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Abstract

There is a huge demand for wireless sensors and RFID
tags for remote surveillance and tracking. However, in
order for such technologies to gain wide acceptance in
industry, there needs to be strong security integrated into
them. Traditional cryptographic schemes are infeasible
due to hardware, computation, and power constraints. To
that end, we introduce a new security paradigm, namely
security fusion. In this approach, strong security prop-
erties are synthesized from weaker point-to-point prop-
erties, thereby minimizing the resource requirements at
each node without compromising the system-level secu-
rity. In this paper, we describe the concept of security
fusion and give a motivation example using finite state
machines.

1 Introduction

Implementing security in sensors and RFID have posed
great challenges given the severe limitations in process-
ing power, memory and computational cycles. For in-
stance, a passive RFID tag that complies with the EPC
C1G2 standard [1] has a baseband of 7500 Gate Equiva-
lence (GE) out of which 200-2000 gates are reserved for
security functionalities [14] [16]. The chip area for such
tags is approximately 0.8mm2 and the power consump-
tion is roughly 30µW with EEPROM programming [8].
Wireless sensors are also limited in processing speed,
storage capacity and power. Popular sensor devices have
RAM sizes ranging from 4 KB on the Mica2 platform
[4] to 10KB on the TelosB platform [5]. The storage
capacity is usually between 4KB and 512KB and may
come incorporated with Bluetooth, Chipcorn CC100, or
IEEE 802.15.4 compliant transceivers. Today, devices
such as micro-sensors and nano-sensors are increasing
in popularity over conventional sensors. These sensors
are known for their extremely small size, low cost, and
high sensitivity. Therefore, supporting cryptography has

Table 1: Cost analysis of various algorithms

Algorithm
Key
Bits Plaintext Cycles GE

Power
(µW )

AES 128 128 1016 3595 8.15

TEA 128 64 64 2355 12.34

SHA-1 L 192 405 4276 26.73

LFSR 32 64 92 685 0.1582

DES 56 64 144 2309 2.14

ECC 113 L 195159 10k L

L denotes number of bits

become a perennial problem given these characteristics.
Table 1 (ref. [15]) provides a comparison between var-
ious cryptographic algorithms with respect to the num-
ber of cycles, gates, and average power consumption.
Generally speaking, the complexity involved with tradi-
tional cryptography is formidable for low-cost sensors
and RFID. Despite Moore’s Law, sensors and RFID will
remain resource-constrained because of their design. On
top of that, new advancements in process technologies
will be insufficient for tighter constraints in the new gen-
erations of these devices.

On the other extreme, lightweight cryptographic algo-
rithms [7] [10] [11] [15] are also undesirable because
of their weak resistance to cryptanalysis and other at-
tacks. Consequently, there has always been this trade-
off between the cryptographic strength and the resource
requirements of the device. This tradeoff is quite natu-
ral when using a point-to-point security model. In other
words, in a point-to-point security model, system secu-
rity is always constrained by the device capabilities, and
depending on the application, it can be overkill to include
heavy duty encryption.



In this paper, we describe a new paradigm in secu-
rity for resource-constrained environments. Rather than
lending to traditional point-to-point approaches, the goal
here is to focus on aggregating lightweight security prop-
erties from multiple nodes to build a strong in-network
security platform. We coin the termsecurity fusion to
refer to this concept of aggregating less stringent point-
to-point security properties between nodes to construct
strong system-level security properties. The principle of
the security fusion approach is that nodes do not pro-
vide all the protection by themselves, since they only
implement a simple lightweight primitive, but unlike tra-
ditional schemes, these primitives are fusible to provide
greater security, much like the thin strands of a thick bulk
rope.

Security fusion is suitable for aggregation-based envi-
ronments with large numbers of communicating nodes.
Here, we mention a few applications in real-time systems
that satisfy these characteristics.

• Low-cost RFID: Security has become a rising con-
cern for RFID mainly because scanning and repli-
cating tags require little money or expertise. While
cryptographic RFID purports to offer seemingly
strong protection, they are too expensive to be used
in large quantities. To overcome factors like power
budget, computational latency, and cost, security fu-
sion enables simple mechanisms to be incorporated
in RFID tags, which can be consolidated quickly by
the middleware. With multi-tag RFID systems [2],
security fusion becomes more effective.

• Sensor networks: Sensor networks consist of au-
tonomous nodes that collectively obtain measure-
ments from the environment to improve system-
level decisions. Due to the aggregate nature of data
in sensor networks, it is natural to define security
through a fusion model that protects the monitor-
ing, tracking, and controlling functions of an appli-
cation. Security fusion has a lot of potential in sen-
sor networks. Using security fusion, it is possible to
collate multiple sensor read-outs to reach a globally
authentic decision.

• Embedded systems: Another potential application
for security fusion is to preserve the component-
level integrity of embedded systems. For instance,
recent generations of smart phones consist of var-
ious interconnected components such as Bluetooth
radio, WiFi radio, flash memory, and Codec chip.
These components are manufactured by different
suppliers and then integrated into a single platform.
In the event of counterfeiting, non-genuine compo-
nents can be detected through security fusion using
an aggregate verification check of the platform.

2 Previous Work

There are several topics which span the discussion on
previous work. Here we briefly review some of the work
in securing resource-constrained environments.

A couple of security architectures have been proposed
to protect sensor networks from various attacks. Perrig
et al. [11] introduced an architecture called SPINS which
consists of two building blocks: SNEP - a security proto-
col that employs symmetric cryptography using RC5 for
encryption and Message Authentication Code (MAC) for
integrity, as well asµTESLA - which provides authen-
tication for data broadcast. The SNEP protocol is de-
signed for resource-constrained sensor networks. To en-
crypt messages in the SNEP protocol, each sensor node
shares a master key with a base station, from which it
derives one-time encryption keys to be fed to RC5. The
other building block of SPIN,µTESLA, provides au-
thenticated broadcast for sensor networks.µTESLA was
designed based on the standard TESLA protocol, but is
developed to address limited computing environments.

Another security architecture that has recieved a swirl
of attention in the past few years is TinySec. Tiny-
Sec, proposed by Wagner et al. [9], is a link layer
security architecture for micro-sensor networks which
is tightly coupled with Berkeley TinyOS. The motiva-
tion for TinySec was to increase the network resistance
against denial-of-service attacks by enabling early detec-
tion of unauthorized packets in the network, and prevent-
ing them when they are first injected as opposed to wait-
ing for packets to route to the destination, thus saving
energy and bandwidth.

3 Security Fusion

The general approach of the security fusion paradigm is
to introduce lightweight elements at individual nodes that
provide a strong aggregation of security. In this section,
we describe some of the theoretical foundations for these
concepts. We implicitly discuss the concept of security
fusion in-line with the problems of achieving authentica-
tion in a decision system. However, the broad motivation
of the framework extends to other security attributes in-
cluding integrity and confidentiality. It is important to
note that security fusion is not just simply a framework
for secure consensus among the nodes, but rather it ex-
tends to a fusion of security as a property. In contrast to
approaches like trusting crowded-sourced nodes, the in-
tended objective is to develop a centeralized challenge-
response system that aggregates security characteristics
from multiple nodes. In this section, we present an in-
stantiation of the security fusion concept based on the
model of a finite state machine. But first, we begin by de-
scribing the physical architecture and the attack model.
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3.1 Physical Architecture

The physical architecture of the security fusion frame-
work consists of a typical centralized cluster-based net-
work which is comprised of a large number of nodes
(Figure 1). Each node is equipped with three compo-
nents: computation, storage, and a communication. The
physical architecture also consists of a group of readers
acting as cluster heads. The communication model is
limited to a challenge-response interaction between the
reader and the nodes. Thus, minimal communication is
performed in these nodes and no delegation of messages
is necessary. In the setup stage of the architecture, every
node shares a secret key with the system. Further, the
keys are assumed to be distributed to the nodes before
deployment.

3.2 Attack Model

In the security fusion architecture, we consider an at-
tacker that is adaptive across space and time. Given these
characteristics, we identified a number of attacks that can
be launched:

• Malicious read: With a rogue reader in possession,
an attacker may attempt to read out from a node.
By interrogating repeatedly, he may collect packets
to derive the secret.

• Brute-force attacks: An attacker may expand his at-
tack by exhausting all possible responses for a given
node. He may listen passively to a communication
or actively read out to collect packets.

• Replay attacks: An attacker may collect packets and
replay them back to the system at a later time. The
success of the attack will depend on whether an at-
tacker can replay the correct responses to fool the
system.

• Physical capture: A determined attacker may go as
far as capturing a node to extract the shared secret.
We assume that compromised nodes will not reveal
the secrets of other nodes as no two nodes will share
the same secret.

• Replication: In an attempt to spoof the responses,
an attacker may replicate a node and insert it into
the network hoping to disrupt the system.

3.3 Security Fusion Example: Finite State
Machines

In this paper, we present an example of the fusion con-
cept based on the model of a finite state machine. Finite
state machines serve as a basic computational model that

Figure 1: Physical architecture

can help build systems with secure global properties. In
this example, each node will have a unique state machine
that is shared as a secret key with the backend system.
The underlying state machine governs the output pattern
of the node by following certain transition rules. Further-
more, each state of the machine is assigned a disjoint set
of uniquely randomly-generated values, orpseudonyms,
which represent the outputs. The input to the state ma-
chine is internally derived and can be used to express
something like sensor detection results (as boolean logic
detection/ non-detection).

In the execution of the state machine, the nodes com-
municate the boolean logic by randomly selecting a
pseudonym from a set of possible pseudonyms assigned
to the current state before the state machine transitions to
the next state. Then, the outputs are sent to the backend
system and decoded to reach a consensus. The security
properties derived from this consensus are hard, mean-
ing that they are non-trivially amplified with increased
number of nodes.

In the analysis of the fusion methodology, the state
machine stored in each node is deterministic. How-
ever by using the pseudonyms, the obfuscation converts
the deterministic state machine (DFA) into one which is
larger in size and non-deterministic (NFA) from an at-
tacker’s perspective. For a certain selection, we can show
that the NFAs are cumbersome to reduce by minimiza-
tion algorithms, especially when scaled to a large number
of nodes. These non-deterministic properties are collated
to build a strong fusion property for security.

3.4 Description of the State Machine

A state machine can be described by ”transition” and
”output” rules. Transition rules define the mappings
from the current state to the next state given the input
value. Output rules define possible values emitted by a
node for a given state and transition. Let us assume we
have a state machine withn states(s1,s2, ...sn). Since we
are considering a state machine with a single-bit input,
we have two transitions per state: ”0” and ”1”.
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In the following, we describe the transition and output
rules using a Mealy model [6].
Transition rules: (Current state, Input)→ Next state

• (si,0)→ s j

• (si,1)→ sv, where(0≤ i, j,v ≤ n)

Output rules: (Current state, Input)→ Output

• (si,0)→ k j

• (si,1)→ kv, wherek j 6= kv

Figure 2: State diagram

Consider assigningk unique pseudonyms to each state in
the state machine, of whichp(1 ≤ p ≤ k) pseudonyms
are used to represent a transition on (0) andq(q = k −
p) pseudonyms are used to represent a transition on (1).
In the execution of the state machine, a node randomly
selects a pseudonym from either setp or q assigned to
the current state. Then it transmits the pseudonym and
transitions to the next state using the transition rules. As
an example, consider a 3-state finite state machine

1. n=3 {s1,s2,s3}

2. k=3 [Each state is assigned a set of 3 numbers of
which p(1<= p < k) numbers may be used to rep-
resent (0) andq = k − p numbers may be used to
represent a (1).]

3. The total set of numbers available for the 3-finite
state machine =nk = 9

4. Each state{s1,s2,s3} will have k=3 numbers as-
signed to it.

Figure 2 illustrates the state diagram and Table 2 shows
an example of a pseudonym assignment for the state di-
agram. In the next section, we describe the protocol and
authentication procedure using the state machine model.

Table 2: Pseudonym assignment example

States
p q

Transition on
0

Transition on
1

s1 1 or 2 3

s2 4 5 or 6

s3 7 or 8 9

3.5 Security Protocol

In the security protocol, each node is associated with
a unique state machine which is shared as a secret key
with the backend system. After each interrogation from
the reader, nodes may change their states according to
the transition rules defined prior to deployment. The
reader verifies the legitimacy of a node by checking the
expected current state and confirming the correct appli-
cation of the rules.
A basic protocol for this interaction is depicted below.
DenoteN: node,R: reader

1. R → N: Send read query

2. N: Obtain <bit value> (0/1)

3. N → R: N moves to the next state based on

<bit value> and outputs a pseudonym from

set p or q

4. R resolves N’s output and re-syncs

It should be noted that even though the values read
from each node are similar to a point-to-point security
channel, no security properties are derived from just one
value. Rather, a large number of the read values are col-
lated to derive the security fusion properties.

In order to properly authenticate a node, the backend
system needs to maintain a copy of the state machines
associated with all the nodes in the network. These
state machines are indexed by the corresponding node
id. When interrogated by a reader, a node responds with
a pseudonym and possibly with its id. This value of the
pseudonym depends on the state machine rules defined
prior to deployment. Since the system can obtain the
node’s state and the pseudonyms assigned for that state,
it could simply authenticate a node by the pseudonym.
The backend system can also deduce the original value
of the node using the mapping between the pseudonyms
and the actual information. After getting the response,
the system will also update its copy of the state machine
corresponding to that node with the new state value. In
the back-end server, the system assigns a unique node id
and stores flag bits to track the current state of the node.
For every state and machine input, the server also stores
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the next state and pseudonym set. Whenever the server
receives a response, it checks if the value matches any of
the elements in the pseudonym set of the node’s current
execution. Otherwise, the response is rejected.

3.6 State Machine Selection

Because these state machines vary in their security
strength, a stringent criteria is needed to select machines
with strong properties. In this section, we describe the
criteria for selecting state machines to provide strong
protection for the overall architecture. The selection is
based on the following factors:

1. State reachability: Here we mean complete reach-
ability in which every state should have a path to
every other state through one or more transitions.
From a security perspective, a machine with un-
reachable states is analogous to a secret key with
unused bits. Therefore, any state machine with un-
reachable states or with a potential of being un-
reachable should be discarded after a number of
transitions.

2. State complexity: The generated state machine is
stored as a deterministic automaton. Using statisti-
cal properties, an attacker can only simulate a non-
deterministic version of the machine. Converting
a non-deterministic machine to deterministic may
lead to exponential blow up in the number of states.
The explosion in state space does not occur for all
non-deterministic machines. Therefore, choosing
structures that lead to explotion in the state space is
the key for increasing the complexity. In [13], Sut-
ner proposed a class of non-deterministic machines
that satisfy the desired property.

3. Pseudonym randomness: Pseudonyms need to be
cryptographically secure so that an adversary can-
not predict the values. Since the numbers are gener-
ated prior to assignment, they can be pre-computed
using crypto classes of PRNG algorithms. These al-
gorithms either use stream or block ciphers. Exam-
ples of current implementations include Blum Blum
Shub, ANSI X9.17, and CryptGenRandom.

4. Pattern randomness: Pattern randomness highly
depends on the selection randomness of the
pseudonyms in every state. We propose to use dif-
ferent randomness tests to choose machines with
higher output distribution. Using a black box ap-
proach, a random input stream of 1’s and 0’s (which
can be crypto generated) is produced to evaluate
the distribution of the pseudonyms generated by the
state machine. A basic statistical test is to analyze

the frequency of the outputs to measure the dis-
tributed equiprobability. Other tests based on chi-
square [3], such as serial and poker tests, may be
conducted. These tests evaluate the frequency for a
sequence of numbers of some length, e.g. sequence
of every five numbers at a time.

3.7 Security Analysis

In this section, we evaluate the state machine approach
based on the attack model described previously in Sec-
tion 3.2. Since the state machines do not reveal the
actual state mappings, an attacker can only collect the
pseudonyms assigned to the states. In other words, the
pseudonyms are used to hide the internal state of the ma-
chine, so if an attacker is going to reconstruct the state
machine, he will need to collect successive pseudonyms
by observing the output pattern.

3.7.1 State machine complexity

One simple way an attacker has of reconstructing the
state machine is to treat every pseudonym as a state
value. Based on that, the state machine constructed by
the attacker is an NFA withnk states andnk2 transitions
for every node, wheren is the number of states in the
encoded machine andk is the number of pseudonyms as-
signed to each state. It can be shown from formal theory,
that the NFA derived by the attacker is equivalent in be-
havior to the DFA encoded inside the node. Though an
attacker is able to reconstruct a state machine to model
the readout patterns, the size of the state machine con-
structed by the attacker is larger than the original ma-
chine (withnk states andnk2 transitions for every node).
This is an artifact of the non-determinism introduced by
hiding the internal state of the machine. The node state
machine is modeled by assigning the pseudonyms to a
given pair of state and input, where as the state ma-
chine derived by the attacker is modeled by using the
pseudonyms as the state values.

3.7.2 State machine minimization

With a large number of nodes, the complexity for stor-
ing the NFAs is formidable for the attacker because it
requires vast amount of memory and processing capa-
bilities at his disposal. Therefore, in order to scale the
attack, the attacker needs to resort to a minimization al-
gorithm in order to reduce the size of the state machines
produced by the NFAs. One of the classical algorithms to
minimize these state machines is an algorithm proposed
by Hopcroft’s [12]. Hopcroft’s Algorithm is a minimiza-
tion procedure which transforms a given state machine
into an equivalent state machine with minimum number
of states.
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Based on Hopcroft’s Algorithm, it takesmlog(m)
steps to minimize a deterministic finite state machine
(DFA) with m-states. Hence, if the state machine de-
rived by the attacker was deterministic, it would take
(nk)log(nk) steps to minimize it. However since the state
machine derived by the attacker is non-deterministic, we
cannot directly apply the algorithm. Instead, the attacker
needs to convert the NFA to a DFA first before applying
the algorithm. Unfortunately for the attacker, there exists
some NFA that leads to a state blowup when converted
to a DFA.

• NFA-DFA Blowup: Given a natural numberm,
there exists anm-state NFA whose minimal equiva-
lent DFA has≥ 2m−1 states.

This is a long-known result in automata theory and
in our case, we havem = nk states. Because of the
state blowup in the conversion, the overall problem be-
comesNP-hard [12] [13]. That is, converting an NFA
to a DFA can cause an exponential increase in the num-
ber of states which makes the problem of minimization
NP-hard whenever you do not start with a DFA. In this
scheme, we realize that not all NFAs will produce an ex-
ponential blowup. However, in the earlier subsection, we
described a selection criteria required to guarantee this
property. Based on this property, we can see that the se-
curity complexity is not simply a linear correlation of the
number of states. Further, it is possible that an attacker
handles state explosions for one or few NFAs, but in or-
der to make the problem intractable for the attacker, the
system needs to have a large number of nodes. Since the
number of states at each node is small by design, an at-
tacker may be able to exploit them, but a large number of
them would be exponentially complex to reduce because
of the security fusion property. The question as to how
many nodes are needed to have a practical sense of se-
curity will depend on the underlying assumptions on the
memory and computational resources available to the at-
tacker and the size of the individual state machines.

4 Conclusion

In this paper, we have introduced the concept of se-
curity fusion, a new security architecture for resource-
constrained environments. Since standard cryptographic
solutions are likely to be impractical for such an in-
frastructure, our architecture employs lightweight tech-
niques to circumvent large-scale cloning and replay at-
tacks for system-level protection. In this paper, we de-
scribed a model based on finite state machines with some
details on the architecture. Analysis of the security prop-
erties demonstrated that the security complexity is hard
with respect to the number of states. These properties can

be leveraged to build the theory and practice of security
services in resource-constrained environments. For fu-
ture work, we plan to extend the architecture and apply
other fusion techniques for improved security properties
and overall complexity.
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