.

[16] Michael Sutton & Adam Greene & Pedram Amini, “Fuzzing: Brute Force Vulnerability
Discovery”, 2007.

[17] Etoh, Hiroaki, & Kunikazu Yoda, “Protecting from stack-smashing attacks”
http://www.trl.ibm.com/projects/security/ssp/main.html

[18] Frank Eigler, “Mudflap: Pointer use checking for C/C++” 2003.

CrossTalk	
 —	
 The	
 Journal	
 of	
 Defense	
 Software	
 Engineering	
 (Accepted	
 for	
 Publication).	

[19] A.A. Avizienis, "The Methodology of N-version Programming", Software Fault Tolerance,
edited by M. Lyu, John Wiley & Sons, 1995, pp. 23-46.

[20] Michael R. Lyu, Algirdas Avizˇienis , “Assuring Design Diversity in N-Version Software: A
Design Paradigm for N-Version Programming”.

[21] Majid Malaika, Suku Nair, and Frank Coyle "Application Security Automation for Cloud
Computing" CloudComp 2010.

[22] Neal R. Wagner, "The Laws of Cryptography: Java Code for AES Encryption" 2001.
http://www.cs.utsa.edu/~wagner/laws/AESEncryptJava.html	

[23] James McCaffrey, "Keep Your Data Secure with the New Advanced Encryption Standard" 2003.
http://msdn.microsoft.com/en-us/magazine/cc164055.aspx	

[24] Niyaz PK, " Advanced Encryption Standard (AES) "
http://www.hoozi.com/posts/advanced-encryption-standard-aes-implementation-in-cc-with-
comments-part-2-decryption/	

[25] "	
 Common Criteria Information Technology Security Evaluation ", 1999
[26] Andrew Rae, Colin Fidge, "Identifying Critical Components During Information Security

Evaluation"

Majid Malaika completed his undergraduate degree in
Computer Science from KAA University in 2002. He has
worked as a Systems Engineering for two years at
Microsoft and in 2007 he completed his M.S degree in
Computer Engineering. He is currently pursuing the Doctor
of Engineering degree in Software Engineering with a focus

on Software, Network and Cloud Security. At SMU, he is a member of the
SMU High Assurance Computing and Networking Laboratory (HACNet).

Suku Nair received his B.S. in Electronics and
Communication Engineering from the University of Kerala.
He received his M.S. and Ph.D. in Electrical and Computer
Engineering from the University of Illinois at Urbana in
1988 and 1990, respectively. Currently, he is a Professor and
Chair of the department of Computer Science and
Engineering SMU at Dallas where he held a J. Lindsay

Embrey Trustee Professorship in Engineering. His research interests include
Network Security, Fault-Tolerant Computing.

Frank Coyle is a Senior Lecturer at SMU. He received his BS degree from
Fordham College, his MS from Georgia Tech and his PhD from Southern
Methodist University. His areas of interest are software engineering, software
security, and engineering education. He maintains a technology blog at
www.drczone.com.

Address: Department of Computer Science and Engineering at SMU

 P.O.Box 750122 Dallas, TX 75275-0122
 Tel 469-767-9496 Fax 214-768-1192

