
1

State Machine-Based Security Fusion for
Resource-Constrained Environments

S.Nair, O.Al Ibrahim, and S.Abraham
SMU HACNet Labs, Southern Methodist University, Dallas, TX

Abstract—A growing range of devices have difficulty in imple-
menting strong cryptographic algorithms. RFIDs and sensors,
for instance, generally lack the processing power and memory
to perform these operations in an efficient and timely manner.
Recently, a new paradigm in security, namelysecurity fusion
[24], was introduced for resource-constrained environments.In
this approach, strong security properties are synthesized from
weaker point-to-point properties, thereby minimizing the re-
source requirements at each node without compromising the
system-level security. In this paper, we describe a state machine-
based architecture and pertinent protocols to realize security
fusion. Further, we analyze these protocols for their security
capabilities.

Index Terms—security, RFID, sensor, state machines.

I. I NTRODUCTION

Recently, wireless sensors and RFID (Radio Frequency ID)
have gained a lot of popularity due to their wide range of
applications in surveillance and tracking. Though these devices
have provided promising solutions for various applications,
they are subject to a multitude of attacks including eavesdrop-
ping, intrusion and replay attacks.

Implementing security in sensors and RFID have posed
great challenges given the severe limitations in processing
power, memory and computational cycles. For instance, a
passive RFID tag that complies with the EPC C1G2 standard
[1] has a baseband of 7500 Gate Equivalence (GE) out of
which 200-2000 gates are reserved for security functionalities
[27] [29]. The chip area for such tags is approximately
0.8mm2 and the power consumption is roughly 30µW with
EEPROM programming [16]. Wireless sensors are also limited
in processing speed, storage capacity and power. Popular
sensor devices have RAM sizes ranging from 4 KB on the
Mica2 platform to 10KB on the TelosB platform [10]. The
storage capacity is usually between 4KB and 512KB and
may come incorporated with Bluetooth, Chipcorn CC100, or
IEEE 802.15.4 compliant transceivers. Today, devices suchas
micro-sensors and nano-sensors are increasing in popularity
over conventional sensors. These sensors are known for their
extremely small size, low cost, and high sensitivity.

Therefore, supporting cryptography has become challenging
given these characteristics. Table I ([28]) provides a compari-
son between various cryptographic algorithms with respectto
the number of cycles, gates, and average power consumption.

This work is supported in part by a grant from NIST and in part by a
grant from Globeranger as a project in conjunction with the NSF NetCentric
Software & Systems Industry/University Cooperative Research Center.

TABLE I
COST ANALYSIS OF VARIOUS ALGORITHMS

Algorithm
Key
Bits Plaintext Cycles GE

Power
(µW)

AES 128 128 1016 3595 8.15

TEA 128 64 64 2355 12.34

SHA-1 L 192 405 4276 26.73

LFSR 32 64 92 685 0.1582

DES 56 64 144 2309 2.14

ECC 113 L 195159 10k L

L denotes number of bits

Generally speaking, the complexity involved with traditional
cryptography is formidable for low-cost sensors and RFID.
Despite Moore’s Law, sensors and RFID will remain resource-
constrained because of their design. On top of that, new
advancements in process technologies will be insufficient for
tighter constraints in the new generations of these devices.

A. Security Fusion

In [23], a new architecture for incorporating security in
sensors and RFID environments was introduced. The goal of
this architecture is to provide strong system-level security from
the application of many weak security primitives. The term
security fusion, was introduced in [24] to refer to the broad
motivation of this architecture.

The principle of security fusion is that nodes do not provide
all the protection by themselves, since they only implement
lightweight primitives, but unlike traditional schemes, these
primitives are fusible to provide greater security, much like
the thin strands of a thick bulk rope. The earlier paper [24]
proposed an instantiation of this idea based on a simple secret
state machine on each device, which is shared by a reader. In
[4], an extension of the work presented a fusion methodology
based on state machine compositions [14]. From the properties
of compositions, the authors define methods of combining
state machines to provide global authentication and reduced
complexity for environments that cannot support a complete
security schema.

This paper is intended to present a state-machine based
security fusion architecture. We compile previous resultsand
expand on the security analysis and experimental evaluation.

2

B. Applications

Security fusion is a new paradigm in security, where the
aggregate system is strong even though individual elements
use lightweight security. The proposed application spacesof
security fusion are certainly of growing issues to the security
community. Here, we mention a few of them.

• Low-cost RFID: Security has become a rising concern
for RFID mainly because scanning and replicating tags
require little money or expertise. While cryptographic
RFID purports to offer seemingly strong protection, they
are often too expensive to be used in large quantities.
To overcome factors such as power budget, computa-
tional latency, and cost, security fusion enables simple
mechanisms to be incorporated in RFID tags, which can
be consolidated quickly by the middleware. With multi-
tag RFID systems [7], security fusion becomes more
effective.

• Sensor networks: Sensor networks consist of autonomous
nodes that collectively obtain measurements from the en-
vironment to improve system-level decisions. Due to the
aggregate nature of data in sensor networks, it is natural
to define security through a fusion model that protects
the monitoring, tracking, and controlling functions of an
application. Security fusion has a lot of potential in sensor
networks. Using security fusion, it is possible to collate
multiple sensor read-outs to reach a globally authentic
decision.

• Embedded systems: Another potential application for se-
curity fusion is to preserve the component-level integrity
of embedded systems. For instance, recent generations of
smart phones consist of various interconnected compo-
nents such as Bluetooth radio, WiFi radio, flash memory,
and Codec chip. These components are manufactured
by different suppliers and then integrated into a single
platform. In the event of counterfeiting, non-genuine
components can be detected through security fusion using
an aggregate verification check of the platform.

The remainder of the paper is organized as follows. In Section
2, we discuss previous research. In Section 3, we explore the
security fusion paradigm in more detail. In Sections 4 and
5, we describe a state machine-based architecture for security
fusion. Analysis of the security characteristics is presented in
Section 6. Then in Section 7, an experimental evaluation is
demonstrated. Finally, we conclude the paper in Section 8.

II. PREVIOUS WORK

A couple of security architectures have been proposed to
protect sensor networks from various attacks. Perrig et al.[20]
introduced an architecture called SPINS which consists of two
building blocks: SNEP - a security protocol that employs sym-
metric cryptography using RC5 for encryption and Message
Authentication Code (MAC) for integrity, as well asµTESLA
- which provides authentication for data broadcast. The SNEP
protocol is designed for resource-constrained sensor networks.
To encrypt messages in the SNEP protocol, each sensor node
shares a master key with a base station, from which it derives
one-time encryption keys to be fed to RC5. The other building

Fig. 1. Physical architecture. Left: a reader sends a probe signal to nodes
in a deployment field; nodes respond in reverse unicast. Right: Architecture
organized in a cluster network with readers acting as cluster heads.

block of SPIN, µTESLA, provides authenticated broadcast
for sensor networks.µTESLA was designed based on the
standard TESLA protocol, but is developed to address limited
computing environments.

Another security architecture that has recieved a swirl of
attention in the past few years is TinySec. TinySec, proposed
by Wagner et al. [17], is a link layer security architecture for
micro-sensor networks which is tightly coupled with Berkeley
TinyOS. The motivation for TinySec was to increase the net-
work resistance against denial-of-service attacks by enabling
early detection of unauthorized packets in the network, and
preventing them when they are first injected as opposed to
waiting for packets to route to the destination, thus saving
energy and bandwidth.

III. SECURITY FUSION

The general approach of security fusion is to introduce
lightweight elements at individual nodes which provide a
strong aggregation of security. In this section, we describe
some of the theoretical foundations of these concepts. We
implicitly discuss the concept of security fusion in-line with
the problem of achieving authentication in a decision system.
However, the broad motivation extends to other security at-
tributes including integrity and confidentiality.

It is important to note that security fusion is not just a
framework for secure consensus among nodes, but rather it
extends to fusion of security as a property. Unlike trusting
crowded-sourced nodes, security fusion is based on a central-
ized challenge-response system which aggregates the security
characteristics of multiple nodes. In this paper, we present an
instantiation of the security fusion concept based on the model
of a finite state machine. But first, we start the discussions by
describing the physical architecture and the attack model.

A. Physical Architecture

The physical architecture consists of a typical centralized
cluster-based network comprised of a large number of nodes
(Figure 1). Each node is equipped with three components:
computation, storage, and a communication. The physical
architecture also consists of a group of readers acting as cluster
heads. The communication model is limited to a challenge-
response interaction between the reader and the nodes. Thus,
minimal communication is performed in these nodes and no

3

delegation of messages is necessary. In the setup stage of the
architecture, every node shares a secret key with the system.
Further, the keys are assumed to be distributed to the nodes
before deployment.

B. Attack Model

In the security fusion architecture, we consider an attacker
that is adaptive across space and time. Given these character-
istics, we identified a number of attacks that can be launched:

• Malicious read: With a rogue reader in possession, an
attacker may attempt to read out from a node. By inter-
rogating repeatedly, he may collect packets to derive the
secret.

• Brute-force attacks: An attacker may expand his attack
by exhausting all possible responses for a given node.
He may listen passively to a communication or actively
read out to collect packets.

• Replay attacks: An attacker may collect packets and
replay them back to the system at a later time. The
success of the attack will depend on whether an attacker
can replay the correct responses to fool the system.

• Physical capture: A determined attacker may go as far as
capturing a node to extract the shared secret. We assume
that compromised nodes will not reveal the secrets of
other nodes as no two nodes will share the same secret.

• Replication: In an attempt to spoof the responses, an
attacker may replicate a node and insert it into the
network hoping to disrupt the system.

C. State Machine-Based Security Fusion

In order to apply the concept of security fusion, it is
necessary to establish a framework using which the nodes will
communicate with the backend system. One of the require-
ments of this framework is that it has to be very lightweight,
general and useful across multiple application areas. In this
paper, we present a security fusion architecture based on the
model of a finite state machine. Finite state machines serve as
a basic computational model that can help build systems with
secure global properties.

In this architecture, each node will have a unique state
machine that is shared as a secret key with the backend system.
The underlying state machine governs the output pattern of
the node by following certain transition rules. Furthermore,
each state is assigned a disjoint set of uniquely and randomly-
generated values, orpseudonyms, which represent the outputs.
The input to the state machine is internally derived and can
be used to express something like sensor detection results (as
boolean logic detection/ non-detection in the case of a sensor
node).

Based on this, we present two fusion methods to attain
security. First, we describe a simple fusion algorithm using
majority logic. Next, we advance to stronger fusion methods
based on the properties of state machine compositions.

1) Majority logic: In the first fusion method, the nodes
communicate a boolean logic to the reader by randomly
selecting a pseudonym from a set of possible pseudonyms
assigned to the current state before the state machine tran-
sitions to the next state. Then, the outputs are forwarded
to the backend system and decoded to reach a consensus.
The security properties derived from this consensus are hard,
i.e. they are non-trivially amplified with increased numberof
nodes.

In the analysis, we demonstrate that the state machine
stored in each node is deterministic. However by using the
pseudonyms, the obfuscation converts the deterministic state
machine (DFA) into one which is larger in size and non-
deterministic (NFA) from an attacker’s perspective. For a
certain selection of the state machines, we can show that the
NFAs are cumbersome to reduce by minimization algorithms,
especially when the problem size is scaled to a large number
of nodes. These non-deterministic properties are used to build
a strong fusion property for security.

2) State machine compositions: State machine composi-
tions [14] [15] consider the problem of interconnecting an
arbitrary set of state machines to contruct a single machine. For
quite some time, researchers and engineers studied the math-
ematical properties of compositions and their applications.
For instance, state machine compositions were used in fault-
tolerant system design to create backups of the system statein
distributed client-server environments [5]. Another application
of the theory was presented in the simulation of digital logic
circuits [19].

In this approach, we use state machine compositions to
keep track of a system-wide output by combining a set of
low-entropic machines into one with higher entropy. These
compositions come in several different types. Based on these
composition types, we develop a fusion methodology to im-
prove system-level security and reduce overall complexity.

IV. SECURITY FUSION BASED ON MAJORITY

In the following section, we describe the fusion approach
based on majority logic of state machines. For the purpose of
illustration, we consider the model of a finite state machine
with two outgoing transitions per state, triggered on binary
input (0/1).

A. Description of the State Machine

A state machine can be described by ”transition” and
”output” rules. Transition rules define the mappings from the
current state to the next state given the input value. Output
rules define possible values emitted by a node for a given
state and transition. Let us assume we have a state machine
with n states(s1, s2, ...sn). Since we are considering a state
machine with a single-bit input, we have two transitions per
state: ”0” and ”1”.

4

In the following, we describe the transition and output rules
using a Mealy model [14].
Transition rules: (Current state, Input)→ Next state

• (si, 0) → sj
• (si, 1) → sv, where(0 ≤ i, j, v ≤ n)

Output rules: (Current state, Input)→ Output
• (si, 0) → kj
• (si, 1) → kv, wherekj 6= kv

Fig. 2. State machine diagram. Pseudonyms 1 through 9 are distributed
among statess1, s2, ands3. In each state, the pseudonyms are split between
the two transitions.

Consider assigningk unique pseudonyms to each state in the
state machine, of whichp(1 ≤ p ≤ k) pseudonyms are used
to represent a transition on (0) andq(q = k− p) pseudonyms
are used to represent a transition on (1). In the execution
of the state machine, a node randomly selects a pseudonym
from either setp or q assigned to the current state. Then it
transmits the pseudonym and transitions to the next state using
the transition rules. As an example, consider a 3-state finite
state machine

1) n=3 {s1, s2, s3}
2) k=3 [Each state is assigned a set of 3 numbers of which

p(1 <= p < k) numbers may be used to represent (0)
andq = k−p numbers may be used to represent a (1).]

3) The total set of numbers available for the 3-finite state
machine =nk = 9

4) Each state{s1, s2, s3} will have k=3 numbers assigned
to it.

Figure 2 illustrates the state diagram and Table II shows an
example of a pseudonym assignment for the state diagram. In
the next section, we describe the protocol and authentication
procedure using the state machine model.

B. Security Protocol

In the security protocol, each node is associated with a
unique state machine which is shared as a secret key with
the backend system. After each interrogation from the reader,
nodes may change their states according to the transition
rules defined prior to deployment. The reader verifies the
legitimacy of a node by checking the expected current state

TABLE II
PSEUDONYM ASSIGNMENTEXAMPLE

States
p q

Transition on 0 Transition on 1

s1 1 or 2 3

s2 4 5 or 6

s3 7 or 8 9

and confirming the correct application of the rules.
A basic protocol for this interaction is depicted below.

DenoteN: node,R: reader

1) R →N: Send read query
2) N: Obtain the bit value (0/1)
3) N → R: N moves to the next state based on the bit value

and outputs a pseudonym from set p or q
4) R resolves N’s output and re-syncs

It should be noted that even though the values read from
each node are similar to a point-to-point security channel,no
security properties are derived from just one value. Rather,
a large number of the read values are collated to derive the
security fusion properties.

In order to properly authenticate a node, the backend system
needs to maintain a copy of the state machines associated with
all the nodes in the network. These state machines are indexed
by the corresponding node id. When interrogated by a reader,
a node responds with a pseudonym and possibly with its id.
This value of the pseudonym depends on the state machine
rules defined prior to deployment. Since the system can obtain
the node’s state and the pseudonyms assigned for that state,
it could simply authenticate a node by the pseudonym. The
backend system can also deduce the original value of the node
using the mapping between the pseudonyms and the actual
information. After getting the response, the system will also
update its copy of the state machine corresponding to that node
with the new state value.

On the back-end server, the backend system assigns a unique
node id and stores flag bits to track the current state of
the node. For every state and machine input, the server also
stores the next state and pseudonym set. Whenever the server
receives a response, it checks if the value matches any of the
elements in the pseudonym set of the node’s current execution.
Otherwise, the response is rejected.

TABLE III
MACHINE INDEX TABLE

Node id Flag
Current

state Next state/Output

i=0 i=1

M1

0 s1 s2/ {1, 2} s1/3
0 s2 s3/4 s2/ {5, 6}

1 s3 s1/ {7, 8} s3/9

M2

0 s4 s5/ {10, 11} s6/12
1 s5 s6/4 s5/ {14, 12}

0 s6 s4/ {7, 8} s5/9

...

5

One way to achieve security fusion is to establish a consen-
sus among the response pattern of multiple nodes. Take for
example the case of sensor sprays, in which the system wants
to make a decision on the detectability of some chemical.
This decision can be represented as a binary bit (0/1), and
the state machine transitions may be used to communicate
this information (detection/non-detection).

For a reliable and secure assessment, the backend system
collectively authenticates a response pattern according to a
consensus criterion, which could be such that 80% of the
nodes should get authenticated. Only if the consensus criterion
is met, does the backend system apply a majority logic-a
fusion algorithm– on the responses from the nodes to make a
decision. If the consensus criterion is not met, then the system,
acting as a decision maker, discards all the responses. The
criterion is a configurable parameter that sets a threshold on
the percentage of responses needed to pass the authentication
before a decision is made regarding the transmitted data
(which can be either 0 or 1). Unlike distributed approaches
[11] [12] [30], the agreement here is centralized.

Aggregating multiple values into a single metric is one
example of fusion. GivenN nodes, an attacker needs to com-
promise at leastN/2 state machines to influence the decision of
the system. While this factor is correlated with high number
of nodes, the security of the system is not simply a linear
correlation. For the state machines produced in our design,we
can show that the security of the system is amplified. But to
achieve this, we need to specify exactly how the state machines
are generated to guarantee the required properties.

C. State Machine Selection

Because there are many possible configurations for a state
machine, a stringent criteria is needed to select state machines
with strong security properties. In this section, we describe
a criteria for selecting state machines in order to provide
protection for the overall architecture. This selection can
be implemented as a tool which heuristically explores the
universal set of state machines given the number of statesn

and the number of pseudonyms per statek. The selection is
based on the following factors:

1) State reachability: State reachability refers to complete
reachability in which every state would have a path
to every other state through one or more transitions.
Any state machine with unreachable states has reduced
security complexity. Therefore, in the selection of state
machines we should disregard configurations with un-
reachable states or with potential of being unreachable
after a number of transitions.

2) State complexity: The generated state machine is stored
as a deterministic automaton in the node. Using statis-
tical properties, an attacker can only simulate a non-
deterministic version of the machine. Converting a non-
deterministic machine to deterministic may lead to ex-
ponential blow up in the number of states. However,
this explosion does not occur for all non-deterministic
machines. Therefore, choosing structures that lead to
explosion in the state space is the key for increasing

the complexity. In [25], Sutner proposed a class of non-
deterministic machines that satisfy the desired property.

3) Pseudonym randomness: Pseudonyms need to be crypto-
graphically secure so that an adversary does not predict
the values. Since pseudonyms are generated prior to
assignment, they can be pre-computed using crypto
classes of algorithms. These algorithms can either be
stream or block ciphers. Examples of current crypto
implementations include Blum Blum Shub [6], ANSI
X9.17 [8], CryptGenRandom [2], Yarrow [18], and
Fortuna [13].

4) Pattern randomness: Pattern randomness highly depends
on the selection of the pseudonyms in every state. We
propose to use different randomness tests to choose state
machines with higher output distribution. Using a black
box approach, a random input stream of 1’s and 0’s is
generated to evaluate the distribution of the pseudonym
outputs by the state machine. A basic statistical test
is to analyze the frequency of the outputs to measure
the distributed equiprobability. Other tests based on chi-
square [9] including serial and poker tests may be used.
These tests evaluate the frequency for a sequence of
numbers of some length, e.g. sequence of every five
numbers at a time.

V. SECURITY FUSION BASED ON COMPOSITIONS

In this section, we introduce the second fusion method
based on state machine compositions. Within compositions,
there are different types of interconnections including cross
products, machine chains, and feedback. Given these basic
forms, we demonstrate how compositions can be used to
generate a system-wide output for security. First, we illustrate
the use of cross products to combine the response pattern
of state machines stored at the individual nodes. Afterwards,
we present the composition models and the authentication
procedure. Finally, we describe a mechansim for complexity
reduction based on state machine chaining.

A. Notations

In the following, we introduce the notations/terminologies
of this section (Table IV).

TABLE IV
NOTATIONS

Symbol Description

Mi Moore state machine, derived from the nodes.

P
Product machine, constructed using a composition of
multiple Moore machines.

Ci
Machine chain component.

sij Statej in some Moore machineMi.

xij
Statej in some machine chain componentCi.

pj Statej in the product machineP

(s1j1 , s2j2 , ..,)
Composition state representation of the product ma-
chine statepj

k1, k2, k3, ..
Node responses generated and assigned uniquely to
the Moore machines.

sij : k An assignment of a node responsek to statesij

6

B. State Machine Examples

We also depict three state machinesM1, M2, andM3 for our
examples.

a) MachineM1

b) MachineM2

c) MachineM3

Fig. 3. Machine examples

C. Cross product

A cross product machine [14] [15] is a state machine that
simulates concurrent execution of multiple machines. In other
words, each state in the cross product machine represents a
configuration of states for a group of machines. Two cross
product models simulate parallel execution of state machines:

• Restricted cross product: The restricted cross product is a
machine construction that simulates execution of multiple
machines fed with the same input.

• Full cross product: The full cross product is a machine
construction that simulates execution of multiple ma-
chines for all input combinations. This is the more general
construction.

A logical diagram for both models is depicted in Figure 4.
Both constructions consider the reachable product of states for
some arbitrary number of machines(M1,M2 . . .Mk). A state
pj is said to be reachable if and only if there exists a sequence
of transitions that takes the machine topj starting from the
initial state.

a) Restricted cross product

b) Full cross product

Fig. 4. Cross product models

Example: Consider the three Moore machinesM1,M2 and
M3 shown in Figures 3(a), (b), and (c). The restricted and
full cross products for the three machines are depicted in
Figures 6(a) and (b) and denoted asP . To constructP , we
first determine the set of all reachable states in each machine.
In this example, the sets are:{s11, s12} for M1, {s21} for
M2, {s31, s32, s33} for M3. Second, we generate the product
states by taking all different combinations from the sets:
{(s11, s21, s31), (s11, s21, s32), (s11, s21, s33), (s12, s21, s31),
(s12, s21, s32), (s12, s21, s33)}.

As illustrated in Figure 6, we represent the product states
p1 throughp6 as a tuple of the original states. For instance,
statep1 of the cross product has a composite representation
(s11, s21, s31) which represents a configuration ofM1 in
s11,M2 in s21, andM3 in s31. To compute the transitions for
the cross product, we evaluate the transition rules of each state
in the tuple. In the restricted cross product, the transition rule
is evaluated for a common input. For instance, if the input is
0, thenM1 moves tos12 and outputsk2,M2 moves tos21 and
outputsk3, andM3 moves tos31 and outputsk4. Therefore,
the next state in the product machine will be(s12, s21, s31),
and corresponds top4, and the response pattern becomes
k2k3k4(as a simple convention, we represent the pattern as
a string). As for the full cross product, the transition rules are
evaluated by taking all input combinations.

D. Authentication Using the Cross Product

We now describe an authentication procedure using the
cross product. The cross product is used to compute a system-
wide output (e.g. using XOR) from the response pattern of
elemental state machines stored at the individual nodes. We
illustrate this with a simple example of authenticating three
nodes usingM1,M2, andM3 in Figure 3.

Example: Consider a scenario in whichM1 is in s11,M2 is
in s21, andM3 is in s31 (Figure 5). In this example, assume
the reader input is0, and also assume that we are going to

7

TABLE V
CROSS PRODUCT MAPPINGS

State in product
machine P

Composite
representation

Response pattern

p1 (s11, s21, s31) k1k3k4

p2 (s11, s21, s32) k1k3k5

p3 (s11, s21, s33) k1k3k6

p4 (s12, s21, s31) k2k3k4

p5 (s12, s21, s32) k2k3k5

p6 (s12, s21, s33) k2k3k6

apply the restricted cross product, as illustrated in Figure 6(a).
The corresponding responses for this configuration arek2 for
M1, k3 for M2, k4 for M3. Collectively, the reader obtains
k2k3k4 as a response pattern (Figure 5). Table V illustrates
the mappings for every response pattern to a product state
in the system. As shown from the table, the patternk2k3k4
corresponds to statep4 in the product machine, and the initial
states(s11, s21, s31) correspond top1. Accordingly, the system
accepts the response pattern since(p1, 0) → p4 is a valid
transition in the product machine. On the contrary, consider
a scenario in whichM3 is replaced with a malicious node
that outputsk5 instead ofk4. In this case, the system obtains
k2k3k5 as a response pattern instead ofk2k3k4. Referring to
the table, we deduce that the new response pattern corresponds
to p5 and since the transition(p1, 0) → p5 is not a valid
transition, the response pattern is rejected by the system.

E. Complexity Reduction Using Machine Chaining

We describe a transformation calledmachine chaining to
reduce the state space incurred from the cross product con-
struction. State machine chaining [14] [15] is a composition
that interconnects a set of state machines as components in
a chain. The chain components execute in cascade fashion to
simulate a larger composite machine. In this interconnection,
every state machine is treated as a component such that the
state of one component depends on the state of the previous
component. The first component,C1, depends only on the
input sequence, and thereby called theindependent component.
The rest of the components,C2 . . . Cm, determine their state
based on the influence of the previous components, and
thereby referred to asdependent components.

The theory of machine chaining has been around for decades
yet the scope of applications are limited to the design of
sequential circuits. For instance, using machine chaining, a
large circuit is replaced with an interconnection of small sub-
circuits. These small sub-circuits are synthesized to reduce
costs and to provide reliability advantages including ease
of trouble-shoot and repair. Here we demonstrate a new
application for machine chaining in the areas of security and
system design. Theoretically, it has been demonstrated that
any state machine has a chain realization [15] such that the
components of this chain are ”algebraically” simpler than the
original state machine.

Fig. 5. Response pattern example

a) Restricted productP

b) Full productP

Fig. 6. Cross product examples

8

Fig. 7. Machine chaining

a) Independent componentC1

b) Dependent componentC2

Fig. 8. Machine chain components

Example: We illustrate a machine chain with two components:
an independent component(C1) and a dependent component
(C2). This chain has equivalent behavior as the product
machineP shown in Figure 6(a). Depicted in Figure 8,C1

has two statesx11 and x12. Since C1 is independent, the
transitions are only triggered by the machine input.C2, on
the other hand, depends on both the input and the state of the
previous machine. As illustrated, the state delegation from C1

to C2 is treated as part of the input (Figure 8(b)). Referring
to Figure 8(b), considerC2 being on statex21. If the input
is 1 and C1 is on x11, then C2 will transition to x22 and
outputs k1k3k5. Instead if the input was0, then it would
have outputk1k3k4 . This output behavior is equivalent to
p1 in the product machineP . Similarly, we find matching
equivalences for the rest of the states. As a general rule, if
two machines have the same behavior, then there must be a
correspondence between their states. Therefore, every state in
P has a matching configuration of the component machines,

represented as a composite vector of the component states.
Table VI shows this correspondence.

TABLE VI
STATE CORRESPONDENCE MAPPINGS

State in
product
machine

P

State in
C1

State in
C2

p1 x11
x21

p2 x11
x22

p3 x11
x23

p4 x12
x21

p5 x12
x22

p6 x12
x23

Chain transformation: We now describe the setup procedure
for building a security fusion architecture using state machine
chaining. The system pre-computes a machine chain to trans-
form elemental state machines into a single representation.
Using the properties of machine chains, the system machine
is expressed as a vector of interconnected components. Sub-
sequently, the coverage of the system is determined by the
number of components that represent the system state. To
obtain a coverage-overhead tradeoff, we propose to reduce
the chain length by eliminating some of the components from
the chain. The coverage of the system is chosen to reduce
the chain length while keeping the likelihood of intrusion
as low as possible. Let us investigate how to transform the
individual state machines into a chain construction (Figure 9).
This transformation is computed in the setup phase of the
system. We can describe the setup procedure in the following
steps:

• Step 1: Initially, the system obtains the state machines
for all the nodes. The state machines(M1,M2 . . .Mn)
are initially stored in the system.

• Step 2: Next, we construct a cross productP from the
machines(M1,M2 . . .Mn). Although the size of the
cross product could be potentially large, the cross product
is only stored temporarily.

• Step 3: P is factored out into a machine chain
(C1, C2, . . . , Cm). Various chaining algorithms perform
these conversions, as described by [14].

• Step 4: We truncate the chain at some cutoff point. The
choice for the truncation point is chosen to achieve an
optimal coverage-overhead tradeoff. For efficiency, the
truncation is done in the same pass of factoringP into
chain components.

Authentication through chaining: To illustrate the concept, we
continue with our example from Figure 5 and the three state
machinesM1,M2 andM3 shown previously in Figures 3(a),
(b) and (c), but rather than authenticating withP , we transform
P into a machine chain with two componentsC1 andC2, as
illustrated in Figures 8(a) and (b). According to Tables V
and VI, the corresponding states fork1k3k4 will be x11 in
C1, and x21in C2. Further, suppose the initial system state
is x11 in C1 and x23 in C2. Since the outputs satisfy the

9

Fig. 9. Chain transformation and truncation

transition rules(x11, 1) → x11 and (x23, 1x11) → x21, the
response pattern is accepted. On the other hand, consider a
scenario in which a malicious node masquerades asM1 and
suppose it emitsk2 instead ofk1 . In this scenario, the response
patternk2k3k4 will correspond to statesx12x21, mapping to
an incorrect transition(x12, 1) → x11 in C1. As a result, the
system detects a false response pattern.

VI. SECURITY ANALYSIS

In this section, we evaluate the state machine approach
based on majority. First, we analyze how state machines can
be used to build a fusion property. Second, we explore the
design space of the state machines and the complexity of an
exhaustive key search attack. Third, we investigate the packet
overhead incurred for malicious reads. The details of the
analysis are presented in the subsections below. The analysis
parameters are shown in Table VII.

TABLE VII
ANALYSIS PARAMETERS

Parameter Description

n
Number of states in a state machine

k Disjoint set of pseudonyms per state

p Number of pseudonyms to represent transition ”0”

q Number of pseudonyms to represent transition ”1”

A. Security Fusion Based On Majority

In the earlier sections, we described how state machines
do not reveal the actual state mappings; instead, an attacker
can only collect the pseudonyms assigned to the states. The
pseudonyms are used to hide the internal representation of the
machine, so if an attacker is going to reconstruct the state
machine, he will need to collect successive pseudonyms by
observing the output pattern.

State machine complexity: One simple way an attacker has of
reconstructing the state machine is to treat every pseudonym as
a state value. Based on that, the state machine derived by the
attacker is non-deterministic (NFA) withnk states andnk2

transitions for every node, wheren is the number of states
in the encoded machine andk is the number of pseudonyms
assigned to each state. Though an attacker is able to model the
readout patterns, the state machine constructed by the attacker
is larger in size (withnk states andnk2 transitions for every
node). For the 3-state machine example shown in Figure 2, the
state machine constructed by the attacker consists of 9 states
and 27 transitions.
State machine minimization: It can be shown from automata
theory that the state machine derived by the attacker is
equivalent in behavior to the actual state machine. With a
large number of nodes, the complexity for storing the NFAs is
formidable for the attacker because it requires vast amountof
memory and processing capabilities at his disposal. Therefore,
in order to scale the attack, the attacker needs to resort to
some sort of a minimization algorithm in order to reduce the
size of the state machines produced by the NFAs. One of the
classical algorithms to minimize these state machines is an
algorithm proposed by Hopcroft’s [22]. Hopcroft’s Algorithm
is a minimization procedure which transforms a given state
machine into an equivalent state machine with minimum
number of states.

Based on Hopcroft’s Algorithm, it takesmlog(m) steps to
minimize a deterministic finite state machine (DFA) withm-
states. Hence, if the state machine derived by the attacker was
deterministic, it would take(nk)log(nk) steps to minimize
it. However since the state machine derived by the attacker
is non-deterministic, we cannot apply the algorithm directly.
Instead, the attacker needs to convert the NFA to a DFA first
before applying the algorithm. Unfortunately for the attacker,
there exists some NFA which leads to a state blowup when
converted to a DFA and whose minimal equivalence has≥
2m−1 states. This is a long-known result in automata theory
[22] [25]. Because of the state blowup in the conversion, the
overall problem becomesNP-hard whenever you do not start
with a DFA. Not all NFAs will produce an exponential blowup,
and hence, a selection criteria is needed to guarantee this
property.

The number of states at each node is small by design to
satisfy the resource constraints. An attacker may be able to
exploit one or few nodes, but a large number of nodes would
be exponentially complex to reduce. The question as to how
many nodes are needed to have a practical sense of security
will depend on the underlying assumptions on the resources
available to the attacker and the size of the individual state
machines.

B. Exhaustive Key Search

In a brute-force key search, an attacker exhaustively
searches all state machine configurations to capture the node
behavior. In this section, we explore the solution space an
attacker has to exhaust given he knows the pseudonyms in
advance. Using the results from combination theory, let us

10

Fig. 10. Solution space analysis

step through several observations to capture the total number
of state machines that can be possibly generated. Refer to
Table VII for the analysis parameters.

Observation 1: With two outgoing transitions on each state,
the number of state machines that could be generated isn2n.

Observation 2: The number of ways of partitioning a set of
n objects intor cells with n1 elements in the first cell,n2

elements in the second, and so forth, is:

n!
n1!n2!n3!...nr!

wheren1 + n2 + ...+ nr = n

Observation 3: If each state is assigned a set ofk pseudonyms,
then the number of possible ways that we can assign
pseudonyms to a state (using Observation 2) is:

k−1
∑

p=1

k!
p!(k−p)!

Observation 4: The number of ways of partitioning a set of
nk pseudonyms inton states withk elements in each state is:

nk!
(k!)n

Observation 5: The total number of possible state machines
that could be generated (using Observation 1, Observation 3
and Observation 4) is:

[

n2n
]

k−1
∑

p=1

k!
p!(k−p)!

[

nk!
(k!)n

]

Figure 10 is a plot of the last observation which shows the
solution space for generating every possible state machine.
We vary the number of states (n) from 1 to 10 and plotted
for different values of pseudonyms (k = 4, k = 8, andk =
10). From the figure, we observe an exponential expansion in
the key space by increasing the key size in two dimensions:
the number of statesn, and number of pseudonymsk. For
example, if we choose a configuration with 5 states and 8

pseudonyms per state (n = 5, k = 8), we obtain a solution
space of7.9052× 1043 which is equivalent to brute-forcing a
146-bit key string.

C. Malicious Reads

With a rogue reader in possession, an attacker may partic-
ipate in the protocol by making an attempt to read out from
the nodes and then launch a replay attack at a later time.
Since there is no mechanism in the proposed architecture to
authenticate a reader, anybody with a reader can query a node.
By interrogating repeatedly, the attacker may collect packets
to determine the state machine.

Collection probability: In order to get all the nk

pseudonyms assigned to a state machine, the attacker would
have to collect a significant number of packets. Assuming
the readout pattern is pseudorandom, the following equation
provides an estimate of the number of packets that need to be
read based on 90% probability.

F (r) =

nk
∑

p=0

(−1)pC(nk,p)∗(nk−p)r

(nk)r
= 0.9

(The coefficients in front of the powers come from Pascal’s triangle andr
represents the number of packets read.)

This probability is a measure of the likelihood for collecting
all the nk pseudonyms associated with the state-machine.
However, this is insufficient to derive the secret because the
attacker will have to detect the transitions of the state machine.
The number of transitions the attacker will have to detect will
be:

F (r) =

nk2
∑

p=0

(−1)pC(nk2,p)∗(nk2−p)r

(nk2)r
= 0.9

Here the analysis in the above two equations are based on
a collection probability, which is the likelihood an attacker
successfully determines the state machine by collecting a
series of packets.

Fig. 11. Collection probability of pseudonyms

The transitions are detected by analyzing successive read-
outs. To quantify the average packet overhead, we show the

11

plot for the number of packets to detect all pseudonyms
and transitions for different state machine configurations(Fig-
ure 11). The light-shaded bar represents the pseudonyms and
the dark-shaded bar represents the transitions. As shown in
the figure, if we have a configuration of two states and three
pseudonyms per state (i.e.n = 2 and k = 3), then the
attacker can be 90% sure he can determine all thenk or
6 pseudonyms associated with the state machine by reading
at least 23 packets. As we increasek, the packet overhead
to detect all transitions increases quadratically becausean
attacker has to analyze successive packets.

VII. E XPERIMENTAL EVALUATION

This section considers evaluation of the security fusion
architecture based on compositions. Since exact analytical
solutions are not available, we use simulations to assess the
system coverage-overhead of applying the conversions into
chain machines. We generate a set of random state machines,
apply the cross product, and then transform the product into
chains.

A. Simulation Framework

Our simulator was developed using Java JDK1.6 and
JFLAP7.0 [3] [21] Jar library which provides basic data
structures and algorithms for finite state machine analysis. The
simulator consists of:

• Generation of elemental state machines at each node.
• Selection of state machines of strongly connected com-

ponents using Tarjan’s algorithm [26].
• Compositor which constructs the product state machine

using full and restricted input combinations. The com-
positor is optimized for reachable set of states.

• Chain converter that uses state cover analysis.
• Environment to create and simulate node readout, attacker

intrusion, and authentication.

Several chaining approaches [14] can be used to transform
a state machine into machine chain. In our simulator, we used
Permutation-Reset (PR) machines for factoring. PR-machines
are special structures which satisfy the following property: All
transitions either permute to all states or reset to a particular
state. These structures provide a systematic way of chaining
in our simulations and are useful because they guarantee to
factor out any state machine.

To scale the simulator for large number of nodes, we applied
compositions in a hierarchical fashion by taking the composite
of small groups of nodes and then combining the results into a
single chain machine. In this way, the properties of individual
state machines are preserved at the same time the simulator
does not have to deal with state expansion from the cross
product of all of the nodes.

The simulations were run on top of Intel Xeon@3.4GHz
Unix servers. Statistics were taken for multiple sets of 10 runs
and various command line options can be used to configure
each run including number of nodes, chain length, number of
attackers, and intrusion frequency.

Fig. 12. Coverage Analysis of Chain Components

Fig. 13. Detectability of Chain Machines

B. Simulation Results

In order to evaluate the efficiency of the system, we need
to know whether the chain length can be reduced without
much coverage loss. Furthermore, we need to analyze the
overhead and detectability of the system. For that, we define
the following metrics.

• Coverage Ratio: Defines a proportion of detected in-
trusions on the system. This proportion helps us set
the truncation point of the chain machine to achieve
an optimal coverage-overhead tradeoff. We analyze the
detection factor of chain components to evaluate how
much does each component add to the system.

• Detection Ratio: Defines the percentage of intrusions de-
tected. This metric is an overall indication of detectability
and is calculated based upon the number of successful
intrusions detected over the total number of intrusion
attempts.

The coverage ratio across various chain machine lengths is
shown in Figure 12. As can be seen, nearly 99 percent of
detected intrusions were determined by the first 5 components
in the chain. This very high coverage ratio suggests a cost-
benefit advantage for truncating the chain to a small number of
components, without compromising much of the detectability

12

Fig. 14. State Machine Overhead

of the system. Using two-state PR-machines, a truncated chain
enables early detection for most attacks since the components
are exponentially weighted, with the first component having
the largest coverage (about 94 percent).

Figure 13 gives the detection ratio of the authentication
system using chain machines of length 2. The simulation size
is 50, 75, and 100 nodes respectively. As shown, the sharp rise
in the plots demonstrates aggressive reaction to random injects
of attacks. The response pattern produced by these injects do
not follow any stateful behavior. Consequently, they can be
easily found by checking incorrect state transitions.

The number of states for a truncated chain machine, as
shown in Figure 14, is invariant of the number of nodes while
the number of states for a cross product is exponential (even
for the reachable set.) Since chain machines can be truncated
at any length, they can provide a significant reduction over
linear indexing of state machines.

VIII. C ONCLUSION

In this paper, we have described security fusion architecture
based on finite state machines. Since standard cryptographic
solutions are likely to be impractical for such an infrastructure,
our architecture employs lightweight techniques. Two fusion
methods were presented in this architecture. The first method
is based on majority logic of state machines that use obfusca-
tion to increase complexity. The second method is based on
state machine compositions.

Security analysis of the proposed methodologies presented
interesting amplification properties of state machines. Exper-
imental evaluation presented the design tradeoffs. Certainly,
optimizations are needed to overcome the ongoing challenges
to the deployment of secure systems in resource-constrained
environments. As for future work, we plan to investigate other
proposals of security fusion in order to achieve more scalable
and secure architectures.

REFERENCES

[1] “EPC Global. http://www.epcglobalinc.org/home/.” [Online]. Available:
http://www.epcglobalinc.org/home/

[2] “Microsoft CryptGenRandom Function.” [Online]. Available:
http://msdn.microsoft.com/en-us/library/aa379942(VS.85).aspx

[3] “JFLAP Version 7.0,” August 2009. [Online]. Available:
http://www.cs.duke.edu/csed/jflap/

[4] O. Al-Ibrahim and S.Nair, “Security Fusion Based on State Machine
Compositions,” inIEEE Symposium on Computational Intelligence in
Cyber Security Organized in IEEE Symposium Series in Computational
Intelligence(SSCI 2011), April 2011.

[5] B. Balasubramanian, V. Ogale, and V. Garg,Fault Tolerance in Finite
State Machines Using Fusion. Springer, 2008, pp. 124–134.

[6] L. Blum, M. Blum, and M. Shub, “A Simple Unpredictable Pseudo-
Random Number Generator,”SIAM Journal on Computing, vol. 15, p.
364383, 1986.

[7] L. Bolotnyy, S. Krize, and G. Robins, “The Practicality of Multi-Tag
RFID Systems.” In Proc. International Workshop on RFID Technology
- Concepts, Applications, Challenges (IWRT), 2007.

[8] ANSI X9.17 Pseudo Random Number Generator (RNG), Cadence Design
Systems Std. I-IPA01-0087-USR, Rev. 6, March 2008.

[9] L. Chernoff, “The Use of Maximum Likelihood Estimates in X2Tests
for Goodness-of-Fit,”The Annals of Mathematical Statistics, vol. 25,
pp. 579–586, 1954.

[10] Crossbow, “Crossbow. http://www.xbow.com/.” [Online]. Available:
http://www.xbow.com/

[11] G. Cybenko and J. Guofei, “Developing a Distributed System for
Infrastructure Protection,”IT Professional, vol. 2, no. 4, pp. 17–23, 2000.

[12] L. Escenauer and V. Gilgor, “A Key-Management Scheme for Dis-
tributed Sensor Networks.” Proceedings of the 9th ACM Conference
on Computer and Communication Security, 2002, pp. 41–47.

[13] N. Ferguson and B. Schneier,Practical Cryptography. Wiley publish-
ing, 2003.

[14] F. Hennie,Finite-State Models For Logical Machines, 4th ed. New
York, USA: John Wiley & Sons, 1968.

[15] W. Holcombe,Algebraic Automata Theory. Cambridge University
Press, 1982.

[16] H. Kang, S. Hong, Y. Song, M. Sung, B. Choi, J. Chung, and J. Lee,
“High Security FeRAM-Based EPC C1G2 UHF (860 MHz-960 MHz)
Passive RFID Tag Chip,”ETRI Journal, vol. 30, no. 6, pp. 826–832,
2008.

[17] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Sensor Networks.” Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2004.

[18] J. Kelsey, B. Schneier, and N. Ferguson, “Notes on the Design and
Analysis of the Yarrow Cryptographic Pseudorandom Number Gener-
ator.” Sixth Annual Workshop on Selected Areas in Cryptography,
1999.

[19] P. Maurer, “Logic Simulation Using Networks of State Machines.”
Paris, France,: Proceedings of the conference on Design, automation
and test in Europe, 2000, pp. 674–678.

[20] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, “SPINS: Secu-
rity Protocols For Sensor Networks.” Proceedings of Seventh Annual
International Conference on Mobile Computing and Networkings, 2001.

[21] S. Rodger and T. Finley,JFLAP - An Interactive Formal Languages and
Automata Package. Jones and Bartlett, 2006, iSBN 0763738344.

[22] S. Skiena,The Algorithm Design Manual. New York,: Springer-Verlag,
1998.

[23] S. S.Nair and O.Al-Ibrahim, “Security Architecture forResource-
Limited Environments,” inThe 7th IEEE International Wireless Com-
munications and Mobile Computing Conference (IEEE IWCMC 2011),
July 2011.

[24] ——, “Security Fusion: A New Security Architecture for Resource-
Constrained Environments,”Proceedings of the 6th USENIX Conference
on Hot Topics in Security (HotSec’11), 2011.

[25] K. Sutner, “The Size of Power Automata,”Theoretical Computer Sci-
ence, vol. 295, no. 1-3, pp. 371–386, 2003.

[26] R. E. Tarjan, “Depth-first search and linear graph algorithms,” in SIAM
Journal on Computing (SICOMP), vol. 1, no. 2, 1972, pp. 146–160.

[27] C.-H. Wang and C.-W. Huang, “A Collaborative Network Security
Platform in P2P Networks.” NISS ’09. International Conference on,
2009, pp. 1251–1256.

[28] J. Wang, “R&D of Gen2 Tag with Enhanced Security Mechanism,”
Auto-ID Lab, Tech. Rep., 2009.

[29] D. Wheeler and R. Needham, “TEA, a Tiny Encryption Algorithm.”
Fast Software Encryption: Second International Workshop,Lecture
Notes in Computer Science, 1994, p. 363366.

[30] Z. Yu and Y. Guan, “A Key Management Scheme Using Deployment
Knowledge for Wireless Sensor Networks,”IEEE Transactions on
Parallel and Distributed Systems, pp. 1411–1425, 2008.

