
APPLICATION SECURITY AUTOMATION

Approved by:

Dr. Sukumaran V.S. Nair

Dr. Frank Coyle

Dr. Mitchell A. Thornton

Dr. Jeff Tian

Dr. Dinesh Rajan

APPLICATION SECURITY AUTOMATION

A Praxis Presented to the Graduate Faculty of the

School of Engineering and Applied Science

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Engineering

with a

Major in Software Engineering

by

Majid A. Malaika

(B.S.C.S, King Abdul-Aziz University, 2001)
(M.S.C.E, Southern Methodist University, 2007)

Dec 17, 2011

ACKNOWLEDGMENTS

iii

Malaika , Majid A. B.S.C.S, King Abdul-Aziz University, 2001
M.S.C.E, Southern Methodist University, 2007

Application Security Automation

Advisor: Professor Sukumaran V.S. Nair

Doctor of Engineering degree conferred Dec 17, 2011

Praxis completed Dec 17, 2011

iv

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTER

1. INTRODUCTION . 1

1.1. The Security Problem . 2

1.2. Chapter Conclusion . 6

2. RELATED WORK . 7

2.1. Chapter Introduction . 7

2.2. Application Security. 8

2.2.1. Code Review . 8

2.2.2. Static Code Analysis . 9

2.2.3. Code Testing. 9

2.2.4. Runtime Check . 10

2.2.5. Penetration Testing . 10

2.2.6. Application Security Attack Phases and Countermeasures . . . 12

2.2.7. Top Known Application Security Attacks and Current
Mitigation schemes . 13

2.2.7.1. SQL Injection Attack . 14

2.2.7.2. OS Command Injection Attack . 15

2.2.7.3. Classic Buffer Overflow Attack . 15

2.2.7.4. Upload of Dangerous File Types Attack 16

2.2.7.5. Cross Site Scripting (XSS) Attack 17

v

2.3. The Methodology of N-Version Programming (NVP) 18

2.4. Chapter Conclusion . 20

3. N-VERSIONS ARCHITECTURAL FRAMEWORK FOR APPLICA-

TION SECURITY AUTOMATION (NVASA) . 22

3.1. Chapter Introduction . 22

3.2. NVASA Building Blocks . 23

3.2.1. N-Version Routing Layer . 23

3.2.2. N-Version Environment Layer . 24

3.2.3. N-Version Decision Layer . 25

3.2.4. N-Version Backend Application Layer . 26

3.3. Reduction Techniques In the NVASA Framework. 26

3.3.1. Compartmentalization. 26

3.3.1.1. Identifying the Critical Components 30

3.3.2. Source-to-source Language translator . 39

3.3.3. Cross Platform Compilers . 39

3.3.4. Study of how the Compartmentalized NVASA Framework
would Detect and Prevent the Top Application Vulnerabilities 40

3.3.4.1. SQL Injection Attack . 41

3.3.4.2. OS Command Injection Attack . 41

3.3.4.3. Classic Buffer Overflow Attack . 42

3.3.4.4. Upload of Dangerous File Types Attack 43

3.3.4.5. Cross Site Scripting (XSS) Attack 43

3.4. Chapter Conclusion . 44

4. NVASA FRAMEWORK FOR CLOUD COMPUTING APPLICATIONS 46

vi

4.1. Chapter Introduction . 46

4.2. Cloud Computing Paradigm . 46

4.3. Issues with Security in Cloud Computing . 48

4.4. Related Work in Cloud Computing . 49

4.4.1. Virtualization Characteristics . 49

4.4.2. Related Work in Cloud Computing Security 51

4.5. Implementing NVASA Framework in Cloud Computing 56

4.5.1. Virtualized NVASA Framework . 58

4.5.2. N-Version Management and Auditing . 60

4.5.3. Strict Privilege-Mode of NVASA framework Layers 61

4.6. Chapter Conclusion . 62

5. EXPERIMENTAL RESULTS . 63

5.1. Chapter Introduction . 63

5.2. Experiment One: Simple Text Input Implementation 63

5.2.1. Experiment Use Cases. 63

5.3. Experiment Two: AES Implementation . 67

5.3.1. Setting up the Private Cloud Environment 69

5.3.1.1. Eucalyptus Cloud Architecture . 69

5.3.1.2. XEN Cloud Architecture . 70

5.3.2. Testing the Standalone Implementations . 72

5.3.3. Building the AES NVASA Framework . 72

5.4. Experiment Three: Moodle Analysis . 75

5.5. Guidelines and Policies . 79

5.5.1. Operating System . 80

vii

5.5.2. Network Configuration . 81

5.5.3. Software Development . 81

5.6. Chapter Conclusion . 82

6. CONCLUSIONS AND FUTURE WORK . 84

6.1. Future Work . 87

6.1.1. Application Attacks . 87

6.1.2. New Reduction Schemes . 87

6.1.3. Automation of the NVASA Project . 87

6.1.4. Extra Protection Through a Buffer/Translator and a Learn-
ing Algorithm . 88

6.1.5. NVASA framework to Protect the Client-Side from Zero-
Day Attacks . 88

6.1.6. Automate Security for Cloud-Customers through a Spe-
cific NVASA Framework Model . 89

6.1.7. Economic Analysis of the NVASA Framework 90

APPENDIX

A. SOURCE CODE . 91

REFERENCES . 129

viii

LIST OF FIGURES

Figure Page

2.1 Application Attack Phases and Countermeasures . 13

2.2 N-Version Model [58] . 19

3.1 NVASA Framework Building Process . 23

3.2 NVASA Framework Four Layers [83] . 25

3.3 Decision Flow . 27

3.4 Applying NVASA to Object-Oriented Architecture Style 29

3.5 Applying NVASA to Pipe-and-Filter Architecture Style 29

3.6 Applying NVASA to Virtual-Machine Architecture Style 30

3.7 Applying NVASA to the Blackboard Architecture Style 31

3.8 Simple Web Architecture . 32

3.9 Applying the NVASA Framework to the Simple Web Architecture 33

3.10 Applying NVASA to the Database Component . 34

3.11 Applying NVASA to Databases . 35

3.12 Simple Architecture . 38

3.13 The Simple Architecture After identifying the Critical Components 38

3.14 The Simple Architecture After Applying the NVASA Framework to
the Identified Critical Components . 39

3.15 Cross Platform Diversity [100] . 40

4.1 Cloud Services and Deployment Models [56] . 47

4.2 Typical Small System Cloud Architecture . 52

ix

4.3 Virtualized Cloud Infrastructure Security Boundaries 53

4.4 Layers of IBM Cloud Service . 54

4.5 NVASA Framework Layer within Cloud Computing Structure 57

4.6 Implementing NVASA Framework in Cloud Computing 59

5.1 Applying NVASA to Object-Oriented Architecture Style 65

5.2 Eucalyptus Private Cloud Infrastructure . 69

5.3 Eucalyptus Private Cloud Capability . 70

5.4 XEN Private Cloud Infrastructure . 71

5.5 NVASA Framework AES Implementation . 74

5.6 Input File Benchmark . 75

5.7 Proportion of Critical Code Compared to Total Code 77

5.8 Proportion of Critical Code . 78

5.9 Applying the NVASA Framework to Moodle’s Database Component 80

6.1 Vision of the Improved Routing Layer Communications within the
NVASA Architecture . 89

x

LIST OF TABLES

Table Page

1.1 Long term trends of Operating System Usage . 5

3.1 SQL Injection Queries and Corresponding Exploited Databases 36

5.1 Test Cases and Results of the Simple Text Input Implementation 68

5.2 Test Cases and Observations of the Standalone AES Implementations . . 73

5.3 Test Cases and Results of the AES Implementation . 76

xi

This praxis is dedicated to my wife and son...

Chapter 1

INTRODUCTION

With todays high demand for online applications and services running on the

Internet, Intranet, and the Cloud software has become a vital piece in our business

and personal lives. Software has become a critical component to our health, finances,

political and social interaction, which is magnificent in facilitating our lives, but

with every revolutionary technology comes challenges unique to its characteristics;

for online applications, Security is a huge concern and challenge.

Nowadays, online applications are in serious need for better security schemes than

ever without degrading performance or eliminating desired functionalities. Despite

the traditional testing and quality assurance performed on applications and services

today during the development phases. Vulnerabilities persist undetected. As a result,

producing services and systems with severe vulnerabilities that can be exploited by

cyber-criminals.

In the past few years, we have seen rapid growth and expansion in cloud com-

puting power, mobility, and connectivity. Non-functional requirements have become

more challenging and confusing. With the advanced developing tools (most of which

are free), and cheap hardware and services, it is becoming easier than ever to de-

velop software and applications by any person with minimal expertise. One booming

example is the Applications (Apps) market in smartphones. Such as the Apple and

Android App stores. This availability of tools, quick distribution, and high integra-

tion introduces many issues in software quality. Security is the most affected among

all [2, 20, 6].

1

On the other hand, online services, applications and integration solutions have

opened endless opportunities for enterprises, small businesses, and individuals by

integrating complex, disparate systems in a very intricate fashion. In addition, new

systems have been developed with an eye on the future to equip them with innovative

integration capabilities. In this praxis, we investigate the problem of application

security by introducing the N-Version Application Security Automation (NVASA)

Framework to alleviate programming language and compiler errors produced during

the Software Development Life Cycle (SDLC).

1.1. The Security Problem

During the Software Development Life Cycle, most of the non-functional require-

ment’s deliberation is focused on ensuring the performance, maintainability, relia-

bility, availability, and reusability of the application. However, security is usually

addressed later during the SDLC, and in most cases later after production [93]. This

delay increases the complexity of solving the security issues; which as a result, in-

creases the cost and effort spent to actually fix these security issues.

Today, one of the most challenging issues facing system security is that it is viewed

by enterprises as a commodity, where security is understood as an add-on feature that

can be added at any stage of the SDLC or after production. Therefore, the usage of

password patterns and the integration of anti-virus applications, anti-phishing tools,

and firewalls promote a false sense of security if the applications running on the

network werent designed with security in mind. For example, a company can install

an advanced firewall, one of the best in the market, but permit users (employees) to

connect to an application that contains a remotely exploitable vulnerability through a

specific port on the firewall. In this case, the firewall would not protect the company

from cyber-attackers gaining unauthorized access through the exploitable application;

2

therefore, the attackers would gain access to the hosting machine which would grant

them unauthorized access to the entire network behind the firewall [107].

Most annual security reports demonstrate insufficient application security mea-

sures taken by both enterprises and individuals [52, 75, 76]. Lately, Apple released 130

security updates to fix vulnerabilities discovered in their Mac OS X 10.6.5 [5, 98, 54].

Some security experts claim that Apple still failed to fix all severe vulnerabilities and

that there are few un-patched vulnerabilities in their Mac OS X 10.6.5.

Today, Information Technology (IT) security is challenged in many new ways.

When the security of a company/enterprise fails, it negatively involves everyone in

the business cycle from consumers, providers down to employees, and partners. Some

of the factors contributing into challenging security [107, 94, 96] include:

1. System complexity: online applications have grown exponentially in com-

plexity in the past few years; meanwhile, the software development life cycle

has become shorter due to the rapid growth of the Internet. Applications today

have the capability to interact automatically with users and/or other systems

in a very complex fashion. Therefore, increasing the possibility of error injec-

tion during the planning, design, development, deployment, maintenance, or

upgrade phases.

2. Ubiquitous networking: with the growth of the Internet connections and

speeds, more systems are connected to the Internet without the appropriate

security, thus becoming available online. This, in turn, increases the exposure of

these systems which increases the likely hood of being exploited. Consequently,

the risk associated with these unprotected applications increase.

3. Built-in extensibility: this is a desired feature in software engineering because

it would enable the flexibility to add new components to the existing system

in the future. On the contrary, this is a challenging feature in application

3

security because it complicates the analysis and testing of application security.

In addition, it is very difficult to prevent malicious code from being injected

into the system in the future.

4. Common platforms (Software Monoculture): while common platforms

reduce cost and time when implementing new technologies or building an appli-

cation, they also increase a malicious users chances of exploiting more systems

and having a larger impact when they succeed. In a recent OS Web Statistics

and Trends report shown in Table 1.1 [109] found that almost 90% of connected

machines on the Internet were running Windows operating system. The report

also shows that more than 48% of the total number of operating systems is

running Windows XP. Therefore, the attacker will gain more success and larger

returns by attacking Windows XP users compared to targeting Linux or Mac

operating systems because if we assume that the attacker could infect 0.9% of

the total number, then targeting 48% would be much greater than targeting 5%

0r 8% respectively.

5. Unintended use: human beings have the tendency to use systems in unin-

tended ways. For example, when the Internet “boom” started, most applications

and operating systems were not intended or capable of supporting distributed

operations. Despite that, people connected them to the Internet and made them

available to users through the network without appropriate levels of security.

This will not only expose new vulnerabilities in the system, but also opens doors

for remote exploitation.

Most active attacks are carried out by exploiting existing vulnerabilities in the

system. These vulnerabilities are divided into three main categories: 1) ar-

chitectural design vulnerabilities, 2) implementation vulnerabilities, and 3) op-

erational and platform vulnerabilities [86]. All three categories are typically

4

Table 1.1. Long term trends of Operating System Usage

2010 Win7 Vista Win2003 WinXP W2000 Linux Mac

October 26.8% 9.9% 1.1% 48.9% 0.3% 4.7% 7.6%

September 24.3% 10.0% 1.1% 51.7% 0.3% 4.6% 7.2%

August 22.3% 10.5% 1.3% 53.1% 0.4% 4.9% 6.7%

July 20.6% 10.9% 1.3% 54.6% 0.4% 4.8% 6.5%

June 19.8% 11.7% 1.3% 54.6% 0.4% 4.8% 6.8%

May 18.9% 12.4% 1.3% 55.3% 0.4% 4.5% 6.7%

April 16.7% 13.2% 1.3% 56.1% 0.5% 4.5% 7.1%

March 14.7% 13.7% 1.4% 57.8% 0.5% 4.5% 6.9%

February 13.0% 14.4% 1.4% 58.4% 0.6% 4.6% 7.1%

January 11.3% 15.4% 1.4% 59.4% 0.6% 4.6% 6.8%

injected during the planning, design, development, deployment, upgrade, or

maintenance phases. Human faults made during the design phase result in

injecting architectural design errors into the models structure and could pre-

vent the system from functioning securely. Thus, human faults made during

the writing of the code during any of the remaining phases would lead to im-

plementation vulnerabilities, which could prevent the system from functioning

securely. Consequently, faults in configuration files are operational and are

considered platform vulnerabilities. The most dangerous vulnerabilities of all

categories are the ones leading to immediate unauthorized access of the applica-

tion [68, 77, 57, 97]. Providing high levels of application security is paramount

in ensuring network, systems, and data security.

5

1.2. Chapter Conclusion

The introduction of this praxis focused on analyzing application security and the

challenges facing its successful implementation. In the second and following chapter,

we study the related work done in the field of application security, and the current ap-

proaches to reduce or eliminate vulnerabilities from being injected in the code during

the software development life cycle. Further, we explain the N-Version Programming

Methodology, and its past implementation, and challenges. In the third chapter, we

propose the usage of the N-Version Programming Methodology to enhance security by

implementing the N-Version Application Security Automation (NVASA) Framework.

In addition, we explain the building blocks of the NVASA Framework and investigate

the added layer of protection that the NVASA Framework introduces. This layer is

capable of detecting and preventing known attacks while having a scheme of protec-

tion to zero-day attacks. Additionally, we introduce methods to reduce the overhead

associated with the implementation of the NVASA framework. In the fourth chapter,

we study Security in Cloud Computing and the related and current work in the field.

Moreover, we introduce the usage of the NVASA Framework within cloud comput-

ing to enhance the security of the applications running on the cloud and strengthen

the resiliency of our framework. In the fifth chapter, we present experimental work

to analyze the usage of the NVASA Framework in real-world and actual projects.

Furthermore, we emphasize the guidelines and policies that should be followed when

building or applying the NVASA framework from our experimental experience. Fi-

nally, in the seventh chapter, we conclude this work with a future glance.

6

Chapter 2

RELATED WORK

2.1. Chapter Introduction

Application security is often one step behind the latest cyber-attack schemes for

reasons discussed in the previous section. Bruce Schneier described the race between

the white-hat and black-hat community as, “It’s an arms race, and when technology

changes, the balance between attacker and defender changes.” [95] The current em-

phasis on application security is to fix existing implementation errors that could be

exploited by publicly known attacks such as Buffer-Over-Flow (BOF), SQL Injection,

String Format, and Cross Site Scripting (XSS) [90, 68, 57, 51]. Many of these secu-

rity schemes are performed during the testing phases of the software development life

cycle. Other related work emphasizes extensive revision of design and source code

during and after implementation. Furthermore, many schemes were developed to

test the security during the quality assurance phase like white-box testing, black-box

testing, unit testing and many more. Moreover, runtime checks were introduced for

safety-critical systems to eliminate or reduce the effect of errors during the runtime

of the application. Finally, penetration testing is performed on the final live product

periodically to make sure that any misconfiguration, out-dated software, and/or un-

patched applications are discovered early. Thus, prioritizing the security issues to be

fixed [89, 29].

In this chapter, we will discuss these schemes and their shortcomings in detecting

all application security. Additionally, we will look at the top publicly known applica-

7

tion vulnerabilities and their negative impact on organizations and companies.

2.2. Application Security

Most current related work in the field of application security focuses on enforc-

ing extensive security guidelines during the software development life cycle process

[53, 79]. These guidelines focus on providing the regulations needed to promote the

design, development, deployment, upgrade, and maintenance of secure applications

throughout their lifecycle. The initial approach to application security espoused man-

ual and automatic audits to the source code then during production unit testing is

a method of testing each unit and finally after integrating all system components

testing is the method to verify that the application is bug-free and that it functions

correctly.

2.2.1. Code Review

Code review approach consists of reviewing and reading the source code manually

line by line to detect existing vulnerabilities that was injected during the design and

development phases. Then reporting these vulnerabilities to be verified and fixed;

therefore, writing less buggy code and more reliable applications. This approach is

done without executing the application.

There are three kinds of code review; first, heavyweight meeting based inspec-

tion. Second, the lightweight review process. Third, pair-programming [69]. The

heavyweight inspection is based on scheduled meetings, paper-based code reading

and tedious metrics-gathering. Lightweight code review drops the meetings and en-

gages in less overhead and less formal code inspection. Finally, the pair-programming

(Extreme-programming) [60] where two programmers work together; one programmer

writes the code while the other perform revision of written code on the spot. They

8

alternate based on a specific criterion.

2.2.2. Static Code Analysis

Static code analysis approach is performed on the source code without executing

the application as well. Static code analysis consists of reviewing the source code

via specific tools and software; therefore, automating the review process to detect

existing vulnerabilities and report those for verification then send them to be fixed

[59]. In static code analysis, there are many methods such as model checking and

data-flow analysis and assertions, etc.

2.2.3. Code Testing

Code testing is one of the critical phases of the SDLC and is widely used for per-

formance, usability, integration, and security testing nowadays. The most popular

testing methods include white-box, black-box, unit, dynamic and static testing of the

source code. For application security Fuzzing testing is a method used to test user

input vulnerabilities. “Fuzzing” is usually performed as a black-box testing but could

also be performed as a white-box testing as well. “Fuzzing” is followed by inputting

a distorted or illegal input, usually invalid, unexpected, or random input to the ap-

plication and monitoring the behavior of the application [101] to report any crashes

or unanticipated behavior. Sulley and SPIKE frameworks [102] are two examples of

“Fuzzing” testing. Another application security testing method is boundary testing

[78], where the conditions are defined to generate extreme test cases. These boundary

cases are generated from the edges of the input pool. These boundary test cases are

subsequently tested against the application. Accordingly, the behavior and results

are monitored for errors, crashes or unexpected behavior to be reported and then

hopefully fixed.

9

2.2.4. Runtime Check

Runtime and compile-time checking; are two methods for detecting and preventing

the exploitation of existing vulnerabilities. These methods are followed by adding

special checks within the source code to ensure the program behaves as desired.

ProPolice framework [72] is a GNU Compiler Collection (GCC) extension developed

by IBM to protect against stack smashing that uses runtime checking. Mudflap

framework [71] is another GCC extension for pointer debugging that uses runtime

checking to detect and prevent exploitation of vulnerabilities.

Some computer languages like Ada, Eiffel, and OCamel are equipped with runtime

checks capabilities. In Ada computer language, runtime checks can detect buffer-over-

flow, access to unallocated memory, and array access errors as well as many other

detectable errors. Ada is a widely used computer language in military and missile

control systems [1, 55].

2.2.5. Penetration Testing

Penetration testing is a testing scheme, commonly associated with security test-

ing. The main focus in pen-testing is to attempt to gain un-authorized access to

networks, servers, or applications without any knowledge of usernames or passwords

[89]. Penetration testing could be performed in black-box or white-box fashion. This

is usually decided by management based on the architecture of the network, and the

compliances required. It is very important to understand that a pen-tester will not

find all vulnerabilities. Consequently, there is no guarantee that the system is %100

secure even after a pen-test.

Guidelines, Security testing, code review, static code analysis, and runtime checks

are important components of an applications software development life cycle, but

these solutions by themselves are limited and have major disadvantages if we rely on

10

them solely. First, actual security vulnerabilities are triggered by a certain specific

set of circumstances, which makes it extremely hard to automate the testing of the

application. For example, it is hard to exploit an application using random “fuzzing”

testing. A second limitation is the considerable investment of resource and time

needed to perform manual code revision. A third limitation is latent security vul-

nerabilities that are present within critical systems but concealed from the systems

stakeholders. These latent vulnerabilities can damage an organizations reputation

and could lead to financial loss. Further, it takes an average of 14 weeks to patch

or fix an existing vulnerability after discovery, which opens a window for additional

attacks leading to more damages [75].

A fourth limitation is the high cost of implementing a secure application because

the enforcement of security training as well as hiring special security testers and pur-

chasing specific security tools adds enormously to the total cost. A fifth limitation is

the increased time-to-market since these solutions engage in comprehensive training

and thorough testing of the code. Sixth, following these extensive guidelines often

results in the detection of known existing vulnerabilities. However, these extensive

guidelines have no scheme for detecting or preventing latent or zero-day vulnerabili-

ties from being exploited. Seventh, runtime check schemes are usually commonly to a

certain vulnerability [11, 72, 71]. Thus, to secure an application from hundreds of vul-

nerabilities, it would require the usage of many run time schemes, tools, libraries and

packages to protect against every single one of them. Moreover, Run time checks are

regularly criticized of slowing down the implemented application; therefore, nearly all

compilers enable the developers to switch off this feature if performance is a concern,

which is typically the case with most enterprise applications.

Finally, penetration testing is an excellent technique to discover known-vulnerabilities.

However, pen-testing has few disadvantages. The first disadvantage is that it requires

11

an expert in the field to perform an effective penetration testing. In many cases, it is

performed by contractors, which is expensive and needs to be executed periodically.

A second disadvantage is the false sense of security it gives to management between

pen-test rounds. This is a serious issue because if a pen-test was performed today on a

particular network segment, and tomorrow few patches were committed to Microsoft

or Unix servers; these patches could introduce new vulnerabilities to the network

segment. Therefore, will no longer be ‘secure’. However, the management would

falsely believe that the segment is secure. In addition, a third disadvantage is that

pen-testing focuses on discovering known vulnerabilities. Testers examine systems

for specific patterns, software versions, and OS types to report known vulnerabilities.

Hence, falling short in detecting and preventing zero-day attacks.

2.2.6. Application Security Attack Phases and Countermeasures

A typical application attack in most cases would take four phases to complete as

shown in Figure 2.1 The first phase, the attacker scans the server and all applications

running on the server to learn the host machines operating system (OS) as well as

the software and tools running within. This knowledge would enable the attacker

to learn what vulnerabilities to search for based on the OS type/version as well as

the applications version running on the server. For example, if the attacker learned

that the server is running Windows based OS he/she would greatly benefit from

learning which IIS version the server is running. The second phase, the attacker

identifies the applications running on the server. Therefore, identifying these versions

and the vulnerabilities they could suffer from. Thus, launching a series of targeted

attacks to exploit the vulnerabilities (Known to the server or applications version

discovered) and gain unauthorized access to the machine or the application. Then in

the third phase after finding the vulnerability and succeeding in exploiting it to gain

12

unauthorized access the attacker would eavesdrop, steals, damage or tamper with the

victims confidential data. The fourth and final stage, the attacker covers his tracks

by deleting the evidence from the OS system log files as well as any other tracking

log files within the victims private network. Log files such as intrusion detection and

firewall information.

Figure 2.1. Application Attack Phases and Countermeasures

Each of the four phases has countermeasure techniques that are being implemented

within the Internet and Intranet today. Figure 2.1 Shows the most commonly used

techniques in clear text boxes beside each phase.

2.2.7. Top Known Application Security Attacks and Current Mitigation schemes

13

As mentioned previously, vulnerabilities fall into three categories. We will investi-

gate some of the leading known vulnerabilities published by SANS Institute, MITRE,

and many top software security experts in the US and Europeand [64, 112]. In addi-

tion, we will discuss the current mitigation schemes and some of their disadvantages.

2.2.7.1. SQL Injection Attack

SQL Injection attacks are performed by injecting a crafted text-based input to

exploit the application’s interpreter [64, 112, 57, 40]. A simple SQL injection example

is having a web server query a username $result=mysql query(‘SELECT * FROM

users WHERE username=”’.$ GET[‘username’].‘”’); [31]. Where an attacker inputs a

SQL query with ’username’ such as ’ or 1=1#; therefore, bypassing the authentication

page.

There are few techniques to mitigate SQL injection. The first and widely used

technique is validating the external input before applying the query. This is achieved

by checking for the type, length, format and range of the input before passing it on

[22]. Unfortunately, some language libraries are vulnerable to certain inputs and can

be bypassed using special characters or formats. For example, using backslashes or

comment tags [39]. A second technique, is using parameterized queries with bound

parameters to separate the query from the input data [22, 32]. However, some hackers

managed to bypass this protection and inject the database using a more complex

injection scheme shown by Tylor, C. [38]. A third effective technique to mitigate most

SQL injection attacks is using stored procedure [41], but the implementation of the

procedure must be performed by experts to guarantee a correct implementation. Some

implementations have proven to be vulnerable to SQL injection [32]. In addition, store

procedures are usually criticized for being vendor-specific [42], switching to another

database most likely would require a new development of the store procedure.

14

2.2.7.2. OS Command Injection Attack

This attack happens when the application allows untrusted input to be executed

by the OS to run a section of the application or an external program [64, 77]. An

attacker can take advantage of this bridge and run OS malicious commands. A simple

vulnerable C function is shown below. The function takes a filename and displays

the content to the user. If an attacker injects a simple command ”;rm -rf /” instead

of the filename, he/she will be able to delete the content of the residing folder on a

Unix box. To mitigate this type of attack, input validation must be performed before

executing the command on an OS level. Unfortunately, some attacks were reported

to bypass the filtration schemes using complex input formats [36, 62].

i n t main (char ∗ argc , char ∗∗ argv) {

char cmd [CMDMAX] = ”/ usr / bin / cat ” ;

s t r c a t (cmd , argv [1]) ;

system (cmd) ;

}

2.2.7.3. Classic Buffer Overflow Attack

Buffer-over-flow attacks as previously explained happens when a buffer boundary

is exceeded [64, 68, 90, 112], this could enable an attacker to overwrite the return

pointer to run malicious code on the hosting server. Here is a simple example [9].

void example (char ∗ s) {

char buf [1 0 2 4] ;

s t r cpy (buf , s) ;

}

i n t main (i n t argc , char ∗∗ argv) {

example (argv [1]) ;

}

The most widely used scheme to mitigate BOF vulnerabilities is by forbidding

the usage of vulnerable functions during the development of the application. One

15

example is the usage of the ‘banned.h’ header file developed by Microsoft to support

the SDL requirement. This file basically flags a warning when a dangerous function or

library is used by the developer [7, 8]. Unfortunately, developers still write unsecured

code using some of the known vulnerable functions and libraries [64]. In addition, in

some cases legacy code is being re-used without any revision or testing.

Another technique is using canaries which are known values placed between a

control-data and a buffer to monitor for BOF. Therefore, if a BOF occurs, the canaries

will be the first to be affected [11]. Unfortunately, canaries cannot protect from all

BOF types. For example, there is no protection against over-flowing the heap [17].

In addition, protection schemes must account for each attack vector, given that there

is no environment protection throughout the execution.

2.2.7.4. Upload of Dangerous File Types Attack

Some websites allow uploading files to their hosting systems for processing and/or

storage [64, 48, 49]. An attacker can upload dangerous types of files through the

application in order to run malicious code on the hosting servers. A simple vulnerable

PHP website is demonstrated here.

HTML code:

<form enctype=”mult ipar t /form−data ” ac t i on=”uploader . php” method=”POST”>

<input type=”hidden ” name=”MAX FILE SIZE” value =”100000” />

Choose a f i l e to upload : <input name=”u p l o a d e d f i l e ” type=” f i l e ” />

<input type=”submit” value=”Upload F i l e ” />

</form>

Corresponding PHP code:

<?php

\ $ta rge t pa th = ” uploads /” ;

\ $ta rge t pa th = \ $ta rge t pa th . basename (\$ FILES [’ u p l o a d e d f i l e ’] [’ name ’]) ;

i f (move up loaded f i l e (\ $ FILES [’ u p l o a d e d f i l e ’] [’ tmp name ’] , \ $ta rge t pa th)) {

echo ”The f i l e ” . basename (\$ FILES [’ u p l o a d e d f i l e ’] [’ name ’]) .

16

” has been uploaded ” ;

} e l s e {

echo ”There was an e r r o r uploading the f i l e , p l e a s e t ry again ! ” ;

}

?>

In this example, there are no restrictions on the uploaded file, in most cases

a simple whitelist on the file name is performed, which can be easily bypassed [30].

Other widely used technique is performing an anti-virus scan before accepting/storing

the file [48]. However, bypassing a single anti-virus scanner is not a difficult task.

Hackers have developed schemes to overcome detection by these anti-viruses. For

example, hackers commonly change the payload of the malicious file, or encode the

executable to bypass most anti-virus scanners undetected [3].

2.2.7.5. Cross Site Scripting (XSS) Attack

XSS is another attack performed by injecting client-side script that exploits the

trust that the client has in the web server [14, 15]. A severe XSS attack can be

performed by injecting a malicious script in a forum post page that resides on the

web server that runs on the visitor’s machine to steal the session cookie and send it

to the attacker.

XSS attack is slightly different than the rest. It exploits two aspects of the connec-

tion. The first, the server-side to harm users and administrators. This is achieved by

storing malicious scripts within the server. This can happen mainly for two reasons,

either that the website does not validate the input or by crafting the input to bypass

any filtration schemes performed by the hosting site. The second, the client/user-side.

This is achieved by running scripts on the client’s web browser (IE6.0, FireFox, Safari,

etc.). Some browsers are vulnerable to specific scripts while others are immune to

them, but they could be vulnerable to another set of scripts [13].

17

Mitigation schemes focus on escaping and filtering any external input. Escaping

data is achieved by ensuring that the input characters are treated as data, not as

the interpreter’s characters [15, 14]. Again, it has been shown that specific complex

inputs can bypass these techniques [13].

2.3. The Methodology of N-Version Programming (NVP)

The concept N-Version Programming was introduced in the late 1970s by Liming

Chen and Algirdas Avizienis as a fault tolerance method to improve the reliability

of the software operation. NVP is defined as “The independent generation of N ≥ 2

functionally equivalent programs from the same initial specification.” [58].

N-Version programming methodology is introduced by the following central hy-

pothesis: “The independence of programming efforts will greatly reduce the probability

of identical software faults occurring in two or more versions of the program.” [58].

The strength of the NVP stems from the diverse versions of the same function as

well as the decision algorithm. The decision algorithm simply looks for a consensus

based on the received outputs. In some cases, the NVP decision algorithm was used

with floating-point numbers by taking the median of the outputs instead of a majority

output [99].

Building unique and diverse N-Versions is essential to obtain the reliability en-

hancement introduced by Liming Chen et al. It is also important to synchronize the

versions and solve any timing constraints that may be introduced by the diversity in

language, algorithm and data structure. Thus, to build a pure N-Version model as

shown in Figure 2.2 three policies must be adopted:

1. All versions must share the exact same initial specification. The purpose of

the initial specification is to state the functional requirements that stakeholders

want the application to perform. These initial specifications must be precise,

18

Figure 2.2. N-Version Model [58]

clear and detailed oriented to eliminate any confusion during the development

process. In case the N-Versions output wasn’t precisely comparable, a translator

must be implemented before a consensus algorithm is performed to successfully

compare the N-Versions’ output. As a result, reach a majority or a unanimous

output.

2. Versions must be independently generated. This is achieved by choosing dif-

ferent algorithms and programming languages for each version, as well as the

independent processes for generating the versions, which should be carried by

N independent individuals or groups that have no interaction with each other.

This isolation of design and process between groups, coupled with the diversity

of choosing programming languages and algorithms, greatly reduces the proba-

bility of producing identical software faults in two or more versions [58, 82].

3. Versions must run concurrently to eliminate or reduce any delay correlated with

the usage of the N-Version programming methodology. In addition, any ver-

19

sion synchronization or timing restraints must be administered at the decision

algorithm level.

2.4. Chapter Conclusion

In this Chapter, we have discussed the common existing methods of building

and maintaining secure applications. Some of which are formal, or informal code

revisions. Where the focus is on revising the code manually and/or automatically.

Other methods involve special testing schemes during the development phases. In

addition, penetration testing performed on the final production system. Further

methods involve Runtime and compile-time checks, which add special source code

checks to ensure that the program functions as planned. All these methods are

effective in detecting some of the known-attacks, but they all suffer from unique

weaknesses mentioned in the chapter. Most importantly, all these methods fall short

in detecting zero-day exploits.

We then followed our discussion to explain the N-Version Programming Method-

ology which was introduced by Liming Chen and Algirdas Avizienis to imporve hard-

ware relaibility. However, the N-Version programming methodology is usually criti-

cized for having high resource requirements, overhead, and implementation time. In

addition, some specialists argue that errors in some cases are correlated and can be

equivalent in two or more versions, even though the versions were developed inde-

pendently [63]. On the contrary, most experiments done in the field proved that the

errors injected during the development of the versions are not correlated and that the

probability of having two or more identical errors in two or more versions is immensely

reduced.

Due to the costly overhead needed to develop the N-Versions; implementation of

the methodology was limited to safety-critical systems as well as systems with a high

20

reliability requirement. National Aeronautics and Space Administration (NASA) is

one example where the N-Version programming methodology was used in their space

missions heavily to mitigate bugs and increase the overall reliability of their systems

[80]. Another implementation of the N-Version methodology was in train switching

control systems, where safety is very critical to their passengers, cargo, and the cities

along their rout.

In the next Chapter, we introduce the usage of the N-Version programming

methodology to build the NVASA Framework to moderate programming language,

algorithm, data structure, compiler errors, and security vulnerabilities provoked dur-

ing the SDLC. We later investigate the added overhead associated with the NVASA

framework and discuss schemes to minimize this added overhead, while leveraging

the enhanced security introduced by the NVASA framework.

21

Chapter 3

N-VERSIONS ARCHITECTURAL FRAMEWORK FOR APPLICATION

SECURITY AUTOMATION (NVASA)

3.1. Chapter Introduction

Our proposed architecture introduces the N-Version programming methodology

to produce an architectural framework for application security automation. This

framework is capable of detecting most known attacks while having a scheme of

protection to detect and thwart unknown attacks as well [83]. Our main goal here,

is to achieve better overall system security while reducing security efforts in all the

design, development, deployment, upgrade, and maintenance phases.

To build the NVASA framework, we first collect the initial specifications and

requirements from stakeholders and feed them to the NVASA Automatic Generator.

The NVASA Automatic Generator then generates the NVASA framework with the N-

Versions outline. Each version outline is written in a different programming language

specified by the initiator. The N-Version outlines are then handed to the N-Groups

of developers for further development. Figure 3.1 shows the process of building the

NVASA framework.

However, the NVASA framework adds overhead to the development phase in the

Software Development Life Cycle (SDLC) compared to a single version implemen-

tation. Therefore, we explore methods to reduce the overhead associated with the

NVASA framework implementation. We discuss in detail compartmentalizing the

application’s architecture into two or more components to identify the critical com-

22

ponents through a security evaluation. Consequently, apply the NVASA framework

to the critical components. In addition, we discuss other methods to reduce over-

head through cross-platform compilers and the usage of source-to-source language

translators to achieve some diversity.

Figure 3.1. NVASA Framework Building Process

3.2. NVASA Building Blocks

NVASA framework is constructed of four layers as shown in Figure 3.2 The first

layer is the N-Version routing layer. The second layer is the N-Version environment

layer. The third layer is the N-Version decision layer, and the fourth layer is the

backend application server layer.

3.2.1. N-Version Routing Layer

23

The N-Version routing layer is the interface of the application to the outside world;

it connects the framework with users/applications over the network. It is responsible

for receiving requests from external users and routing these requests to the N-Versions

in the environment layer to be executed. The routing layer is also responsible for

replying to requesters with the appropriate response if and only if their request was

legitimate after executing the request; otherwise, reply with an error message.

3.2.2. N-Version Environment Layer

The N-Version environment layer contains the N-Version applications where each

version is designed and developed by an independent individual or group using a

unique algorithm and/or programming language as mentioned in refch:relatedwork

Each version receives its execution command along with the identical input of all

N-Versions from the routing layer. All the versions then execute concurrently, which

eliminates any reduction in performance. The N-Versions can be either coupled run-

ning on diverse platforms on different physical locations or tightly coupled running on

the same physical machine. This is decided based on the initial design specification

of the NVASA framework.

Loosely coupled versions have many advantages: 1) The time overhead is reduced

compared to tightly coupled versions running on one machine. 2) There is no single

point of failure within the N-Version environment layer compared to tightly coupled

versions. 3) Loosely coupled systems scale better than tightly-coupled systems. On

the other hand, loosely coupled versions add more complexity to the development

and testing phases of an application since messaging schemes must be implemented

to connect layers and components. Additionally, the communication channels need

to be protected through transport or network layer security protocols. Depending

on the type of applications, communication between various layers and versions may

24

Figure 3.2. NVASA Framework Four Layers [83]

cause additional time overhead.

3.2.3. N-Version Decision Layer

The N-Version decision layer is the brains and intelligence of the NVASA Frame-

work. The N-Version Decision Layer is composed of two components: 1) The Re-

sponse Comparator component and 2) The Data Read and Write (R/W) Compo-

nent. The response comparator component receives the N-Version outputs. Then

the decision algorithm applies a generic consensus rule to determine the majority

output as shown in Figure 2.2. The responsibility of the decision algorithm is to

determine exploited versions by identifying contradicting output compared to the

majority of the versions and removing the exploited and breached versions from the

pool, thereby eliminating any malicious attempt to exploit the application by prevent-

ing the conflicting output from being executed or performed on the backend databases

and servers.

The decision algorithm simply looks for a consensus based on a majority output

or takes the median if the output is a floating-point number [99]. If necessary the

25

response comparator component then passes the consensus output to the data read

and write (R/W) component to generate the R/W command from the consensus

output to be applied to the backend application server layer. Finally, the data R/W

component generates the output or confirmation based on the initial request and

passes it to the response comparator to be then sent to the request route component

to reply to the requester.

3.2.4. N-Version Backend Application Layer

For applications that read or write data to/from a server or database, the backend

application server layer is essential. The N-Version Backend Application Layer holds

the actual servers and/or databases that the application uses. This layer receives

the agreed output, if attained, from the data R/W component from the N-Version

Decision Layer. This prevents any direct communications between the backend ap-

plication server layer and the N-Versions in the environment layer. This significant

design requirement prevents any successful exploit(s) from propagating further within

the system. Therefore, preventing any vicious exploit from modifying or leaking data

included in the backend application server layer.

3.3. Reduction Techniques In the NVASA Framework

3.3.1. Compartmentalization

With respect to the publicly known software architecture styles, here we are going

to study the commonly used architecture styles that use compartmentalization to

separate the application into two or more components. In addition to the benefits

added by using styles that offer compartmentalization like preventing failures and

security attacks from propagating through the entire system; these architecture styles

26

facilitate the usage of the NVASA Framework [83] by versioning only the critical

components rather than applying the NVASA Framework to the entire application.

By applying the NVASA Framework to the security critical components within an

architecture, we reduce the total cost and effort spent during the SDLC compared to

applying the NVASA Framework to the entire application.

Figure 3.3. Decision Flow

In order to design secure software, few decisions must take place regarding the

software architecture during the requirement gathering, and analysis phases. These

decisions would enable the software architecture to take advantage of the NVASA

Framework in two different ways. As seen in Figure 3.3, a decision must be made on

which style to use. Based on the style selected it will determine whether the NVASA

Framework can be implemented on the critical components or the entire application.

27

If the architecture style does not support compartmentalization then the only way

is to apply the NVASA Framework to the entire application as proposed in [83].

Otherwise, if compartmentalization is a possibility then a security evaluation must

take place to identify the critical components, we will explore two methods to identify

the critical components later in this chapter. Finally, the critical components are then

fed to the NVASA Automatic generator (Generator Figure) to spit out the N-Version

templates to be handed to the N-Group of developers for further implementation.

The simplest style is the main program and subroutines architecture which emerged

from the usage of computer languages such as C, C++, Java and Pascal. This style

can be used to implement different architectures that we will investigate later in this

paper but the basic form of the main program and subroutine style is not feasible

for compartmentalization due to the limitation usage of one programming language;

therefore, N-Versioning the entire program as the initial NVASA Framework paper

proposed is the only way to benefit from the NVASA Framework in terms of security.

Another popular style is the ObjectOriented (O-O) style [70]. O-O is very similar

to the main program and subroutine the only structural difference is that the O-

O style uses objects, which enable encapsulation, polymorphism, etc. O-O style

can be compartmentalized as shown in Figure 3.4. Therefore, identifying the critical

components In addition, N-Versioning these critical components is possible and would

enhance the application’s security if designed properly.

Pipe-and-filter is another data flow style that is very robust and popularly used

[74]. This style can consist of any number of filters that percolates data based on

pre-defined rules before passing it to the next filter using pipes (Connectors). The

pipe-and-filter style is widely used in a sequential fashion. However, it can be used in

a more complex, and parallel structure. Figure 3.5 shows how the NVASA framework

28

Figure 3.4. Applying NVASA to Object-Oriented Architecture Style

would apply to a critical filter.

Figure 3.5. Applying NVASA to Pipe-and-Filter Architecture Style

Virtual machine style is a layered style, simple in architecture and widely used

[87]. The fundamental nature of this architecture is the separation of programs into

layers, where each program is permitted to obtain services from the layer below it.

The layered style can benefit from the NVASA framework by identifying the critical

programs within the layers or possibly identifying the critical layers. Then based

on the approach selected, the NVASA Framework is applied to either the critical

29

programs within the layers or the entire layer as shown in Figure 3.6. Therefore,

reducing the risk of exploiting these critical programs, or layers. Defining the security

critical programs, and/or layers is essential and must be performed accurately.

Figure 3.6. Applying NVASA to Virtual-Machine Architecture Style

Blackboard architecture style merged merely to serve artificial intelligence appli-

cations. Blackboard style was defined by the idea of many diverse experts gathering

around a blackboard cooperating in the solution of a large and complex problem.

The blackboard style can benefit from the NVASA framework by identifying the crit-

ical expert programs then using the NVASA Framework as shown in Figure 3.7 to

N-Version these expert programs to reduce or remove the risk of exploiting them.

Defining the critical expert programs within the blackboard architecture style is es-

sential and must be performed correctly.

30

Figure 3.7. Applying NVASA to the Blackboard Architecture Style

3.3.1.1. Identifying the Critical Components

In order to reduce the NVASA framework effort and overhead; we propose first

identifying the components with the highest risk of exploitation. Consequently, apply-

ing the NVASA framework exclusively to the identified crucial components to improve

the security of the entire system. We propose two ways to identify the critical and

sensitive components. The first is Static Analysis using automated parsing methods.

The second is Functionality Knowledge, through security architecture experts.

Static Analysis

A simple and automated way to identify sensitive components within an appli-

cation is by parsing through the source code and looking for input/output (I/O)

commands, database query, and file access. Essentially, any input source, whether

from a remote application or user. These lines of code usually carry most of the

application’s vulnerabilities [64]. Therefore, applying the NVASA framework to the

31

functions and components carrying these commands would increase the system’s se-

curity while minimizing the overhead associated with the application of the NVASA

framework. We explore each critical component separately.

User Input (I/O)

User input is considered a critical part because an attacker can craft an input in

an un-expected form by the application [64]. Therefore, we consider the user input

code as well as any filtration code to be critical. Parsing through the source code

we can search for input command based on the language used. For example, if the

application was written in C++, we will be parsing the source code for “ cin<< ”.

Another example is “<input” in the PHP language where the input can be one of the

following HTML forms: text field, password field, radio button, check box, or submit

button [23]. Therefore, applying the NVASA framework to the first line of functions

would assure a sanitized output to the next layer of functions preventing any exploits

from propagating and executing.

Figure 3.8. Simple Web Architecture

32

Figure 3.8 shows a simple web architecture with f1 and f5 as the interface func-

tions, assuming that f4 was vulnerable to a buffer-over-flow, if an exploit was at-

tempted through f1 it could possibly propagate to f4 and exploit it. Therefore,

applying the NVASA framework to the first line of functions as shown in Figure 3.9,

and restricting any buffer following the path of f1 and f5 to be equal to or larger

than the buffer within the first line of functions. Therefore,f1 and f5 will guarantee

a sanitized output to f4 f3, and f2 through the decision algorithm. Thus, detecting

and preventing the request from propagating if a consensus was not reached.

Figure 3.9. Applying the NVASA Framework to the Simple Web Architecture

Database and Database Query

Applications that dynamically generate SQL queries based on user input and

does not perform any or poor input sanitization are vulnerable to SQL injection

[64]. This is considered a severe vulnerability because an attacker can modify the

structure of the query forcing the database to perform un-intended functions. Parsing

through the source code we can search for SQL query command lines, for example,

parsing the source code for “SELECT * ”, “ FROM ” and “ WHERE ” or look for

33

specific language commands such as the Java load JBBC driver “ Class.forName(

“com.mysql.jdbc.Driver”).newInstance(); ”. Alternatively, “mysql ” functions in the

PHP language. Then apply the NVASA framework to the functions that create and

apply these queries. Figure 3.10 shows a model of this approach.

Figure 3.10. Applying NVASA to the Database Component

Another significant approach to secure the database is by N-Versioning the database

itself as shown in Figure 3.11. This will prove effective when an attacker crafts a SQL

injection that is specific to a database(s) model and version; consequently, the exploit

will be successful in exploiting one or more N-Version databases, at least one of the

databases will discover the malformed/attack query and not commit it. As a result,

the vJoin decision algorithm will get at least one ‘false’ or ‘error’ message. Thus,

be able to identify that the query is maformed or malicious. Thereby, rollback the

transaction [35, 34] of all databases to revert to a safe state.

An example of a SQL injection that is effective only with Microsoft SQL server

is “SELECT * FROM members; DROP members−−” [40]. If we are running N-

Versions of the database, and one was a Microsoft SQL Server it will be exploited

while the rest of the versions would detect the malformed query and reply with an

34

Figure 3.11. Applying NVASA to Databases

‘Error’. Thus, the vJoin would receive one or multiple ‘Error’ replies. As a result,

forcing the Microsoft SQL Server to revert to the state prior to applying the query.

Table 3.1 shows examples of SQL injection queries and the corresponding exploited

databases [64, 40]. A 7 mark indicates that this specific query was successful in

exploiting the database model/version. The point here is that at least one database

model will detect and prevent the query. Therefore, enabling the decision algorithm

to detect the malicious query, since the algorithm is looking for a unanimous output.

Hence, revert the rest and prevent the query from propagating through the system.

Functionality Knowledge

Identifying the critical components through functionality knowledge is a research

problem by itself and there are standards produced to address such an issue. This

process should be performed by a security evaluator expert who has sufficient knowl-

edge of the application’s functionality and architecture due to the complexity nature

of discovering potential zero-day vulnerabilities and the hidden security risks within

the application’s inputs and outputs (I/O).

35

Table 3.1. SQL Injection Queries and Corresponding Exploited Databases

SQL Injection Microsoft SQL MySQL Oracle PostgreSQL

DROP sampletable;−− 7 7 X X

DROP sampletable;# X 7 X X

SELECT * FROM members; DROP

members−−

7 X X X

SELECT CHAR(0x66) 7 X X X

CONCAT(str1, str2, str3, ...) X 7 X X

SELECT LOAD FILE(0x633A5C626F6-

F742E696E69)

X 7 X X

’ UNION SELECT 1, ‘anotheruser’, ‘doesnt

matter’, 1−−

7 7 X X

;shutdown −− 7 X X X

WAITFOR DELAY ’0:0:0.51’ 7 X X X

SELECT ASCII(‘a’) 7 7 X 7

SELECT pg sleep(10); X X X 7

SELECT login ||’−’ ||password FROM mem-

bers

X 7 7 X

INSERT INTO members(id, user, pass) VAL-

UES(1, “+SUBSTRING(@@version,1,10) ,10)

7 7 X X

36

There are standards and methods to identify the critical components. For exam-

ple, The Common Criteria Information Technology Security Evaluation [67] (Common

Criteria, 1999) is an international standard widely used to identify the critical security

components. Other work has been done by Young, 1991 Verifiable Computer Security

and Hardware: Issues by prioritizing the components based on some. Furthermore,

other work has been done by Andrew Rae, and Colin Fidge [92] to improve Young’s

approach by making it more efficient. We adopted Andrew’s approach [92] to identify

the security critical components within an architecture.

Andrew’s approach relies on the category of information manipulated by the com-

ponent to prioritize and identify the critical components. The assumption here is that

the application architecture model consists of components and connections. These

connections carry the information from one component to another while the compo-

nents can generate or manipulate the information to achieve the application’s goal.

Based on the carried information, components and connections are categorized

into two categories. First, ‘Data’ Connection/Component where classified information

is carried or manipulated by the ‘Data’ component/connection. Classified data is

defined as critical and sensitive data to the application or external world. Second,

‘Control’ Connection/Component where non-classified information is carried by the

‘Control’ connection/component. Unclassified information is defined as non-critical

data to the application or external world. If a component/connection act as both

‘Data’ and ‘Control’, then we classify it as ‘data’ to protect the classified information

within.

Figure 3.12 shows an example of a simple architecture that we used to evaluate

and identify the ‘data’ components/connections. In this example, we studied the data

passed through the connections/components and classified these data based on the

consequences if lost. Hence, we evaluated the components/connections and identified

37

Figure 3.12. Simple Architecture

the critical ones. Since the plain text and encryption key, which is considered critical

data, are passed in clear-text format through the input links shown in Figure 3.12, we

consider them ‘data’ connections. In addition, since the AESEncryption component

manipulates and processes clear text and keys in clear-text format. Therefore, the

AESEncryption is considered ‘data’ component. On the other hand, the output

of the AESEncryption is in cipher-text format; thus, the connection is considered

‘control’ connection. The same applies to the next SaveToFile component due to

the fact that it performs the write to desk on cipher-text format. Consequently,

the SaveToFile component is considered ‘control’ component. Figure 3.13 shows the

architecture diagram after conducting the security evaluation and identifying the

‘data’ and ‘control’ components/connections.

Figure 3.13. The Simple Architecture After identifying the Critical Components

After evaluating the architecture’s components/connections to identify the critical

ones as shown in Figure 3.13. We applied the NVASA framework to these critical

38

components. And by implementing the vFork, which acts as the Routing Layer,

and the vJoin, which acts as the Decision Layer. We have managed to minimize

the overhead associated with the NVASA framework compared to implementing the

NVASA framework to the entire system. Figure 3.14 shows the new architecture after

applying the NVASA framework to the critical components.

Figure 3.14. The Simple Architecture After Applying the NVASA Framework to the

Identified Critical Components

3.3.2. Source-to-source Language translator

Another way to achieve limited diversity is by using source-to-source translators

[100]. After producing the initial single version and verifying the design. It can be

used to generate multiple versions using source-to-source translators. For example,

a Java program can be translated to C/C++ using Toba [24] or to Python using

java2python [25], many other translators (commercial and free) can be used in con-

junction with other languages [10, 18, 33].

Source-to-source translators will definitely reduce the overhead introduced by the

NVASA framework, but will lose some diversity because translating the initial version

will produce multiple versions with the same algorithm, data structure and design.

Therefore, source-to-source translators will be less effective than producing N-Versions

by N groups of developers.

39

3.3.3. Cross Platform Compilers

One way to achieve N-Version diversity is to compile the source code via different

off-the-shelf compilers [100]. This approach was proven to produce diverse machine-

code versions that can tolerate compiler introduced errors. However, this approach

is less effective than the traditional N-Version programming because it will use the

same design, data-structure, and algorithm. Therefore, losing the diversity produced

by the N groups. Figure 3.15 shows how to achieve this compiler diversity through

different off-the-shelf compilers.

Figure 3.15. Cross Platform Diversity [100]

3.3.4. Study of how the Compartmentalized NVASA Framework would Detect and

Prevent the Top Application Vulnerabilities

Here, we examined how the NVASA framework would detect and prevent each

attack mentioned in the previous Chapter (For more detail on each attack, please refer

to Section 2.2.7). We assume that the operating system OS hosting the application

is hardened and sandboxed and that any connection to/from the application is done

40

through secure channels and through specific port/machine to prevent any side attacks

targeting the OS or firewall.

3.3.4.1. SQL Injection Attack

By applying the NVASA framework to the critical parts, we would N-Version the

first-line of functions that receives the user input into three or more versions. Each

version would filter the input by escaping the SQL characters. Each version would

generate the query separately. Some of the new languages like Java can use parame-

terized queries [19]. Parameterized query is a method where the query is defined by

the developer beforehand, the dynamic values are supplied later at execution time.

This method would escape SQL meta-characters automatically [32]. .NET also pro-

vides parameterized query methods. Each language library can be bypassed uniquely

[32]. Thus, the language, and filtration diversity, and the unanimous decision layer

algorithm would detect the malformed query. As a result, prevent any malicious

query from reaching the database.

In addition, for ultimate security, the database could be N-Versioned as well.

Therefore, capturing any malicious query that bypasses the N-Version first-line func-

tion. In this case running the query against the N different databases will exploit one

or more of the databases due to the uniqueness of the database type discussed earlier

in table 3.1. As a result, at least one database would flag the query as faulty. Hence,

giving the unanimous decision layer the capability to detect and revert the query for

all N databases preventing the exploit from taking place.

3.3.4.2. OS Command Injection Attack

Applying the NVASA framework to the functions receiving the input would cap-

ture the malicious OS command input through the N-Versions and decision layer.

41

This would be successful because some attacks (Commands) are specific to certain

OS and can be preventable through OS diversity. In addition, some languages en-

able developers to set boundaries to restrict any commands from executing beyond

certain privileges. For example, the following Java command enables this restriction:

java.io.FilePermission;. Therefore, the NVASA framework diversity in language, and

hosting OS would enable the decision layer to detect and prevent any OS commands

from executing.

From the previous code example mentioned in the privous Chapter:

i n t main (char ∗ argc , char ∗∗ argv) {

char cmd [CMDMAX] = ”/ usr / bin / cat ” ;

s t r c a t (cmd , argv [1]) ;

system (cmd) ;

}

By applying the NVASA framework to the section before the system() command,

we would have three or more versions written in other languages such as Java, C# and

Ada, etc. Other languages access file differently; in addition, C# runs on Windows

based systems only. Therefore, the decision layer will receive the content of the file

from three or more functions before applying the system command. The system

command would then display the consensus on the console. The C function being

exploited will pass the injected command while the other versions would capture the

command or fail differently. Thus, enabling the unanimous decision layer to detect

the attack and prevent it from executing.

3.3.4.3. Classic Buffer Overflow Attack

Applying the NVASA framework on the first line of functions would detect and

prevent a BOF within these functions. Now what if the BOF vulnerability was in

a second or third line of functions? In this case if the buffer within the second or

further function was smaller than the buffer in the first line of function, then a BOF

42

attack is possible.

To prevent this BOF attack from taking place after the N-Versioned first-line of

functions, we restrict that any buffer within further functions within the path that

performs any kind of copying, should be equal to, or greater than the buffer in the

first-line function. This could be detected through automated parsing tools. Thus,

guaranteeing that the first-line check performed, apply to further functions as well,

preventing any BOF attack from taking place within the application.

3.3.4.4. Upload of Dangerous File Types Attack

By applying the NVASA framework to the first-line of functions, it guarantees a

sanitized input before any execution takes place. Each version would apply a unique

restriction scheme, for example one version can perform a byte sequence check, while

another version could run a virus scan. The attacker can craft the input file to bypass

a specific version scheme, fortunately the rest would perform a different scheme and

at least one version would capture the attempt. This would enable the unanimous

decision algorithm to detect and prevent the attack from propagating through the

system.

For ultimate security, we can apply the NVASA framework to the anti-virus scan-

ner responsible for checking all uploaded files. This would guarantee detecting any

malicious files. Corresponding work in virus analysis through multiple anti-virus

scanners has been done. One example is VirusTotal a free online service [44]. In

this case if one, or a certain threshold of the N anti-virus scanners reveal the file as

malicious, the unanimous decision layer would detect the threat and block the file

from propagating through the system.

3.3.4.5. Cross Site Scripting (XSS) Attack

43

In XSS attacks, we are mainly concerned with the server-side application. There-

fore, by applying the NVASA framework to the first-line of functions that receives

the malicious script, all N-Versions will take the input and escape untrusted data

and perform a whitelist validation on the external input [112]. As a result, produc-

ing sanitized input, which will enable the decision algorithm to block the input from

propagating through the system if it contained any scripts. In this case, an advanced

attacker can succeed in bypassing one version’s sanitization/filtration techniques with

a specific crafted input, but the rest will expose the malicious input or will remove the

untrusted data. The decision algorithm here should come to a unanimous decision.

Thus, blocking the scripts from propagating through the system.

3.4. Chapter Conclusion

In this Chapter, we have introduced the usage of the N-Version programming

methodology to automate security through our proposed NVASA Framework. We

explained in detail the building blocks of the NVASA framework and how they in-

terconnect. The first layer is the N-Version routing layer, which acts as the interface

of the application. The routing layer receives each request and routs it to the ver-

sions within the N-Version environment layer to be executed. The second layer is

the N-Version environment layer where the N-Version resides. The third layer is the

N-Version decision layer. The decision layer core function is to run a consensus al-

gorithm to look for a majority output from all N-Versions. For ultimate security, a

unanimous output is sought instead of a majority output. The fourth and final layer

is the N-Version backend layer. The backend layer contains the application data. It

could be in any sort, a files, database, etc.

Following that we introduced reduction schemes to minimize the overhead as-

sociated with the implementation of the NVASA framework. We introduced com-

44

partmentalizing the application into two or more components. Moreover, applying

the NVASA framework to the critical components exclusively instead of the entire

application. This could be achieved through two methods, 1) automated static anal-

ysis through code parsers, 2) or functionality knowledge evaluation done by security

architecture experts. We also discussed other overhead-reduction schemes such as

cross-platform compilers and source-to-source language translators to achieve limited

diversity.

Finally, we investigated some of the top known practical application vulnerabilities

that threaten ‘application security’ and exhibited how our compartmentalized NVASA

framework would, nonetheless, protect the core application from successful attacks

while reducing the overhead associated.

In the next Chapter, we introduce the usage of the NVASA Framework in Cloud

Computing to consolidate its resiliency, and benefit from the cloud computing at-

tributes.

45

Chapter 4

NVASA FRAMEWORK FOR CLOUD COMPUTING APPLICATIONS

4.1. Chapter Introduction

Due to some limitations in building the NVASA Framework on static infrastruc-

ture, we decided to investigate running the NVASA Framework on a virtualized en-

vironment (Cloud Computing Environment) to take advantage of the cloud charac-

teristics and avoid the limitations within static infrastructure.

One of the limitations discovered when building the NVASA Framework in static

infrastructure from a security point of view are attacks targeting the state of the

exploited version in the N-Version Environment Layer. For example, if an attacker

could exploit one of the applications (version) in the N-Version Environment Layer,

theoretically, he would be able to open a port on the exploited machine and invoke a

shell to listen on that specified port. Consequently, connecting to the port later and

gaining unauthorized access to the exploited machine. We can see that despite the

correct output the framework produced, the attack have exploited the state of the

host machine through our application. We will explain how to mitigate these attacks

later in this Chapter.

4.2. Cloud Computing Paradigm

Cloud Computing is still an evolving paradigm. It is defined and observed dif-

ferently by various institutions and providers. Some of these institutes view cloud

computing as renting services. For example, renting virtual and web servers, storage

46

Figure 4.1. Cloud Services and Deployment Models [56]

spaces, and/or processing power. Others view cloud computing as infrastructure, net-

work, and/or computer outsourcing. Some believe that cloud computing is the next

generation of networks and service providing. In regards of this praxis, we will view

cloud computing as providing services over an untrusted environment and connections

over the internet.

In cloud computing there are three service models and four deployment models

offered by cloud providers today. As shown in Figure 4.1 [56]; these services could

be Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or Software as a

Service (SaaS) [81]. And based on the infrastructure of the cloud it could take one of

four cloud deployment models; public, private, hybrid, or community model.

The Cloud computing paradigm offers many benefits, including [81, 108, 56]: 1) re-

ducing overall system cost, 2) reducing run time and response time, and 3) increasing

47

automation. Reducing overall cost because networks, infrastructures, and applica-

tions are rented as a service where no purchase is necessary. As a result, eliminating

the capital investment. Furthermore, these cloud services are paid incrementally.

thus, eliminating or reducing hardware idle time.

Reducing run time and response time is achieved by optimizing the CPU usage by

farming workers, virtual servers, and refactoring applications as the demand increases.

Systems are highly automated using virtual servers and a central API controlling

the infrastructure; automation is easy and more effective. For example, applying

patches can be performed automatically. Therefore, there is no need to carry updates

separately for each server. Automation reduces efforts and expenses significantly in

cloud computing.

However, with every newborn paradigm come new challenges unique to its abili-

ties and characteristics [66]. In cloud computing, security is a huge challenge where

confidentiality, integrity, privacy, and resiliency of the provider’s application program-

ming interface (API) and virtual environment are among the biggest issues facing its

progress and success.

4.3. Issues with Security in Cloud Computing

Security is a major aspect and concern to customers when choosing a cloud com-

puting provider. Consequently, security will affect the customer’s buying decision

based on the provider’s reputation for security level of their cloud’s API. In a recent

survey, 2100 top IT security managers were asked if security would get harder, stay

the same, or get easier in the emerging cloud computing paradigm [85]. One-third

said it will get easier, one-third said it will stay the same while one-third said it will

get harder. This survey shows the lack of a consensus and shows how even security

specialists are divided in their opinions when it comes to security in cloud computing.

48

Cloud computing poses challenging security risks because confidential data is no

longer confined to local and controlled servers and networks; rather, data reside on

public/hybrid clouds on virtual servers on virtual networks. As a result, private

and sensitive data protection becomes very important, even monitoring the data and

checking the effectiveness of the protection schemes can be difficult to measure. Fur-

thermore, shared resources is an essential characteristic of cloud computing; therefore,

isolation of storage spaces, memory, and routing schemes, etc. are very challenging

and failure could result in costly consequences.

In addition, cloud customers manage interfaces of the cloud through their own

applications, which in most cases are accessible through the Internet. Hence, this issue

increases the probability of exploiting these applications through their vulnerabilities.

Consequently, risking illegal access to other cloud customer’s private data. And since

security is only as strong as its weakest link, the provider’s cloud security will be

potentially measured by his weakest customer’s application security. Therefore, a

vulnerable customer application could bring the cloud’s security level down and would

threaten the rest of the provider’s customers if exploited.

For cloud computing to reach its full potential as service architecture or technology

of choice, it must offer concrete information and network security.

4.4. Related Work in Cloud Computing

4.4.1. Virtualization Characteristics

Cloud computing virtualization offers techniques and methods to automate and

improve system security, availability, and reliability [108]. Some of the methods to

improve security are: first, ‘Sandboxing’ the virtual machines to isolate risky and

critical virtual machines and their applications by restricting their access to memory,

49

network, and resources to reduce the overall risk. Thus, improving the overall system

security. This is achieved in real life in cloud computing by running risky applications

on separate virtual servers and restricting their access to hardware, storage space, and

resources to minimize or limit the consequences if an attack took place.

Second, virtualization provides an instant safe restore point for compromised vir-

tual machines to an initial clean state. This is achieved by monitoring virtual servers

for unstable behavior or failure. As a result, if a compromised server’s behavior was

detected; it is restored to a safe clean state. Thus, decreasing or eliminating the risk of

potential malware, viruses, or attacks targeting the state of the machine. Therefore,

increasing the overall system security without negatively affecting the availability of

the service.

Third, the ability to automate virtual machine security patching, is essential for

cloud computing security, the automation reduces the effort of applying security

patches and decrease the risk of exploitation when a vulnerability is discovered; mean-

while, keeping the servers up-to-date. In virtualization this can be done by updating

and applying newly released patches to the initial clean copy stored by the cloud’s

API. Therefore, cloning the rest of the running machines from the updated initial

clean copy and shutting the un-updated ones down. This greatly reduces mainte-

nance, and down-time; thus, increasing the service’s reliability, availability, run-time,

and security. Methods introduced in our approach would take advantage of these char-

acteristics offered by cloud computing and virtualization to strengthen the NVASA

framework implementation and to make our application more resilient and capable

of withstanding cyber-attacks without losing sensitive data. Hence, improving the

overall application security.

Other methods like forensics and virtual honeypots can be used in cloud computing

to enhance and strengthen security. In addition, virtual intrusion-detection systems

50

could be more effective and cheaper to implement in cloud computing. These methods

are used to increase and automate security in cloud computing while reducing the

overall cost and overhead.

4.4.2. Related Work in Cloud Computing Security

While cloud virtualized architectures vary, typical elements of such architecture

is presented in Figure 4.2 A virtualized, controlled interface isolates the first tier of

application servers from the external customer sites or external clients. The appli-

cation tier consists of potentially load balanced web servers, which respond to web

page requests from external, untrusted sources. The application tier interfaces with

a virtualized data tier backend repository such as a relational database. In Figure

4.2 backups from the virtualized database servers are stored in a secure permanent

data store. Cloud security controls that are typically supplied by the infrastructure

provided are depicted in Figure 4.3 The protected boundaries/controls are secured to

protect infrastructure and generic services and data and to ensure compliance with

legal and industry-specific certification requirements such as the Sarbanes-Oxley Act

and the Health Insurance Portability and Accountability Act (HIPAA).

While cloud security architectures are carefully engineered to appropriately ad-

dress risks to the cloud and customer organizations, unfortunately customer deployed

application software security cannot be addressed. Furthermore, software applica-

tions pose the highest security risks in a customer cloud deployment. The Open Web

Application Security Project (OWASP) reports the top ten web application security

vulnerabilities citeowasp10. Of the top ten risks reported, all of these potentially

affect cloud customers. This reinforces the observation made in [73] that incorrect

or missing input validation causes most vulnerabilities in web applications. Since

complicated systems typically possess unknown application security flaws, a solution

51

Figure 4.2. Typical Small System Cloud Architecture

that provides an increased assurance level for critical data is often cost effective.

IBM Cloud IBM is one of the leading companies to implement cloud computing.

They emphasize heavily on cloud security and invest tremendous amount of time,

effort, and money on researching security schemes in cloud computing. IBM divides

their responsibility of security into three levels based on the service they provide to

their customers. First, customers using (SaaS) are minimally involved in the security

schemes and procedures; this is because most of the control and management are

done through IBM. Second, customers using (PaaS) are more involved in security

and hold some control and responsibility; this is because the platforms are usually

implemented and mostly controlled by the customer. Therefore, removing some of

52

Figure 4.3. Virtualized Cloud Infrastructure Security Boundaries

the control off IBM. Finally, customers using (IaaS) are very involved in security and

hold most of the control and responsibility over their infrastructure.

IBM cloud computing security consists of two main layers as shown in Figure

4.4 [105]: a service-oriented architecture (SOA) [65] layer that resides above the

new secure virtualized runtime layer. The SOA in general terms is a set of design

ideology used to enable the integration of services to be used by multiple businesses.

The IBM SOA security layer enforces a set of rules and regulations to 1) authenticate

and authorize, 2) Audit compliance, and 3) Isolate subscriber’s domains and integrate

their existent security infrastructure with theirs. The secure virtualized runtime layer

53

is a virtualized system beneath the SOA layer that runs the processes that access the

data storage. This layer operates on virtual machine images instead of operating on

individual applications. Hence, the run time layer provide security services around

the virtual machines via anti-virus, host intrusion detection, and introspection.

Figure 4.4. Layers of IBM Cloud Service

AmazonEC2 Amazon is also one of the leading companies in cloud computing.

They entered the cloud business in August of 2006. Amazon’s EC2 system security

is structured over multiple levels [103]. First, at the host operating system level the

administrator is required to pass multi-factor authentication schemes to gain access

54

and control over the cloud. Second, the VM guest operating system (OS) is pre-

configured and hardened, and controlled fully by the customers. Customers have

administrator privilege over the guest OS to control the accounts, applications, and

services running. Amazon claims that they have no access rights to the guest OS

belonging to customers. Third, firewalls provide protection on a port level. Traffic

may be restricted by source IP, protocol, and service port. Forth, API calls exist

to enable the customer to terminate instances, re-configure firewall parameters, or

perform other functions. These calls are all signed by an X.509 certificate or the

customer’s key. Amazon recommends encrypting the data using SSL but does not

mandate it.

On a lower-level Amazon isolates the virtual machine instances using the Xen

hypervisor isolating customers from direct access to raw drivers and instead access-

ing virtualized disks. In addition, Amazon EC2 resets every data block after the

customer’s application is done with. Thus, preventing any un-intentional exposure of

the information to other customers or cyber-attackers. Amazon also recommends that

the customer takes the appropriate actions to secure and protect their information

by encrypting their file system or their virtualized images.

Amazon emphasizes that bugs, and vulnerabilities will occur over time. Therefore,

they strongly advise customers to ensure strict guidelines are used to test their ap-

plications and services and to apply patch and configuration management as needed.

Furthermore, they emphasize the adoption of good coding practices to minimize the

introduction of errors during the development phases which will introduce vulnera-

bilities [104].

Amazon and IBM invest tremendous time, effort and money on cloud comput-

ing security. They are aware of the impact it has on their survival and growth in

the industry. However, with their considerable effort, there is still high risk of at-

55

tacks targeting the application layer. This could lead to unauthorized disclosure of

their customer’s sensitive and private data. Statistics show that tens of severe vul-

nerabilities are discovered every year within operating systems run by Amazon and

IBM clouds. In addition, statistical reports also show that many online application-

s/services are severely vulnerable due to un-detected application vulnerabilities [111].

Therefore, despite their tremendous effort, there is a risk of exploiting these vulnera-

ble VMs or the applications/services running on them to gain unauthorized access to

the cloud or portion of it. Implementing the NVASA framework in cloud computing

complements existing security implementations to enhance application security; and

therefore, enhance the overall cloud’s security.

4.5. Implementing NVASA Framework in Cloud Computing

Cloud computing structure is divided into several layers where each layer performs

certain tasks. These layers combine to build the concept of cloud computing. Fig-

ure 4.5 shows the sequence of the layers in a cloud computing environment. From a

top-bottom point of view, the first layer is the application and services layer which

runs on the isolated VM instances. The second layer is the NVASA framework layer.

The NVASA framework layer is a security layer that resides beneath the applica-

tions/services layer. The NVASA framework layer protects the services/applications

layer. Therefore, protecting the virtual machines and the data saved on them. The

NVASA framework layer protects the applications and services from being exploited

by certain attacks targeting existent vulnerabilities. The third layer is the actual

VM and storage layer where all the processes are initiated, and data are virtually

stored. The fourth layer is the virtual platform layer where all the VMs run on one or

more virtual platforms. The fifth layer is the virtual infrastructure layer that holds

the virtual platforms. The sixth layer is the Hypervisor layer which is accountable

56

for isolating the virtual layer from the physical layer. In addition, the hypervisor is

responsible for controlling the shared hardware among the virtual environment. This

is achieved by separating the privilege modes into 3 or more modes and restricting

their access based on their prioritization. The seventh layer is the physical cluster

where all the hardware is placed to run the virtual environment.

Figure 4.5. NVASA Framework Layer within Cloud Computing Structure

The NVASA framework enhances the overall system security by improving re-

siliency through redundant and independent service implementations. This architec-

ture protects and strengthens the application/service layer by helping to minimize the

risk of exploiting existent vulnerabilities. Thus, protecting sensitive data in the VM

and Storage layer from being stolen or damaged. To implement the 4-layer NVASA

framework shown in Figure 3.2 into a virtualized environment, we compartmentalized

each layer in a separate VM as shown in Figure 4.6. Similarly, the Virtual N-Versions

within the Virtual N-Version Environment Layer were separated and executed on

57

separate VMs as well.

4.5.1. Virtualized NVASA Framework

Virtual N-Version Routing Layer

First, the Virtual N-Version Routing Layer, is the external interface of the system

and is responsible for routing requests to each component of the Virtual N-Version

Environment Layer for execution. The Virtual N-Version Routing Layer should be

built using a dynamic language and application programming interface (API) to en-

able communication with heterogeneous versions written by various languages and

APIs that are virtualized on different operating systems. The VM hosting the Vir-

tual N-Version Routing Layer should be ‘Sandboxed’ by disabling all unnecessary

features and enabling only the routing of requests to the Virtual N-Version Environ-

ment Layer. The Virtual N-Version Routing Layer is also responsible for replying

back to requesters with the consensus output passed by the Virtual N-Version Deci-

sion Layer. Finally, the Routing Layer may be configured to log ”un-trusted” inputs

received from un-trusted sources. This input may be correlated with N-Version out-

put exceptions logged by the Virtual N-Version Decision Layer to aid in detection

and removal of potential vulnerabilities and version implementation errors, hence

improving the quality of the versions.

Virtual N-Version Environment Layer

The second layer is the Virtual N-Version Environment Layer consisting of the

Virtual Versions; each Virtual Version should be built using the rules and regulations

defined by the N-Version programming methodology mentioned privously in Chapter

3 [58, 82]. Each Virtual Version should run on a separate VM to take advantage of the

first characteristic of cloud computing ‘Sandboxing’. ‘Sandboxing’ here empowers the

cloud API to restrict and limit the hosting operating system of the Virtual Version

58

Figure 4.6. Implementing NVASA Framework in Cloud Computing

from accessing unnecessary storage and network resources. This minimizes the risk

of exploited Virtual Versions from granting illegal access to the attacker.

Virtual N-Version Decision Layer

The third layer is the Virtual N-Version Decision Layer. This layer holds the

intelligence of the NVASA framework. The Virtual N-Version Decision Layer can

detect known or unknown attacks by utilizing a consensus algorithm to evaluate

all Virtual Versions’ output, comparing each output of the Virtual Versions. As a

result, a conflicting versions’ output is flagged as a compromised version, and will

be removed from the pool of independent versions. The algorithm continues until

([N/2] + 1) Virtual Versions reaches a consensus output. In addition, we require the

Virtual Decision Layer to restore a compromised virtual machine to a safe point.

This feature enables the NVASA framework to reset the state of the Virtual Version’s

machine to a clean and un-tampered state thwarting a potential compromise at the

59

application level of the system.

The Decision Layer also maintains information regarding the rate that each of the

virtual machines is compromised. This information helps defend against Denial of

Service (DoS) attacks against an NVASA architecture that would potentially utilize

repeated attempts to exploit the same vulnerability of a specific version and initiate

repeated virtual machine restorations, hence created a denial of service. If a DoS

attack occurs, the Decision Layer would simply stop the vulnerable version and con-

tinue processing utilizing a reduced set of versions. The affected version could be

patched and brought back on line without significant loss of functionality.

Virtual Backend Application Server Layer

The fourth layer is the Virtual Backend Application Server Layer, where the sys-

tem data repository is maintained. The Virtual Backend Application Layer is pro-

tected by the decision algorithm in the Virtual N-Version Decision Layer where out-

puts from the Virtual Versions are never directly applied. Instead, a consensus output

is applied with protected, secure communication between the Decision Layer and the

Backend Application Layer, eliminating exploited Virtual Versions from damaging,

tampering, or stealing sensitive and private data stored within the Virtual Backend

Application Layer.

4.5.2. N-Version Management and Auditing

The NVASA framework provides layered security services, including monitoring

and control, auditing and logging, host intrusion detection and system heartbeats.

Monitoring and control are provided in a separate virtual machine running system

software such as Nagios [27]. This provides an external management view of the sys-

tem during mission execution. In addition, the NVASA framework utilizes a separate

virtual machine for audit collection and log file reduction. Not only does this aid in

60

the forensic analysis of the operation of the N-Version Environment Layer, this pro-

vides valuable information that is helpful in hardening the implementation in each

specific version.

At system startup and whenever a specific N-Version is restored to a safe point,

host-intrusion software validates all security-related configurations and the implemen-

tation executables to ensure that the system was restored to the correct state and has

not been started in a compromised state. Any violations result in logging and alarm

events.

Additional monitoring of the NVASA framework state and health includes “Heart-

beat” messages between the N-Versions and the Virtual N-Version Decision Layer.

This feature is specified as follows; the versions will send a “Heartbeat” message

within a specified interval to the Virtual N-Version Decision Layer thereby notifying

the Decision Layer that the version is alive. If a version is unresponsive, the Virtual

N-Version Decision Layer would mark the version as unresponsive and restore the

corresponding VM.

4.5.3. Strict Privilege-Mode of NVASA framework Layers

In cloud computing environments, privilege-mode is essential to restrict access

within a hardware cluster to prevent attacks at the processor level. For example,

Amazon EC2 provides 0-3 privilege-modes to restrict access to the processor. There-

fore, having an authorization scheme to minimize risk. Hence, the NVASA framework

virtual machines should be separated by different privilege-modes depending on their

role and risk of exploitation. The Virtual N-Version Routing Layer virtual machine

should be given the minimal privilege since it is the interface of the framework.

In addition, the Virtual N-Version Routing Layer main task is receiving requests

and routing them to the N-Versions in the Virtual N-Version Environment Layer.

61

Moreover, the Virtual N-Version Environment Layer, which contains the virtual N-

Versions, should be given the minimal privilege as well since some versions might be

vulnerable. Finally, the Virtual N-Version Decision Layer is more resilient than the

rest of the layers because of the consensus algorithm. Therefore, needs more privi-

lege to access, delete, add, read, and create data in the Virtual Backend Application

Server Layer.

4.6. Chapter Conclusion

In this Chapter, we introduced the cloud Computing paradigm and discussed in

detail the characteristics that make cloud computing exceptional and unique, some of

which are virtulization and elasticity. The NVASA framework resiliency benefits from

the cloud virtulization through sandboxing the N-Versions and layers into separate

VMs, and virtual sub-network. Therefore, eliminating or minimizing the consequences

of any successful exploit. In addition, the NVASA framework can mitigate side attacks

targeting the OS by reverting the VM to a safe state whenever a discrepancy or

unexpected behavior is detected. This is accomplished without any difficulty using

automated cloud APIs that in addition, would eliminate any down time.

In the next Chapter, we conduct three separate experiments to validate the en-

hancement of application security through the development of the NVASA framework.

62

Chapter 5

EXPERIMENTAL RESULTS

5.1. Chapter Introduction

Three experiments were conducted in order to validate that the NVASA architec-

ture does provide an enhanced security posture in distributed environments, as well as

cloud-based web service architecture. In this chapter, we will explain the architecture

implemented for each experiment, and the results achieved.

5.2. Experiment One: Simple Text Input Implementation

For the first experiment, the Backend Application Server Layer was not imple-

mented. In order to understand the overall scope of the experiment, a use case and

sub use case is provided to illustrate the system concept of operations.

5.2.1. Experiment Use Cases

The use case selected to provide the context for our experiment is a Secure En-

terprise Access to a Cloud Web Service. The secure cloud web service must be able

to accept an un-trusted web service request, route the request through the virtual

N-Versions, compare each version’s output and provide back-end processing of valid

service requests or take appropriate action on a compromised version. The use case

is presented in Use Case 1 and 2. Web service requests are submitted to a NVASA

Protected Service (NPS) and a response is returned without the client service aware

of the internal security mechanisms of the NPS. If the service is threatened and an

63

attack successfully compromises a virtual service, a correctly implemented Decision

Layer would take action to reset the virtual service. Notification of the threat by

the Decision Layer object to the Routing Layer object would initiate a Service Abuse

Policy by the Routing Layer object.

Secure Enterprise Access to a Cloud Web Service

Primary Actor: Enterprise or Cloud Web Service

Scope: NVASA Protected Service

Level: User Goal

Main Success

Scenario

1. Service client crafts a service request for the protected service

2. Service request is forwarded to the service endpoint/routing layer

3. The routing layer forwards the service request to each virtual service version

4. Each virtual service computes a service response and forwards to the decision layer

5. The decision layer compares each virtual service response

6. The decision layer forwards the service response to the routing layer endpoint

7. The routing layer returns the service response to the client

Extensions:
1. Decision Layer finds discrepancies in the virtual service responses

a. Decision Layer applies a virtual version reset policy

Use Case

Apply a Virtual Version Reset Policy

Primary Actor: Decision Layer object

Scope: NVASA Protected Service

Level: subfunction

Main Success

Scenario

1. Decision layer determines the invalid response

2. Decision layer determines the affected virtual service

3. Decision layer requests the service host to reset/rollback the service to a known state

4. Decision layer updates the routing layer object

5. Routing Layer object applies a Service Abuse Policy

Extensions:

Sub Case

NVASA Framework Prototype Implementation An implementation de-

scription for each layer of the NVASA architecture is described below. The imple-

64

mentation is depicted in Figure 5.1.

Figure 5.1. Applying NVASA to Object-Oriented Architecture Style

The prototype equipment consisted of three physical machines and three virtual

machines (VMs). A single physical host was installed with VMware ESX 4.0 and

hosted the VMs utilized. A second physical host was installed with Microsoft Win-

dows 2003 Standard Edition Server and hosted VMware vCenter 4.0 to manage the

ESX host and VMs. The processes implementing the NVASA Routing Layer and

Decision Layers were also deployed on this machine. A third physical machine run-

ning Microsoft Windows XP SP3 was utilized to generate test data and attack the

N-Version VMs.

Microsoft Windows XP SP3 was installed on each of the three VMs deployed on

the ESX host. Each instance of the NVASA N-Version service was installed separately

65

in these VMs.

Routing Layer The N-Version Routing Layer was deployed on the Windows

2003 Server and received user data from the external “test” host. The Routing Layer

prototype was implemented using Java and duplicated client input to each N-Version

implemented in the N-Version Environment Layer. In typical web application archi-

tecture, the N-Version Routing implementation would be deployed in the Application

Tier.

Decision Layer The N-Version Decision Layer was also deployed on the Win-

dows 2003 Server. The Decision Layer process was implemented using Java and

contained the Response Comparator functionality. For this experiment, the Decision

Layer was implemented to simply log successful N-Version comparisons in lieu of writ-

ing to the Backend Application Server Layer. Upon a failed N-Version comparison,

meaning one of the N-Version implementations did not produce results consistent

with the other versions. The Decision Layer invoked a PowerCLI script to commu-

nicate with the VMware vCenter system and the ESX hypervisor to reset the VM

hosting the N-Version to a known, safe restore point using a previously generated VM

snapshot.

N-Version Layers For purposes of testing the NVASA architecture, three NVASA

virtual services were implemented to accept client service input from the Routing

Layer and provide output to the N-Version Decision Layer. The three N-Versions

were deployed on three separate Microsoft Windows XP SP3 VMs running on the

ESX hypervisor. The three N-Versions were implemented in C, C++, and Java re-

spectively. The C implementation exhibited a string format vulnerability. The C++

version was implemented to contain a buffer over flow vulnerability. The Java version

did not have any known vulnerability.

66

Test Cases/Results To test the NVASA Protected Service, the Main Success

Scenario of the Secure Enterprise Access to a Cloud Web Service Use Case was exer-

cised. Since no backend processing was implemented for this experiment, the Decision

Layer returned a pass/fail response to the Routing Layer. The system was operated

under normal conditions, and the client was unaware of the service protection. The

NPS did not affect the normal processing case. Following the happy path testing,

the NPS was threatened using a parameter tampering technique designed to exercise a

code injection or input format vulnerability in a single service as shown in Table 5.1.

Upon failure of the affected N-version virtual service, the Decision Layer correctly

applied a virtual version reset policy and restored the virtual service. This action

relied on functionality in the vCenter server to rollback the VM to a known restore

point. A failure response was then returned to the Routing Layer implementation of

the architecture. The NPS was unavailable during restoration of the failed service.

It was noted that this was a potential denial-of-service (DoS) attack.

The last test conducted was similar to the initial failure test, but involved exercis-

ing a known buffer-over-flow vulnerability. System behavior consistent with the initial

failure test was observed, but with a different virtual service. This concludes that

the NVASA framework detected and prevented the input attacks from propagating

through the virtual environment; therefore, enhancing the overall cloud security.

5.3. Experiment Two: AES Implementation

A second prototype was implemented, and testing conducted to validate the pro-

tection provided by leveraging an N-Version service implementation in a distributed

or web application architecture. The AES prototype was developed in a private cloud

environment. We will discuss the cloud’s setup and configuration later in this chapter.

67

Table 5.1. Test Cases and Results of the Simple Text Input Implementation

Test Test Case Test For C C++ Java NVASA

1 %08x%08x Format String 7 X X X

2 %d%d Format String 7 X X X

3 34 Byte String BOF X 7 X X

4 50 Byte String BOF X 7 X X

5 ssss\\ssssssss Quotation and Backslash X X X X

6 #435435 Special Character X X X X

7 NVASA Normal String X X X X

In order to develop a practical prototype that can produce reliable results, we

searched for pre-developed AES implementations online to be used as our N-Versions.

These N-Versions must be written in different languages and by different developers

in order to satisfy the diversity required in the N-Version programming methodology

mentioned earlier in Chapter 3.

After much search and testing, we could find three very close implementations of

AES. These implementations were similar in structure but written in three different

languages and were developed by three different developers or groups of developers.

As mentioned in Chapter 3, the development of the NVASA versions, the “version

Fork” (vFork), and the “version Join” (vJoin) should be done by following the NVASA

Policy given to the developers by the design experts, but in our experimental case, this

was different because the three implementations were already developed. Therefore,

we had to develop the vFork and vJoin afterwards and had to accommodate all

variations between the implementations. This would have been avoided if we followed

the sequence by obtaining the NVASA Policy beforehand.

The first version was written in Java by Neal R. Wagner [110]. The second version

was written in C# by James McCaffrey [84]. And the third and final version was

68

written in C/C++ by Niyaz PK [88].

5.3.1. Setting up the Private Cloud Environment

5.3.1.1. Eucalyptus Cloud Architecture

Eucalyptus is an open source private cloud platform [16, 46, 45, 91], it is compat-

ible with Amazon EC2 and S3 services. To deploy Eucalyptus, it requires a Cloud

Controller to control the Cloud Cluster. The Cloud Controller also usually acts as

the Walrus Storage Service, the Cluster Controller, and the Storage Controller. As

the cloud grows and more VMs are required more Cloud Controllers are installed.

Figure 5.2 shows our Private Cloud Infrastructure using Eucalyptus. In our setup,

we have installed the Walrus Storage Service, the Cluster Controller, and the Storage

Controller on the same Cloud Controller. We have installed two Cloud Nodes.

Figure 5.2. Eucalyptus Private Cloud Infrastructure

69

Our private eucalyptus cloud could handle 24 small VMs. Figure 5.3 shows the

cloud capability in terms of the number of VMs. Eucalyptus can provide six different

VM sizes. m1.small starts with one CPU and 192 MB of RAM, and goes up to

c1.xlarge which requires four CPUs and 2048 MB of RAM.

Figure 5.3. Eucalyptus Private Cloud Capability

At this stage, we downloaded few VM images from the Eucalyptus store, Ubuntu

9.10 (32-bit) and Ubuntu 10.04 (32-bit). There was a software bug in the certificate

check process of the Eucalyptus Cloud Controller. We had to modify the Eucalyptus

code to accept certificates without performing any checks. This should not be done

in a production environment due to the fact that it could be used as a vulnerability

to exploit the Cloud Controller.

Eucalyptus does not support Windows by default. Therefore, we had to decide

either to exclude any Windows-based platforms; such as, .NET and C# or find an-

other platform that has the flexibility to instantiate Windows, as well as Unix VMs.

Since we had been using .NET and C# as one of our implementation versions, we

have decided to switch to XEN Cloud platform, which supports Windows and Unix

by default.

5.3.1.2. XEN Cloud Architecture

70

Installing XEN Cloud Platform [50] we have noticed that it is more stable than

Eucalyptus, and more flexible since we can use different flavors of Windows and Unix

for the VMs. We managed to install the XEN platforms on one of the machines

and built the same infrastructure as the Eucalyptus. Figure 5.4 shows the XEN

infrastructure and the VMs. We used OpenXenManager [28] on Ubuntu to manage

the XEN Cloud Platform. OpenXenManager enabled us to view the VMs, create new

VMs, configure the memory usage for each VM, as well as configuring the network

interfaces.

Figure 5.4. XEN Private Cloud Infrastructure

We then installed OpenSSH on all Linux based VMs [47] to be able to easily

connect and configure the instances. For Windows 7 instances, we enabled the remote

desktop feature to be able to connect and configure Windows instances. Following

this step, we installed Apache on the Linux instances [4], and enabled CGI to be

able to expose the C/C++ implementation as web services [21]. For the Windows

instances we installed IIS 7.5 and enabled ASP.NET to be able to expose the C#

.NET implementation as a web service.

71

5.3.2. Testing the Standalone Implementations

We took each standalone implementation and conducted a security testing by

running a benchmark of 100 test cases to detect any existing vulnerabilities. Table

5.2 highlights the most important security findings.

These exploits were successful due to mistakes in the source code. Few vulnera-

bilities were caused by overflowing the size integer value in the C# and C implemen-

tations. This could be avoided by checking the integer size of the user input before

continuing the execution. Another set of vulnerabilities were related to file access

violations in the Java implementation, once again these exploits could be avoided by

checking the validity of the file before attempting to read/write from/to the file. In

addition, handling the case if the file does not exist. Another set of vulnerabilities were

caused by null input in the Java implementation, once again this could be avoided

by checking for null input before continuing the execution. Finally, these implemen-

tations accept HEX values. They all failed when inserting a non-HEX value in either

the key or plain text. Therefore, causing the program to crash or act unexpectedly.

5.3.3. Building the AES NVASA Framework

As part of the AES framework implementation we exposed the C# and C/C++

versions as web services to be able to integrate them with the NVASA Framework.

Each web service would accept a request with a 192-bit key and 128-bit clear text block

and reply with the cipher text if the encryption was successful. Since the interface was

developed using the Java language, a simple function call was sufficient to connect

to the Java version which as well accepts a request with a 192-bit key and a 128-

bit clear text block. Figure 5.5 shows the structure of our AES NVASA Framework

implementation. We minimized our involvement in writing or modifying any code

as much as possible to satisfy the diversity required in the N-Version programming

72

Table 5.2. Test Cases and Observations of the Standalone AES Implementations

Vulnerability Description Symptoms

C/C++ No Input Validation in Key

Length

Input a char in the key length Program goes in a never ending

loop

Integer Over Flow (Key

Length)

Larger than MAX INT Integer Over Flows

Input directly to HEX with no

Input Validation

Input a non HEX value for the

Plain Text

Program fails giving wrong

output

Java Java Exception not handled

with input reading

Provide an empty file Program crashes

No Input Validation for plaint

text and key

Input a non HEX value Program uses c0 for any non

HEX value

Exception not handled with

File reading

Remove the plain text or key

file

Program crashes

C# No Input Validation for plaint

text and key

Input a non HEX value for the

Plain Text or key

Program crashes miserably re-

vealing internal variables

Input validation for the key Input a larger key than speci-

fied

Program crashes miserably re-

vealing internal variables

73

methodology. Therefore, we used pre-developed implementations that match each

version’s language to integrate them with the NVASA framework.

Figure 5.5. NVASA Framework AES Implementation

For this prototype, we wrote a java class to act as the Routing and Decision Layer

(Layer 1 and 3 From Figure 3.2). The java class simply accepts the user input then

executes all three versions simultaneously. Each version subsequently produces its

output, which is then fed to the decision algorithm. The decision algorithm then runs

to reach a consensus output. If a consensus is reached, the cipher text is written to

a file and sent to the requester. Otherwise, we have the choice of either dropping the

request or replying back to the requester with a ”Request Denied” message.

To test our NVASA implementation, we developed a benchmark of 100 test cases,

a snapshot of the benchmark file is shown in Figure 5.6. Each test case included a

key length, key, and a clear text block. We executed each standalone version against

each test case first, then executed the same set of test cases against the NVASA AES

implementation. Table 5.3 shows a segment of the failed standalone implementations,

and the output of each version compared to our NVASA AES implementation.

Looking at table 5.3, we comprehend that in the first two test cases more than one

version failed from a total of three. Fortunately, the NVASA framework detected the

discrepancy and recovered from such an exploit. This was achieved since each version

74

Figure 5.6. Input File Benchmark

produced a different and unique output; therefore, no consensus could be reached

at the decision algorithm. Thus, the request was dropped and never propagated

through the system. This step is essential because the decision algorithm will detect

an attack and prevent it from propagating through the system even if it was successful

in exploiting most of the versions.

This NVASA prototype shows how the new framework can improve Security by

detecting and preventing known and potential zero-day attacks using the N-Version

Programming methodology. The AES Implementation revealed that the diversity of

the languages and algorithm used, greatly reduces the probability of having identical

vulnerabilities in two or more versions. This was achieved without the need to modify

the source code within the versions or install any patches.

5.4. Experiment Three: Moodle Analysis

So far, we have demonstrated through the first two implementations that the

NVASA framework has improved the application security of the system. This was

achieved even when all versions failed and produced a malicious/wrong output. The

NVASA framework was able to recover due to the uniqueness of each wrong/malicious

response, which enabled the decision algorithm to detect the attack and prevent it

from propagating.

75

Table 5.3. Test Cases and Results of the AES Implementation

Test Number Test Case Test For C/C++ Java C# NVASA

1 73204483711 Integer Over flow in

Key Length

7 X 7 X

2 ”zz....” in the plain-

text or key field

Input Injection (Non

HEX) in the plaintext

and/or key field

7 7 7 X

3 Null Input (Com-

mand Line or File)

Exception Handling

with plaintext and/or

key

X 7 X X

4 ”Ree” instead of an

Integer

Type Injection in the

Key length field

7 X X X

5 Normal HEX 192 Key

and 128 Key

Normal Input X X X X

6 Larger key than spec-

ified (200 bits instead

of 192 bits)

Input Validation Key

Field

X X 7 X

76

In chapter 3 we presented reduction techniques to reduce the overhead introduced

through the implementation of the NVASA framework. Therefore, for our third and

last experiment, we focused on studying a large implementation called Moodle, an

open-source web project to analyze the architecture and code in order to define the

critical components. Thus, study the implementation of the NVASA framework to

the defined critical components, and the overhead associated with it.

Moodle is an open-source Learning Management System (LMS) project [26]. It is

a free web application that enables educators to effectively create an online learning

websites and environments. Moodle is written using the PHP language and has

the capability of running on Windows or Unix environments and can connect to

different types of databases like PostgreSQL, MySQL, Microsoft SQL Server, and

Oracle. Moodle is built of 5061 PHP files and 1,060,585 lines of code [26].

Figure 5.7. Proportion of Critical Code Compared to Total Code

Following the Static Analysis method described in chapter 3 we developed a Java

program (Code provided in Appendix A). The Java program takes a folder location,

77

then crawls into each sub folder parsing through the code of each .php file determining

I/O, database queries, and file access code. The program subsequently stores all

unique files in a separate file for further analysis.

Figure 5.7 shows the critical lines of code (LOC) compared to the total number

of LOC. Clearly, the critical code is a very small subset of the total code, just %0.11.

Figure 5.8 shows the different types of critical code. We can see that “mysql ”

code, which represents SQL queries, is 105 LOC. Further analysis revealed that these

function calls resides in 10 PHP files only from 5061 total PHP files.

Figure 5.8. Proportion of Critical Code

Another critical code was the “< input” commands in PHP. It was found in 923

LOC, further analysis revealed that these command calls resides in 200 PHP files

from 5061 total PHP files. Finally, we found 220 LOC of “fopen” command, further

analysis revealed that these commands reside in 124 PHP files. We took a sample

of 20 PHP files with 68 LOC with the “< input” commands. We found that 21

functions used the input variables within. Since these functions deal with inputs

78

directly from external sources, we consider these functions to be critical and requires

to be N-Versioned through our NVASA framework in order to improve the security

of the overall web application. These 21 functions had an average of 14.2 LOC.

We then analyzed the Database queries within Moodle source code and as noted

previously we found that the database queries were all located in 10 PHP pages from

a total of 5061 PHP files (a %0.2). Therefore, applying the NVASA framework to

these components wouldn’t add significant overhead to the project. In addition, the

decision algorithm will be replicated among the N-Versioned SQL components since

it only compares the N outputs and reaches a consensus.

Since SQL injection attacks and Cross Site Scripting (XSS) are based on the lan-

guage’s escape/filter scheme, we suggest N-Versioning the query component function

to filter and sanitize the input before committing or storing the input as shown in

Figure 5.9. In addition, for ultimate security, we can apply the NVASA framework

to the database to add another layer of security. This would be done by having N-

Version databases. For example, MSSQL, MySQL, Oracle and/or PostgreSQL. To

successfully N-Version the databases we will have to create a PHP component that

acts as the vFork and vJoin. The vFork would translate the input to N-different

queries based on the database model, MSSQL query, MySQL query or Oracle query,

etc. Finally, the vJoin would run a decision algorithm on the databases’ output to

reach a consensus. Any exploited database, identified by the different output from

the rest of the pool, would be forced to revert to the state prior to applying the

query. Therefore, maintaining and protecting the data within the databases from any

malicious queries or unauthorized access.

5.5. Guidelines and Policies

79

Figure 5.9. Applying the NVASA Framework to Moodle’s Database Component

As we progressed with the experimental implementation, we researched best prac-

tices to configure the systems and network in the firmest and secure possible way.

We prearranged the guidelines and policies in bullet points and divided them based

on the systems components and architecture. First, we start with best practices in

configuring the OS of the VMs. We highlighted the most important activities to be

done to protect the instances within the cloud. Second, we highlight best practices

in setting up the network and structure. Finally, we pin point best practices in code

writing and software development.

5.5.1. Operating System

• The host machine and the virtual machines should run on secure operating

systems. One suggestion is OpenBSD [106]. OpenBSD was built from the

ground up to be secure and locked by default.

80

• The host machine and the virtual machine’s OS should be updated frequently.

This could be done easily with automated tools.

• The host machine and the VMs should be sandboxed and all unecessary ports

should be closed [43].

• We highly recommend avoiding the usage of passwords to connect to the in-

stances, instead using SSH keys [43].

• Periodic penetration testing should be conducted for the routing (interface) VM

OS.

5.5.2. Network Configuration

• VMs running the NVASA framework and all layers should be placed in a sepa-

rate virtual DMZ subnetwork than the organization’s internal network.

• Any connection to internal servers within the internal network should be whitelisted,

example database and backend servers.

• The connection between layers and VMs should be staticlly defined and whitelisted

based on the IP, and MAC address.

• Messages between the NVASA layers and components must be encrypted. Trans-

port Layer Security (SSL) protocol is one option.

5.5.3. Software Development

The NVASA framework reduces the security efforts during the development phases,

but the interface component still needs to go through a strict security process and

testing to avoid injecting any vulnerabilities during development.

81

• During the security evaluation the most important step is identifying the entry

points of inputs to the program from users, applications, files, and external

databases.

• Conduct unit-testing during the development of the routing layer application.

• Minimize using unsafe strings and buffer functions [61].

• Validate any external input by escaping all untrusted data and performing a

whitelist validation.

• Use least privilege.

• Conduct periodic penetration testing for the routing layer application.

• Use of strong publicly known cryptograph algorithms.

• When writing the source code, avoid using insecure functions and libraries. One

example is using the banned.h header file developed by Microsoft to support

the SDL requirement to flag warnings when a dangerous function or library is

used by the developer [7, 8].

• We highly recommend the usage of strong dynamic authentication schemes and

avoid hard-coded credentials, particularly within client side applications [64].

5.6. Chapter Conclusion

In this Chapter, we conducted three experiments to validate our proposed NVASA

architecture. Through the first two experiments, we learned that in fact the NVASA

framework enhanced the application security through the decision algorithm. We also

discovered from the AES implementation that even when all versions were success-

fully exploited, each version failed uniquely producing a different output. Therefore,

82

enabling the decision algorithm to detect and prevent the attack from taking place.

Our third experimental revealed how compartmentalization is achieved through pars-

ing tools to identify the critical components within the source code. We discovered

that the input commands and database query code was a very small sub-set of the

total lines of code (LOC), a total of %0.11. We also determined that on average, each

input or database query LOC had 14 LOC within its function. Giving us roughly

%1.6 of the total application to be N-Versioned to apply the NVASA framework to

the critical components.

Through our experimental implementations, we prearranged a set of guidelines

and policies that should be followed to implement a secure and successful NVASA

framework application. In addition to these guidelines and policies, it is very crucial

to define the implementation’s guidelines, policies, and best practices related directly

to its environment characteristics and transaction/data sensitivity. Misconfiguration

is one of the top ten security issues within IT organizations and companies today [112].

Thus, it is very vital to follow these guidelines and policies and keep the configuration

and setup of the system as secure as possible. It is also crucial to develop the NVASA

framework components as protected and secure as possible. Keeping in mind the well-

known vulnerabilities [112, 64]. Consequently, protect the framework from excessive

DoS attacks.

83

Chapter 6

CONCLUSIONS AND FUTURE WORK

While application security is the source of most of the vulnerabilities that plague

systems today, mitigation strategies have shown limited effects. The use of the N-

Version Programming Methodology, traditionally a fault-tolerance approach, in dis-

tributed applications shows promise in strengthening application security in order to

withstand both known and zero-day attacks. Therefore, in this praxis we propose the

usage of the N-Version programming methodology to enhance application security

through the implementation of our introduced N-Version Architecture Framework for

Application Security (NVASA).

We started our praxis with a study of application security and why applications

suffer from security vulnerabilities (bugs) primarily. In addition, we presented the

various types of vulnerabilities and the phases they get injected into the application.

These vulnerabilities are divided into three main categories: 1) architectural design, 2)

implementation, and 3) operational and platform vulnerabilities. Moreover, we gave

a brief study of the current related work in the field through different testing schemes

and revision routines that are widely used nowadays. These schemes are effective in

detecting some application vulnerabilities to some degree, but they fall short due to

their complexity and the absence of any protection scheme against zero-day attacks.

Furthermore, we discussed the building blocks of our proposed four-layer NVASA

framework. 1) The Routing Layer is the interface of the framework, it essentially

routes the input to the N-Versions within the 2) N-Version Environment Layer to be

executed. Each version executes concurrently sending the output to the 3) N-Version

84

Decision Layer where a consensus algorithm runs to reach a majority output or come

to an agreement based on a unanimous output. This is defined beforehand based on

the security level required.

We have presented how the NVASA architecture achieves better security in terms

of detecting and preventing known attacks, while having a scheme to detect and

prevent zero-day attacks as well. This is achieved by utilizing a decision algorithm

within the N-Version decision layer that comes to a consensus based on all the N-

Version outputs before applying any of these commands to the backend application

server layer. Therefore, if a specific vulnerability was effective in exploiting one version

the decision algorithm would still detect that attack and prevent it from propogating

through the system. This proposed framework prevents application layer exploitation

of the system which would lead to the destruction, modification, or leakage of the

confidential information to malicious users.

However, applying the NVASA framework to large applications can introduce

overhead and effort. Therefore, we discussed few overhead reduction schemes to

reduce the overhead associated with implementing the NVASA framework. First

reduction scheme is through compartmentalizing the application architecture into

two or more components. Consequently, applying the NVASA framework exclusively

to the critical components instead of the entire application. We have discussed two

methods to identify the critical components. First, through static analysis schemes

through source code parsing. Second, through expert security evaluators. Second

reduction scheme is through the usage of various compilers of the same language to

compile the source code and produce N-Versions of the application. Finally, through

the usage of source-to-source language translators to implement N-Versions without

having to program and administer each version through different groups of developers.

85

We have shown through our experiment work that web application architecture

applying the NVASA Framework increases the resiliency and security posture of the

exposed services. From experiment one, we tested the NVASA web system using a

Buffer-Over-Flow input that was able to exploit only one version (the C++ version)

from a total of three versions. However, the rest (the C and Java versions) revealed an

error message to the decision layer. Therefore, enabling the decision algorithm from

detecting the attack and preventing it from propagating through the system. In the

same experiment, we tested the web system using a different attack using a Format-

String input that was able to exploit a different version (the C version). Again, the

remaining two versions (C++ and Java), revealed an error message. Thus, enabling

the decision algorithm from detecting and preventing the attack from taking place.

In our second AES Cloud Implementation, we used three pre-developed imple-

mentations of AES to achieve the required diversity specified by the N-Version pro-

gramming methodology. The N-Versions were written in C/C++, Java and C# .NET

[110, 84, 88]. Each version was sandboxed in a separate VM. The routing and de-

cision layers were developed using the Java language. The connection was achieved

via web services. Furthermore, we tested the standalone versions against the NVASA

AES implementation using a benchmark of 100 different inputs. With few inputs,

we were able to exploit all versions, but fortunately, the NVASA framework detected

and prevented the attack. This was ultimately achieved because each of the versions

was exploited uniquely. Each version produced a unique output. Therefore, enabling

the decision algorithm to detect the malformed input and prevented the exploit from

propagating through the system.

Through our final experiment, we have statically analyzed a large open source web

application called Moodle to identify the security critical parts. We parsed through

the PHP source code looking for I/O and SQL queries. Moodle was constructed of

86

5061 PHP files and 1,060,585 lines of code. We discovered that the critical code

(I/O and database query functions) accumulated a %1.6 of the total source code.

Therefore, applying the NVASA framework to these components would add slight

overhead to the development phases while increasing the security posture of the web

application.

6.1. Future Work

6.1.1. Application Attacks

We have investigated some of the top application attacks in Chapter 3 and how

the NVASA framework will detect and prevent these attacks from taking place and

propagating through the system. Further study should be done to investigate other

types of application attacks against the NVASA framework, and how the framework

would still detect any discrepancy and prevent these attacks from taking place.

6.1.2. New Reduction Schemes

We have discussed few schemes to reduce the overhead associated with the im-

plementation of the NVASA framework, future work should investigating new and

improved schemes by improving on the proposed compartmentalization to identify

the critical components, and paths within the applications. Hence, possibly applying

the NVASA framework to the entire critical path for enhanced security. In addition,

investigate if these proposed schemes are effective in detecting and preventing known

attacks while still having a scheme to capture zero-day attacks. This could be done

through a comparison between a full implemented NVASA framework application

against the same application but compartmnetalized.

87

6.1.3. Automation of the NVASA Project

Further, we believe that most of the work performed to identify, and compart-

mentalize the critical components can be automated. Therefore, future work should

focus on developing methodologies to automate the NVASA process to generate the

architecture of the framework and versions. In addition, investigating the use of high-

level modeling languages such as UML for the architectural definitions in conjunction

with automated code generation.

6.1.4. Extra Protection Through a Buffer/Translator and a Learning Algorithm

Moreover, further work should focus on improving the routing layer and the com-

munications between the routing layer and the N-Versions through a Buffer and a

Translator. Furthermore, adding a learning algorithm to comprehend and update the

translator with successful malicious inputs that succeeded in exploiting one or more

versions. This will reduce any malicious inputs from penetrating the routing layer, if

attempted again, and into the application. Consequently, improving the application’s

security, reducing any un-necessary overhead, and preventing any denial-of-service

DoS attacks from affecting the performance of the application. Figure 6.1 shows a

vision of the improved architecture. Besides, the data produced and collected by the

learning algorithm could be used for further analysis to discover and identify new

zero-day attacks.

6.1.5. NVASA framework to Protect the Client-Side from Zero-Day Attacks

In addition, we have discussed Cross-Site-Scripting attacks and how it affects both

sides of the connection, the server-side and client-side. In this praxis, we focused on

preventing attacks from taking place and breaching the server-side application. Future

work should involve investigating the client-side by diversifying the browsers using

88

Figure 6.1. Vision of the Improved Routing Layer Communications within the

NVASA Architecture

sandboxed versions and emulators to create an N-Versioned browser. Thus, detecting

any malicious activity from harming users, whether the attack was XSS or a new

zero-day exploit targeting the browser.

6.1.6. Automate Security for Cloud-Customers through a Specific NVASA Frame-

work Model

Additionally, more work should investigate the implementation of a specific NVASA

framework specialized to run on public clouds to automate security for cloud cus-

tomers. The focus would be on creating a framework that receives the input and

all defined set of restrictions, and values. Then run the input within a diverse set

of emulators. These emulators would mimic diverse environments with various OS

types and languages running on separate virtual machines. Therefore, capturing any

un-usual behavior. This model would have to be specific to each attack, making it

a central unit to detect and prevent known attacks. We should point out that such

a specific system would not detect and prevent zero-day attacks, but will remove

89

the burden of detecting known-security attacks from the cloud customers. The same

concept could be implemented by N-Versioning the anti-virus scanners to guarantee

the detection of any malicious files uploaded to the cloud.

6.1.7. Economic Analysis of the NVASA Framework

N-Version programming is usually criticized for having high resource requirements,

overhead, and implementation time. However, implementing the NVASA framework

in distributed applications will improve the application security. Thus, avoiding huge

economic expenses in security schemes and losses from successful breaches. For ex-

ample, Sony predicted over $170 million in losses following the latest Play-Station

Network hacking [37]. In addition, Citigroup has reported a loss of $2.7 million of

customer’s funds due to hacking activities [12]. These successful attacks on compa-

nies not only end up with financial losses, it damages the company’s reputation and

customer trust. Therefore, could be devastating in the long term. Future work should

study the economical impact of implementing the NVASA framework and compare it

to potential loss from historical security breaches.

90

Appendix A

SOURCE CODE

The source code of our AES NVASA implementation is divided into sections based

on the architecture of the design. Section 1, includes the C/C++ implementation

source code and the VM configuration as well as the web server (Apache) and CGI

configuration. Section 2, includes the C# implementation and the VM configuration;

in addition, the ASP.NET and IIS7 configurations. Finally, section 3 includes the

Java AES implementation as well as the interface testing, routing and decision layer

source code. Section 3 also includes the SOAP and CGI requests.

91

C/C++ AES Implementation

Configuring Apache and CGI

The C/C++ AES implementation ran on a Linux VM (Ubuntu). Therefore, we

installed Apache as a web server and enabled CGI to run the C/C++ AES imple-

mentation as a web service.

1. Install Apache sudo apt-get install apache2

2. Setup Apache and CGI by creating a folder for the CGI and Perl scripts called

cgi-bin under /var/www/

3. Set the permission to 750 to the cgi-bin folder

4. Added the below code to /etc/apache2/site-enabled/[DefaultFile]

<Directory ‘ ‘/ var /www/ cgi−bin ’ ’>

AllowOverride None

Options +ExecCGI −MultiViews +SymLinksIfOwnerMatch

AddHandler cgi−s c r i p t c g i p l

Order al low , deny

Allow from a l l

</Directory>

5. Included the executable CGI in cgi-bin.

ccode.cgi

#inc lude <iostream>

#inc lude <s t d l i b . h>

#inc lude<s t r i n g . h>

#inc lude <s t d i o . h>

us ing namespace std ;

#de f i n e Nb 4

//PlainText and KeyInput to get and s t o r e input

s t r i n g PlainText ;

s t r i n g KeyInput ;

// The number o f rounds in AES Cipher .

// I t i s s imply i n i t i a t e d to zero . The ac tua l

// value i s r e c i ev ed in the program .

92

i n t Nr=12; //To encrypt us ing 192 b i t Keys Only

// The number o f 32 b i t words in the key .

// I t i s s imply i n i t i a t e d to zero . The ac tua l

// value i s r e c i ev ed in the program .

i n t Nk=6; //To encrypt us ing 192 b i t Keys Only

// in − i t i s the array that holds the p l a in text to be encrypted .

// out − i t i s the array that holds the key f o r encrypt ion .

// s t a t e − the array that holds the inte rmed ia te r e s u l t s during encrypt ion .

unsigned char in [1 6] , out [1 6] , s t a t e [4] [4] ;

// The array that s t o r e s the round keys .

unsigned char RoundKey [2 4 0] ;

// The Key input to the AES Program

unsigned char Key [3 2] ;

s t r i n g s t r ;

i n t getSBoxValue (i n t num)

{

i n t sbox [2 5 6] = {

//0 1 2 3 4 5 6 7 8 9 A B C D E F

0x63 , 0 x7c , 0 x77 , 0 x7b , 0 xf2 , 0 x6b , 0 x6f , 0 xc5 , 0 x30 , 0 x01 , 0 x67 , 0 x2b , 0 xfe , 0 xd7 , 0 xab , 0 x76 , //0

0xca , 0 x82 , 0 xc9 , 0 x7d , 0 xfa , 0 x59 , 0 x47 , 0 xf0 , 0 xad , 0 xd4 , 0 xa2 , 0 xaf , 0 x9c , 0 xa4 , 0 x72 , 0 xc0 , //1

0xb7 , 0 xfd , 0 x93 , 0 x26 , 0 x36 , 0 x3f , 0 xf7 , 0 xcc , 0 x34 , 0 xa5 , 0 xe5 , 0 xf1 , 0 x71 , 0 xd8 , 0 x31 , 0 x15 , //2

0x04 , 0 xc7 , 0 x23 , 0 xc3 , 0 x18 , 0 x96 , 0 x05 , 0 x9a , 0 x07 , 0 x12 , 0 x80 , 0 xe2 , 0 xeb , 0 x27 , 0 xb2 , 0 x75 , //3

0x09 , 0 x83 , 0 x2c , 0 x1a , 0 x1b , 0 x6e , 0 x5a , 0 xa0 , 0 x52 , 0 x3b , 0 xd6 , 0 xb3 , 0 x29 , 0 xe3 , 0 x2f , 0 x84 , //4

0x53 , 0 xd1 , 0 x00 , 0 xed , 0 x20 , 0 xfc , 0 xb1 , 0 x5b , 0 x6a , 0 xcb , 0 xbe , 0 x39 , 0 x4a , 0 x4c , 0 x58 , 0 xcf , //5

0xd0 , 0 xef , 0 xaa , 0 xfb , 0 x43 , 0 x4d , 0 x33 , 0 x85 , 0 x45 , 0 xf9 , 0 x02 , 0 x7f , 0 x50 , 0 x3c , 0 x9f , 0 xa8 , //6

0x51 , 0 xa3 , 0 x40 , 0 x8f , 0 x92 , 0 x9d , 0 x38 , 0 xf5 , 0 xbc , 0 xb6 , 0 xda , 0 x21 , 0 x10 , 0 x f f , 0 xf3 , 0 xd2 , //7

0xcd , 0 x0c , 0 x13 , 0 xec , 0 x5f , 0 x97 , 0 x44 , 0 x17 , 0 xc4 , 0 xa7 , 0 x7e , 0 x3d , 0 x64 , 0 x5d , 0 x19 , 0 x73 , //8

0x60 , 0 x81 , 0 x4f , 0 xdc , 0 x22 , 0 x2a , 0 x90 , 0 x88 , 0 x46 , 0 xee , 0 xb8 , 0 x14 , 0 xde , 0 x5e , 0 x0b , 0 xdb , //9

0xe0 , 0 x32 , 0 x3a , 0 x0a , 0 x49 , 0 x06 , 0 x24 , 0 x5c , 0 xc2 , 0 xd3 , 0 xac , 0 x62 , 0 x91 , 0 x95 , 0 xe4 , 0 x79 , //A

0xe7 , 0 xc8 , 0 x37 , 0 x6d , 0 x8d , 0 xd5 , 0 x4e , 0 xa9 , 0 x6c , 0 x56 , 0 xf4 , 0 xea , 0 x65 , 0 x7a , 0 xae , 0 x08 , //B

0xba , 0 x78 , 0 x25 , 0 x2e , 0 x1c , 0 xa6 , 0 xb4 , 0 xc6 , 0 xe8 , 0 xdd , 0 x74 , 0 x1f , 0 x4b , 0 xbd , 0 x8b , 0 x8a , //C

0x70 , 0 x3e , 0 xb5 , 0 x66 , 0 x48 , 0 x03 , 0 xf6 , 0 x0e , 0 x61 , 0 x35 , 0 x57 , 0 xb9 , 0 x86 , 0 xc1 , 0 x1d , 0 x9e , //D

0xe1 , 0 xf8 , 0 x98 , 0 x11 , 0 x69 , 0 xd9 , 0 x8e , 0 x94 , 0 x9b , 0 x1e , 0 x87 , 0 xe9 , 0 xce , 0 x55 , 0 x28 , 0 xdf , //E

0x8c , 0 xa1 , 0 x89 , 0 x0d , 0 xbf , 0 xe6 , 0 x42 , 0 x68 , 0 x41 , 0 x99 , 0 x2d , 0 x0f , 0 xb0 , 0 x54 , 0 xbb , 0 x16 } ; //F

return sbox [num] ;

}

// The round constant word array , Rcon [i] , conta ins the va lues g iven by

// x to th e power (i −1) being powers o f x (x i s denoted as {02}) in the f i e l d GF(28)

// Note that i s t a r t s at 1 , not 0) .

i n t Rcon [2 5 5] = {

0x8d , 0 x01 , 0 x02 , 0 x04 , 0 x08 , 0 x10 , 0 x20 , 0 x40 , 0 x80 , 0 x1b , 0 x36 , 0 x6c , 0 xd8 , 0 xab , 0 x4d , 0 x9a ,

0x2f , 0 x5e , 0 xbc , 0 x63 , 0 xc6 , 0 x97 , 0 x35 , 0 x6a , 0 xd4 , 0 xb3 , 0 x7d , 0 xfa , 0 xef , 0 xc5 , 0 x91 , 0 x39 ,

0x72 , 0 xe4 , 0 xd3 , 0 xbd , 0 x61 , 0 xc2 , 0 x9f , 0 x25 , 0 x4a , 0 x94 , 0 x33 , 0 x66 , 0 xcc , 0 x83 , 0 x1d , 0 x3a ,

0x74 , 0 xe8 , 0 xcb , 0 x8d , 0 x01 , 0 x02 , 0 x04 , 0 x08 , 0 x10 , 0 x20 , 0 x40 , 0 x80 , 0 x1b , 0 x36 , 0 x6c , 0 xd8 ,

0xab , 0 x4d , 0 x9a , 0 x2f , 0 x5e , 0 xbc , 0 x63 , 0 xc6 , 0 x97 , 0 x35 , 0 x6a , 0 xd4 , 0 xb3 , 0 x7d , 0 xfa , 0 xef ,

0xc5 , 0 x91 , 0 x39 , 0 x72 , 0 xe4 , 0 xd3 , 0 xbd , 0 x61 , 0 xc2 , 0 x9f , 0 x25 , 0 x4a , 0 x94 , 0 x33 , 0 x66 , 0 xcc ,

0x83 , 0 x1d , 0 x3a , 0 x74 , 0 xe8 , 0 xcb , 0 x8d , 0 x01 , 0 x02 , 0 x04 , 0 x08 , 0 x10 , 0 x20 , 0 x40 , 0 x80 , 0 x1b ,

93

0x36 , 0 x6c , 0 xd8 , 0 xab , 0 x4d , 0 x9a , 0 x2f , 0 x5e , 0 xbc , 0 x63 , 0 xc6 , 0 x97 , 0 x35 , 0 x6a , 0 xd4 , 0 xb3 ,

0x7d , 0 xfa , 0 xef , 0 xc5 , 0 x91 , 0 x39 , 0 x72 , 0 xe4 , 0 xd3 , 0 xbd , 0 x61 , 0 xc2 , 0 x9f , 0 x25 , 0 x4a , 0 x94 ,

0x33 , 0 x66 , 0 xcc , 0 x83 , 0 x1d , 0 x3a , 0 x74 , 0 xe8 , 0 xcb , 0 x8d , 0 x01 , 0 x02 , 0 x04 , 0 x08 , 0 x10 , 0 x20 ,

0x40 , 0 x80 , 0 x1b , 0 x36 , 0 x6c , 0 xd8 , 0 xab , 0 x4d , 0 x9a , 0 x2f , 0 x5e , 0 xbc , 0 x63 , 0 xc6 , 0 x97 , 0 x35 ,

0x6a , 0 xd4 , 0 xb3 , 0 x7d , 0 xfa , 0 xef , 0 xc5 , 0 x91 , 0 x39 , 0 x72 , 0 xe4 , 0 xd3 , 0 xbd , 0 x61 , 0 xc2 , 0 x9f ,

0x25 , 0 x4a , 0 x94 , 0 x33 , 0 x66 , 0 xcc , 0 x83 , 0 x1d , 0 x3a , 0 x74 , 0 xe8 , 0 xcb , 0 x8d , 0 x01 , 0 x02 , 0 x04 ,

0x08 , 0 x10 , 0 x20 , 0 x40 , 0 x80 , 0 x1b , 0 x36 , 0 x6c , 0 xd8 , 0 xab , 0 x4d , 0 x9a , 0 x2f , 0 x5e , 0 xbc , 0 x63 ,

0xc6 , 0 x97 , 0 x35 , 0 x6a , 0 xd4 , 0 xb3 , 0 x7d , 0 xfa , 0 xef , 0 xc5 , 0 x91 , 0 x39 , 0 x72 , 0 xe4 , 0 xd3 , 0 xbd ,

0x61 , 0 xc2 , 0 x9f , 0 x25 , 0 x4a , 0 x94 , 0 x33 , 0 x66 , 0 xcc , 0 x83 , 0 x1d , 0 x3a , 0 x74 , 0 xe8 , 0 xcb } ;

// This func t i on produces Nb(Nr+1) round keys .

The round keys are used in each round to encrypt the s t a t e s .

void KeyExpansion ()

{

i n t i , j ;

unsigned char temp [4] , k ;

// The f i r s t round key i s the key i t s e l f .

f o r (i =0; i<Nk; i++)

{

RoundKey [i ∗4]=Key [i ∗ 4] ;

RoundKey [i ∗4+1]=Key [i ∗4+1];

RoundKey [i ∗4+2]=Key [i ∗4+2];

RoundKey [i ∗4+3]=Key [i ∗4+3];

}

// Al l other round keys are found from the prev ious round keys .

whi le (i < (Nb ∗ (Nr+1)))

{

f o r (j =0; j <4; j++)

{

temp [j]=RoundKey [(i −1) ∗ 4 + j] ;

}

i f (i \% Nk == 0)

{

// This func t i on r o t a t e s the

//4 bytes in a word to the l e f t once .

// [a0 , a1 , a2 , a3] becomes [a1 , a2 , a3 , a0]

// Function RotWord ()

{

k = temp [0] ;

temp [0] = temp [1] ;

temp [1] = temp [2] ;

temp [2] = temp [3] ;

temp [3] = k ;

}

// SubWord () i s a func t i on that takes

//a four−byte input word and app l i e s the

//S−box to each o f the four bytes to produce

//an output word .

94

// Function Subword ()

{

temp [0]= getSBoxValue (temp [0]) ;

temp [1]= getSBoxValue (temp [1]) ;

temp [2]= getSBoxValue (temp [2]) ;

temp [3]= getSBoxValue (temp [3]) ;

}

temp [0] = temp [0] ˆ Rcon [i /Nk] ;

}

e l s e i f (Nk > 6 && i \% Nk == 4)

{

// Function Subword ()

{

temp [0]= getSBoxValue (temp [0]) ;

temp [1]= getSBoxValue (temp [1]) ;

temp [2]= getSBoxValue (temp [2]) ;

temp [3]= getSBoxValue (temp [3]) ;

}

}

RoundKey [i ∗4+0] = RoundKey [(i−Nk)∗4+0] ˆ temp [0] ;

RoundKey [i ∗4+1] = RoundKey [(i−Nk)∗4+1] ˆ temp [1] ;

RoundKey [i ∗4+2] = RoundKey [(i−Nk)∗4+2] ˆ temp [2] ;

RoundKey [i ∗4+3] = RoundKey [(i−Nk)∗4+3] ˆ temp [3] ;

i++;

}

}

// This func t i on adds the round key to s t a t e .

// The round key i s added to the s t a t e by an XOR func t i on .

void AddRoundKey(i n t round)

{

i n t i , j ;

f o r (i =0; i <4; i++)

{

f o r (j =0; j <4; j++)

{

s t a t e [j] [i] ˆ= RoundKey [round ∗ Nb ∗ 4 + i ∗ Nb + j] ;

}

}

}

// The SubBytes Function Subs t i t u t e s the va lues in the

// s t a t e matrix with va lues in an S−box .

void SubBytes ()

{

i n t i , j ;

f o r (i =0; i <4; i++)

{

f o r (j =0; j <4; j++)

{

s t a t e [i] [j] = getSBoxValue (s t a t e [i] [j]) ;

95

}

}

}

// The ShiftRows () func t i on s h i f t s the rows in the s t a t e to the l e f t .

// Each row i s s h i f t e d with d i f f e r e n t o f f s e t .

// Of f s e t = Row number . So the f i r s t row i s not s h i f t e d .

void ShiftRows ()

{

unsigned char temp ;

// Rotate f i r s t row 1 columns to l e f t

temp=s ta t e [1] [0] ;

s t a t e [1] [0]= s t a t e [1] [1] ;

s t a t e [1] [1]= s t a t e [1] [2] ;

s t a t e [1] [2]= s t a t e [1] [3] ;

s t a t e [1] [3]= temp ;

// Rotate second row 2 columns to l e f t

temp=s ta t e [2] [0] ;

s t a t e [2] [0]= s t a t e [2] [2] ;

s t a t e [2] [2]= temp ;

temp=s ta t e [2] [1] ;

s t a t e [2] [1]= s t a t e [2] [3] ;

s t a t e [2] [3]= temp ;

// Rotate th i rd row 3 columns to l e f t

temp=s ta t e [3] [0] ;

s t a t e [3] [0]= s t a t e [3] [3] ;

s t a t e [3] [3]= s t a t e [3] [2] ;

s t a t e [3] [2]= s t a t e [3] [1] ;

s t a t e [3] [1]= temp ;

}

// xtime i s a macro that f i nd s the product o f {02} and the argument to xtime modulo {1b}

#de f i n e xtime (x) ((x<<1) ˆ (((x>>7) & 1) ∗ 0x1b))

// MixColumns func t i on mixes the columns o f the s t a t e matrix

void MixColumns ()

{

i n t i ;

unsigned char Tmp,Tm, t ;

f o r (i =0; i <4; i++)

{

t=s t a t e [0] [i] ;

Tmp = s ta t e [0] [i] ˆ s t a t e [1] [i] ˆ s t a t e [2] [i] ˆ s t a t e [3] [i] ;

Tm = s ta t e [0] [i] ˆ s t a t e [1] [i] ; Tm = xtime (Tm) ; s t a t e [0] [i] ˆ= Tm ˆ Tmp ;

Tm = sta t e [1] [i] ˆ s t a t e [2] [i] ; Tm = xtime (Tm) ; s t a t e [1] [i] ˆ= Tm ˆ Tmp ;

Tm = sta t e [2] [i] ˆ s t a t e [3] [i] ; Tm = xtime (Tm) ; s t a t e [2] [i] ˆ= Tm ˆ Tmp ;

Tm = sta t e [3] [i] ˆ t ; Tm = xtime (Tm) ; s t a t e [3] [i] ˆ= Tm ˆ Tmp ;

}

}

96

// Cipher i s the main func t i on that encrypts the PlainText .

void Cipher ()

{

i n t i , j , round=0;

//Copy the input PlainText to s t a t e array .

f o r (i =0; i <4; i++)

{

f o r (j =0; j <4; j++)

{

s t a t e [j] [i] = in [i ∗4 + j] ;

}

}

// Add the F i r s t round key to the s t a t e be f o r e s t a r t i n g the rounds .

AddRoundKey (0) ;

// There w i l l be Nr rounds .

// The f i r s t Nr−1 rounds are i d e n t i c a l .

// These Nr−1 rounds are executed in the loop below .

f o r (round=1; round<Nr ; round++)

{

SubBytes () ;

ShiftRows () ;

MixColumns () ;

AddRoundKey(round) ;

}

// The l a s t round i s g iven below .

// The MixColumns func t i on i s not here in the l a s t round .

SubBytes () ;

ShiftRows () ;

AddRoundKey(Nr) ;

// The encrypt ion proce s s i s over .

// Copy the s t a t e array to output array .

f o r (i =0; i <4; i++)

{

f o r (j =0; j <4; j++)

{

out [i ∗4+ j]= s t a t e [j] [i] ;

}

}

}

i n t main ()

{

char∗ data = getenv (”QUERY STRING”) ;

s t r i n g s = data ;

i n t i ;

// r e c e i v i n g and pars ing the browser input to ex t ra c t the Key and PlainText

97

// This p roce s s was taken from var ious s i t e s and i s

// known to be vu lne rab l e due to lack o f f i l t r a t i o n

cout << ”Content−type : t ext / p l a in \n\n ” ;

// Delete va r i ab l e names and s i gn s

s . e r a s e (0 , 4) ;

i n t posit ionPT = s . f i nd (”&PlainText=”, 0) ;

s . r ep l a c e (positionPT ,11 ,” ”) ; // Replace 11 Charecters from PositionPT with a Space

i n t pos i t i onSp = s . f i nd (” ” , 0) ; // Mark the space between the Key and PlainText

KeyInput = s . subs t r (0 , pos i t i onSp) ; // Extract the Key

PlainText = s . subs t r ((pos i t i onSp +1) , s . l ength ()) ; // Extract the PlainText

//Debugging purposes Show Key nd PlainText

// cout << ”Key : \”” << KeyInput<<”\””<<endl ;

// cout << ”PlainText : \”” << PlainText<<”\””<<endl ;

i n t m;

i n t Mark=0;

i n t number=0;

i n t KeyLength=KeyInput . l ength ()−1;

//Debugging purposes

// p r i n t f (”\n\n\n\n ”) ;

char temp [KeyInput . l ength ()] ;

s t r cpy (temp , KeyInput . c s t r ()) ;

////Debugging purposes

// p r i n t f (”\n\n\n\n This i s Temp: \”\%s \” \n” , temp) ;

f o r (m=0;m<KeyLength ;m=m+2)

{

s s c an f (&temp [m] ,”\%02x” , &number) ;

Key [Mark]=(unsigned char)number ;

// p r i n t f (”\%02x , and Key[\%d]=\%02x\n” ,number , Mark ,Key [Mark]) ;

Mark++;

}

Mark=0;

char temp2 [PlainText . l ength ()] ;

s t r cpy (temp2 , PlainText . c s t r ()) ;

i n t PlainTextLength=PlainText . l ength ()−1;

f o r (m=0;m<PlainTextLength ;m=m+2)

{

s s c an f (&temp2 [m] ,”\%02x” , &number) ;

in [Mark]=(unsigned char)number ;

Mark++;

}

// The KeyExpansion rout ine must be c a l l e d be f o r e encrypt ion .

KeyExpansion () ;

// The next func t i on c a l l encrypts the PlainText

// with the Key us ing AES algor i thm .

Cipher () ;

98

// Output the encrypted text .

// p r i n t f (”\ nCipher Text :\n ”) ;

f o r (i =0; i<Nb∗4 ; i++)

{

p r i n t f (”\%02x” , out [i]) ;

}

p r i n t f (”\n\n ”) ;

re turn 0 ;

}

99

C# AES Implementation

Configuring IIS7 and ASP.NET

The C# AES implementation ran on a Windows7 VM. Therefore, we installed

IIS7 as a web server and enabled ASP.NET to run the C# AES implementation as a

web service.

1. Install IIS7 and ASP.NET by going to Control Panel, then click on Programs.

Choose “Turn Windows features on or off”. Enable IIS7 and ASP.NET features.

2. Publish the C# web service to a new folder C:/AES.

3. Set the permission of the C:/AES to allow Everyone to Read and Execute.

4. In the IIS management tool, create a new Web Site and point the physical file

to C:/AES and set a port. In this implementation we used 65534 and 5791.

5. Enable Directory Browsing within the IIS management tool.

6. In Windows firewall, open the specified ports.

AES.cs

us ing System ;

us ing System . Co l l e c t i o n s . Generic ;

us ing System . Linq ;

us ing System .Web;

namespace AesLib

{

pub l i c c l a s s Aes // Advanced Encryption Standard

{

pub l i c enum KeySize { Bits128 , Bits192 , Bits256 } ;

// key s i z e , in b i t s , f o r cons t ru to r

p r i va t e i n t Nb; // block s i z e in 32−b i t words . Always 4 f o r AES. (128 b i t s) .

p r i va t e i n t Nk ; // key s i z e in 32−b i t words . 4 , 6 , 8 . (128 , 192 , 256 b i t s) .

p r i va t e i n t Nr ; // number o f rounds . 10 , 12 , 14 .

100

pr i va t e byte [] key ; // the seed key . s i z e w i l l be 4 ∗ keySize from cto r .

p r i va t e byte [,] Sbox ; // Subs t i tu t i on box

pr i va t e byte [,] iSbox ; // i nv e r s e Subs t i tu t i on box

pr i va t e byte [,] w; // key schedu le array .

p r i va t e byte [,] Rcon ; // Round constants .

p r i va t e byte [,] State ; // State matrix

pub l i c Aes (KeySize keySize , byte [] keyBytes)

{

SetNbNkNr(keySize) ;

t h i s . key = new byte [t h i s .Nk ∗ 4] ; // 16 , 24 , 32 bytes

keyBytes . CopyTo(t h i s . key , 0) ;

BuildSbox () ;

BuildInvSbox () ;

BuildRcon () ;

KeyExpansion () ; // expand the seed key in to a key schedu le and s t o r e in w

} // Aes cons t ruc to r

pub l i c void Cipher (byte [] input , byte [] output) // enc ipher 16−b i t input

{

// s t a t e = input

t h i s . State = new byte [4 ,Nb] ; // always [4 , 4]

f o r (i n t i = 0 ; i < (4 ∗ Nb) ; ++i)

{

t h i s . State [i \% 4 , i / 4] = input [i] ;

}

AddRoundKey (0) ;

f o r (i n t round = 1 ; round <= (Nr − 1) ; ++round) // main round loop

{

SubBytes () ;

ShiftRows () ;

MixColumns () ;

AddRoundKey(round) ;

} // main round loop

SubBytes () ;

ShiftRows () ;

AddRoundKey(Nr) ;

// output = s t a t e

f o r (i n t i = 0 ; i < (4 ∗ Nb) ; ++i)

{

output [i] = t h i s . State [i \% 4 , i / 4] ;

}

} // Cipher ()

101

pub l i c void InvCipher (byte [] input , byte [] output) // dec ipher 16−b i t input

{

// s t a t e = input

t h i s . State = new byte [4 ,Nb] ; // always [4 , 4]

f o r (i n t i = 0 ; i < (4 ∗ Nb) ; ++i)

{

t h i s . State [i \% 4 , i / 4] = input [i] ;

}

AddRoundKey(Nr) ;

f o r (i n t round = Nr−1; round >= 1; −−round) // main round loop

{

InvShiftRows () ;

InvSubBytes () ;

AddRoundKey(round) ;

InvMixColumns () ;

} // end main round loop f o r InvCipher

InvShiftRows () ;

InvSubBytes () ;

AddRoundKey (0) ;

// output = s t a t e

f o r (i n t i = 0 ; i < (4 ∗ Nb) ; ++i)

{

output [i] = t h i s . State [i \% 4 , i / 4] ;

}

} // InvCipher ()

p r i va t e void SetNbNkNr(KeySize keySize)

{

t h i s .Nb = 4 ; // block s i z e always = 4 words = 16 bytes = 128 b i t s f o r AES

i f (keySize == KeySize . Bits128)

{

t h i s .Nk = 4 ; // key s i z e = 4 words = 16 bytes = 128 b i t s

t h i s . Nr = 10 ; // rounds f o r a lgor i thm = 10

}

e l s e i f (keySize == KeySize . Bits192)

{

t h i s .Nk = 6 ; // 6 words = 24 bytes = 192 b i t s

t h i s . Nr = 12 ;

}

e l s e i f (keySize == KeySize . Bits256)

{

t h i s .Nk = 8 ; // 8 words = 32 bytes = 256 b i t s

t h i s . Nr = 14 ;

}

} // SetNbNkNr ()

p r i va t e void BuildSbox ()

102

{

t h i s . Sbox = new byte [1 6 , 1 6] { // populate the Sbox matrix

/∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f ∗/

/∗0∗/ {0x63 , 0 x7c , 0 x77 , 0 x7b , 0 xf2 , 0 x6b , 0 x6f , 0 xc5 , 0 x30 , 0 x01 , 0 x67 , 0 x2b , 0 xfe , 0 xd7 , 0 xab , 0 x76 } ,

/∗1∗/ {0xca , 0 x82 , 0 xc9 , 0 x7d , 0 xfa , 0 x59 , 0 x47 , 0 xf0 , 0 xad , 0 xd4 , 0 xa2 , 0 xaf , 0 x9c , 0 xa4 , 0 x72 , 0 xc0 } ,

/∗2∗/ {0xb7 , 0 xfd , 0 x93 , 0 x26 , 0 x36 , 0 x3f , 0 xf7 , 0 xcc , 0 x34 , 0 xa5 , 0 xe5 , 0 xf1 , 0 x71 , 0 xd8 , 0 x31 , 0 x15 } ,

/∗3∗/ {0x04 , 0 xc7 , 0 x23 , 0 xc3 , 0 x18 , 0 x96 , 0 x05 , 0 x9a , 0 x07 , 0 x12 , 0 x80 , 0 xe2 , 0 xeb , 0 x27 , 0 xb2 , 0 x75 } ,

/∗4∗/ {0x09 , 0 x83 , 0 x2c , 0 x1a , 0 x1b , 0 x6e , 0 x5a , 0 xa0 , 0 x52 , 0 x3b , 0 xd6 , 0 xb3 , 0 x29 , 0 xe3 , 0 x2f , 0 x84 } ,

/∗5∗/ {0x53 , 0 xd1 , 0 x00 , 0 xed , 0 x20 , 0 xfc , 0 xb1 , 0 x5b , 0 x6a , 0 xcb , 0 xbe , 0 x39 , 0 x4a , 0 x4c , 0 x58 , 0 xc f } ,

/∗6∗/ {0xd0 , 0 xef , 0 xaa , 0 xfb , 0 x43 , 0 x4d , 0 x33 , 0 x85 , 0 x45 , 0 xf9 , 0 x02 , 0 x7f , 0 x50 , 0 x3c , 0 x9f , 0 xa8 } ,

/∗7∗/ {0x51 , 0 xa3 , 0 x40 , 0 x8f , 0 x92 , 0 x9d , 0 x38 , 0 xf5 , 0 xbc , 0 xb6 , 0 xda , 0 x21 , 0 x10 , 0 x f f , 0 xf3 , 0 xd2} ,

/∗8∗/ {0xcd , 0 x0c , 0 x13 , 0 xec , 0 x5f , 0 x97 , 0 x44 , 0 x17 , 0 xc4 , 0 xa7 , 0 x7e , 0 x3d , 0 x64 , 0 x5d , 0 x19 , 0 x73 } ,

/∗9∗/ {0x60 , 0 x81 , 0 x4f , 0 xdc , 0 x22 , 0 x2a , 0 x90 , 0 x88 , 0 x46 , 0 xee , 0 xb8 , 0 x14 , 0 xde , 0 x5e , 0 x0b , 0 xdb} ,

/∗a∗/ {0xe0 , 0 x32 , 0 x3a , 0 x0a , 0 x49 , 0 x06 , 0 x24 , 0 x5c , 0 xc2 , 0 xd3 , 0 xac , 0 x62 , 0 x91 , 0 x95 , 0 xe4 , 0 x79 } ,

/∗b∗/ {0xe7 , 0 xc8 , 0 x37 , 0 x6d , 0 x8d , 0 xd5 , 0 x4e , 0 xa9 , 0 x6c , 0 x56 , 0 xf4 , 0 xea , 0 x65 , 0 x7a , 0 xae , 0 x08 } ,

/∗ c∗/ {0xba , 0 x78 , 0 x25 , 0 x2e , 0 x1c , 0 xa6 , 0 xb4 , 0 xc6 , 0 xe8 , 0 xdd , 0 x74 , 0 x1f , 0 x4b , 0 xbd , 0 x8b , 0 x8a } ,

/∗d∗/ {0x70 , 0 x3e , 0 xb5 , 0 x66 , 0 x48 , 0 x03 , 0 xf6 , 0 x0e , 0 x61 , 0 x35 , 0 x57 , 0 xb9 , 0 x86 , 0 xc1 , 0 x1d , 0 x9e } ,

/∗ e∗/ {0xe1 , 0 xf8 , 0 x98 , 0 x11 , 0 x69 , 0 xd9 , 0 x8e , 0 x94 , 0 x9b , 0 x1e , 0 x87 , 0 xe9 , 0 xce , 0 x55 , 0 x28 , 0 xdf } ,

/∗ f ∗/ {0x8c , 0 xa1 , 0 x89 , 0 x0d , 0 xbf , 0 xe6 , 0 x42 , 0 x68 , 0 x41 , 0 x99 , 0 x2d , 0 x0f , 0 xb0 , 0 x54 , 0 xbb , 0 x16} } ;

} // BuildSbox ()

p r i va t e void BuildInvSbox ()

{

t h i s . iSbox = new byte [1 6 , 1 6] { // populate the iSbox matrix

/∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f ∗/

/∗0∗/ {0x52 , 0 x09 , 0 x6a , 0 xd5 , 0 x30 , 0 x36 , 0 xa5 , 0 x38 , 0 xbf , 0 x40 , 0 xa3 , 0 x9e , 0 x81 , 0 xf3 , 0 xd7 , 0 xfb } ,

/∗1∗/ {0x7c , 0 xe3 , 0 x39 , 0 x82 , 0 x9b , 0 x2f , 0 x f f , 0 x87 , 0 x34 , 0 x8e , 0 x43 , 0 x44 , 0 xc4 , 0 xde , 0 xe9 , 0 xcb } ,

/∗2∗/ {0x54 , 0 x7b , 0 x94 , 0 x32 , 0 xa6 , 0 xc2 , 0 x23 , 0 x3d , 0 xee , 0 x4c , 0 x95 , 0 x0b , 0 x42 , 0 xfa , 0 xc3 , 0 x4e } ,

/∗3∗/ {0x08 , 0 x2e , 0 xa1 , 0 x66 , 0 x28 , 0 xd9 , 0 x24 , 0 xb2 , 0 x76 , 0 x5b , 0 xa2 , 0 x49 , 0 x6d , 0 x8b , 0 xd1 , 0 x25 } ,

/∗4∗/ {0x72 , 0 xf8 , 0 xf6 , 0 x64 , 0 x86 , 0 x68 , 0 x98 , 0 x16 , 0 xd4 , 0 xa4 , 0 x5c , 0 xcc , 0 x5d , 0 x65 , 0 xb6 , 0 x92 } ,

/∗5∗/ {0x6c , 0 x70 , 0 x48 , 0 x50 , 0 xfd , 0 xed , 0 xb9 , 0 xda , 0 x5e , 0 x15 , 0 x46 , 0 x57 , 0 xa7 , 0 x8d , 0 x9d , 0 x84 } ,

/∗6∗/ {0x90 , 0 xd8 , 0 xab , 0 x00 , 0 x8c , 0 xbc , 0 xd3 , 0 x0a , 0 xf7 , 0 xe4 , 0 x58 , 0 x05 , 0 xb8 , 0 xb3 , 0 x45 , 0 x06 } ,

/∗7∗/ {0xd0 , 0 x2c , 0 x1e , 0 x8f , 0 xca , 0 x3f , 0 x0f , 0 x02 , 0 xc1 , 0 xaf , 0 xbd , 0 x03 , 0 x01 , 0 x13 , 0 x8a , 0 x6b} ,

/∗8∗/ {0x3a , 0 x91 , 0 x11 , 0 x41 , 0 x4f , 0 x67 , 0 xdc , 0 xea , 0 x97 , 0 xf2 , 0 xcf , 0 xce , 0 xf0 , 0 xb4 , 0 xe6 , 0 x73 } ,

/∗9∗/ {0x96 , 0 xac , 0 x74 , 0 x22 , 0 xe7 , 0 xad , 0 x35 , 0 x85 , 0 xe2 , 0 xf9 , 0 x37 , 0 xe8 , 0 x1c , 0 x75 , 0 xdf , 0 x6e } ,

/∗a∗/ {0x47 , 0 xf1 , 0 x1a , 0 x71 , 0 x1d , 0 x29 , 0 xc5 , 0 x89 , 0 x6f , 0 xb7 , 0 x62 , 0 x0e , 0 xaa , 0 x18 , 0 xbe , 0 x1b} ,

/∗b∗/ {0 xfc , 0 x56 , 0 x3e , 0 x4b , 0 xc6 , 0 xd2 , 0 x79 , 0 x20 , 0 x9a , 0 xdb , 0 xc0 , 0 xfe , 0 x78 , 0 xcd , 0 x5a , 0 xf4 } ,

/∗ c∗/ {0x1f , 0 xdd , 0 xa8 , 0 x33 , 0 x88 , 0 x07 , 0 xc7 , 0 x31 , 0 xb1 , 0 x12 , 0 x10 , 0 x59 , 0 x27 , 0 x80 , 0 xec , 0 x5f } ,

/∗d∗/ {0x60 , 0 x51 , 0 x7f , 0 xa9 , 0 x19 , 0 xb5 , 0 x4a , 0 x0d , 0 x2d , 0 xe5 , 0 x7a , 0 x9f , 0 x93 , 0 xc9 , 0 x9c , 0 xe f } ,

/∗ e∗/ {0xa0 , 0 xe0 , 0 x3b , 0 x4d , 0 xae , 0 x2a , 0 xf5 , 0 xb0 , 0 xc8 , 0 xeb , 0 xbb , 0 x3c , 0 x83 , 0 x53 , 0 x99 , 0 x61 } ,

/∗ f ∗/ {0x17 , 0 x2b , 0 x04 , 0 x7e , 0 xba , 0 x77 , 0 xd6 , 0 x26 , 0 xe1 , 0 x69 , 0 x14 , 0 x63 , 0 x55 , 0 x21 , 0 x0c , 0 x7d} } ;

} // BuildInvSbox ()

p r i va t e void BuildRcon ()

{

t h i s . Rcon = new byte [1 1 , 4] { {0x00 , 0x00 , 0x00 , 0x00 } ,

{0x01 , 0x00 , 0x00 , 0x00 } ,

{0x02 , 0x00 , 0x00 , 0x00 } ,

{0x04 , 0x00 , 0x00 , 0x00 } ,

{0x08 , 0x00 , 0x00 , 0x00 } ,

{0x10 , 0x00 , 0x00 , 0x00 } ,

103

{0x20 , 0x00 , 0x00 , 0x00 } ,

{0x40 , 0x00 , 0x00 , 0x00 } ,

{0x80 , 0x00 , 0x00 , 0x00 } ,

{0x1b , 0x00 , 0x00 , 0x00 } ,

{0x36 , 0x00 , 0x00 , 0x00} } ;

} // BuildRcon ()

p r i va t e void AddRoundKey(i n t round)

{

f o r (i n t r = 0 ; r < 4 ; ++r)

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [r , c] = (byte) ((i n t) t h i s . State [r , c] ˆ (i n t)w[(round∗4)+c , r]) ;

}

}

} // AddRoundKey ()

p r i va t e void SubBytes ()

{

f o r (i n t r = 0 ; r < 4 ; ++r)

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [r , c] = th i s . Sbox [(t h i s . State [r , c] >> 4) , (t h i s . State [r , c] & 0 x0f)] ;

}

}

} // SubBytes

p r i va t e void InvSubBytes ()

{

f o r (i n t r = 0 ; r < 4 ; ++r)

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [r , c] = th i s . iSbox [(t h i s . State [r , c] >> 4) , (t h i s . State [r , c] & 0 x0f)] ;

}

}

} // InvSubBytes

p r i va t e void ShiftRows ()

{

byte [,] temp = new byte [4 , 4] ;

f o r (i n t r = 0 ; r < 4 ; ++r) // copy State in to temp []

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

temp [r , c] = th i s . State [r , c] ;

}

}

f o r (i n t r = 1 ; r < 4 ; ++r) // s h i f t temp in to State

104

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [r , c] = temp [r , (c + r) \% Nb] ;

}

}

} // ShiftRows ()

p r i va t e void InvShiftRows ()

{

byte [,] temp = new byte [4 , 4] ;

f o r (i n t r = 0 ; r < 4 ; ++r) // copy State in to temp []

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

temp [r , c] = th i s . State [r , c] ;

}

}

f o r (i n t r = 1 ; r < 4 ; ++r) // s h i f t temp in to State

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [r , (c + r) \% Nb] = temp [r , c] ;

}

}

} // InvShiftRows ()

p r i va t e void MixColumns ()

{

byte [,] temp = new byte [4 , 4] ;

f o r (i n t r = 0 ; r < 4 ; ++r) // copy State in to temp []

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

temp [r , c] = th i s . State [r , c] ;

}

}

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [0 , c] = (byte) ((i n t) gfmultby02 (temp [0 , c]) ˆ (i n t) gfmultby03 (temp [1 , c]) ˆ

(i n t) gfmultby01 (temp [2 , c]) ˆ (i n t) gfmultby01 (temp [3 , c])) ;

t h i s . State [1 , c] = (byte) ((i n t) gfmultby01 (temp [0 , c]) ˆ (i n t) gfmultby02 (temp [1 , c]) ˆ

(i n t) gfmultby03 (temp [2 , c]) ˆ (i n t) gfmultby01 (temp [3 , c])) ;

t h i s . State [2 , c] = (byte) ((i n t) gfmultby01 (temp [0 , c]) ˆ (i n t) gfmultby01 (temp [1 , c]) ˆ

(i n t) gfmultby02 (temp [2 , c]) ˆ (i n t) gfmultby03 (temp [3 , c])) ;

t h i s . State [3 , c] = (byte) ((i n t) gfmultby03 (temp [0 , c]) ˆ (i n t) gfmultby01 (temp [1 , c]) ˆ

(i n t) gfmultby01 (temp [2 , c]) ˆ (i n t) gfmultby02 (temp [3 , c])) ;

}

} // MixColumns

pr i va t e void InvMixColumns ()

{

105

byte [,] temp = new byte [4 , 4] ;

f o r (i n t r = 0 ; r < 4 ; ++r) // copy State in to temp []

{

f o r (i n t c = 0 ; c < 4 ; ++c)

{

temp [r , c] = th i s . State [r , c] ;

}

}

f o r (i n t c = 0 ; c < 4 ; ++c)

{

t h i s . State [0 , c] = (byte) ((i n t) gfmultby0e (temp [0 , c]) ˆ (i n t) gfmultby0b (temp [1 , c]) ˆ

(i n t) gfmultby0d (temp [2 , c]) ˆ (i n t) gfmultby09 (temp [3 , c])) ;

t h i s . State [1 , c] = (byte) ((i n t) gfmultby09 (temp [0 , c]) ˆ (i n t) gfmultby0e (temp [1 , c]) ˆ

(i n t) gfmultby0b (temp [2 , c]) ˆ (i n t) gfmultby0d (temp [3 , c])) ;

t h i s . State [2 , c] = (byte) ((i n t) gfmultby0d (temp [0 , c]) ˆ (i n t) gfmultby09 (temp [1 , c]) ˆ

(i n t) gfmultby0e (temp [2 , c]) ˆ (i n t) gfmultby0b (temp [3 , c])) ;

t h i s . State [3 , c] = (byte) ((i n t) gfmultby0b (temp [0 , c]) ˆ (i n t) gfmultby0d (temp [1 , c]) ˆ

(i n t) gfmultby09 (temp [2 , c]) ˆ (i n t) gfmultby0e (temp [3 , c])) ;

}

} // InvMixColumns

pr i va t e s t a t i c byte gfmultby01 (byte b)

{

re turn b ;

}

pr i va t e s t a t i c byte gfmultby02 (byte b)

{

i f (b < 0x80)

return (byte) (i n t) (b <<1);

e l s e

re turn (byte) ((i n t) (b << 1) ˆ (i n t) (0 x1b)) ;

}

pr i va t e s t a t i c byte gfmultby03 (byte b)

{

re turn (byte) ((i n t) gfmultby02 (b) ˆ (i n t)b) ;

}

pr i va t e s t a t i c byte gfmultby09 (byte b)

{

re turn (byte) ((i n t) gfmultby02 (gfmultby02 (gfmultby02 (b))) ˆ

(i n t)b) ;

}

pr i va t e s t a t i c byte gfmultby0b (byte b)

{

re turn (byte) ((i n t) gfmultby02 (gfmultby02 (gfmultby02 (b))) ˆ

(i n t) gfmultby02 (b) ˆ

(i n t)b) ;

}

106

pr i va t e s t a t i c byte gfmultby0d (byte b)

{

re turn (byte) ((i n t) gfmultby02 (gfmultby02 (gfmultby02 (b))) ˆ

(i n t) gfmultby02 (gfmultby02 (b)) ˆ

(i n t) (b)) ;

}

pr i va t e s t a t i c byte gfmultby0e (byte b)

{

re turn (byte) ((i n t) gfmultby02 (gfmultby02 (gfmultby02 (b))) ˆ

(i n t) gfmultby02 (gfmultby02 (b)) ˆ

(i n t) gfmultby02 (b)) ;

}

pr i va t e void KeyExpansion ()

{

t h i s .w = new byte [Nb ∗ (Nr+1) , 4] ; // 4 columns o f bytes corresponds to a word

f o r (i n t row = 0 ; row < Nk; ++row)

{

t h i s .w[row , 0] = th i s . key [4∗ row] ;

t h i s .w[row , 1] = th i s . key [4∗ row+1] ;

t h i s .w[row , 2] = th i s . key [4∗ row+2] ;

t h i s .w[row , 3] = th i s . key [4∗ row+3] ;

}

byte [] temp = new byte [4] ;

f o r (i n t row = Nk ; row < Nb ∗ (Nr+1); ++row)

{

temp [0] = th i s .w[row−1 ,0] ; temp [1] = th i s .w[row−1 ,1] ;

temp [2] = th i s .w[row−1 ,2] ; temp [3] = th i s .w[row−1 ,3] ;

i f (row \% Nk == 0)

{

temp = SubWord(RotWord(temp)) ;

temp [0] = (byte) ((i n t) temp [0] ˆ (i n t) t h i s . Rcon [row/Nk , 0]) ;

temp [1] = (byte) ((i n t) temp [1] ˆ (i n t) t h i s . Rcon [row/Nk , 1]) ;

temp [2] = (byte) ((i n t) temp [2] ˆ (i n t) t h i s . Rcon [row/Nk , 2]) ;

temp [3] = (byte) ((i n t) temp [3] ˆ (i n t) t h i s . Rcon [row/Nk , 3]) ;

}

e l s e i f (Nk > 6 && (row \% Nk == 4))

{

temp = SubWord(temp) ;

}

// w[row] = w[row−Nk] xor temp

th i s .w[row , 0] = (byte) ((i n t) t h i s .w[row−Nk , 0] ˆ (i n t) temp [0]) ;

t h i s .w[row , 1] = (byte) ((i n t) t h i s .w[row−Nk , 1] ˆ (i n t) temp [1]) ;

t h i s .w[row , 2] = (byte) ((i n t) t h i s .w[row−Nk , 2] ˆ (i n t) temp [2]) ;

t h i s .w[row , 3] = (byte) ((i n t) t h i s .w[row−Nk , 3] ˆ (i n t) temp [3]) ;

107

} // f o r loop

} // KeyExpansion ()

p r i va t e byte [] SubWord(byte [] word)

{

byte [] r e s u l t = new byte [4] ;

r e s u l t [0] = th i s . Sbox [word [0] >> 4 , word [0] & 0 x0f] ;

r e s u l t [1] = th i s . Sbox [word [1] >> 4 , word [1] & 0 x0f] ;

r e s u l t [2] = th i s . Sbox [word [2] >> 4 , word [2] & 0 x0f] ;

r e s u l t [3] = th i s . Sbox [word [3] >> 4 , word [3] & 0 x0f] ;

r e turn r e s u l t ;

}

pr i va t e byte [] RotWord(byte [] word)

{

byte [] r e s u l t = new byte [4] ;

r e s u l t [0] = word [1] ;

r e s u l t [1] = word [2] ;

r e s u l t [2] = word [3] ;

r e s u l t [3] = word [0] ;

r e turn r e s u l t ;

}

pub l i c void Dump()

{

Console . WriteLine (”Nb = ” + Nb + ” Nk = ” + Nk + ” Nr = ” + Nr) ;

Console . WriteLine (”\nThe key i s \n” + DumpKey()) ;

Console . WriteLine (”\nThe Sbox i s \n” + DumpTwoByTwo(Sbox)) ;

Console . WriteLine (”\nThe w array i s \n” + DumpTwoByTwo(w)) ;

Console . WriteLine (”\nThe State array i s \n” + DumpTwoByTwo(State)) ;

}

pub l i c s t r i n g DumpKey()

{

s t r i n g s = ”” ;

f o r (i n t i = 0 ; i < key . Length ; ++i)

s += key [i] . ToString (” x2 ”) + ” ” ;

re turn s ;

}

pub l i c s t r i n g DumpTwoByTwo(byte [,] a)

{

s t r i n g s =””;

f o r (i n t r = 0 ; r < a . GetLength (0) ; ++r)

{

s += ”[”+ r+”]” + ” ” ;

f o r (i n t c = 0 ; c < a . GetLength (1) ; ++c)

{

s += a [r , c] . ToString (” x2 ”) + ” ” ;

}

s += ”\n ” ;

}

re turn s ;

108

}

} // c l a s s Aes

} // ns AesLib

Service.cs

us ing System ;

us ing System . Co l l e c t i o n s . Generic ;

us ing System . Linq ;

us ing System .Web;

us ing System .Web. S e r v i c e s ;

us ing System . IO ;

[WebService (Namespace = ”http :// tempuri . org /”)]

[WebServiceBinding (ConformsTo = WsiPro f i l e s . Ba s i cP r o f i l e 1 1)]

// To al low th i s Web Se rv i c e to be c a l l e d

// from sc r i p t , us ing ASP.NET AJAX, uncomment the f o l l ow ing l i n e .

// [System .Web. Sc r i p t . S e r v i c e s . S c r i p t S e r v i c e]

pub l i c c l a s s Se rv i c e : System .Web. S e r v i c e s . WebService

{

System . Text . ASCIIEncoding encoding = new System . Text . ASCIIEncoding () ;

pub l i c Se rv i c e () {

//Uncomment the f o l l ow ing l i n e i f us ing des igned components

// In i t i a l i z eComponent () ;

}

[WebMethod]

pub l i c s t r i n g AES Inter face (St r ing Key , S t r ing PlainText) {

byte [] p la inText = StringToByteArray (PlainText) ;

byte [] c ipherText = new byte [1 6] ;

byte [] decipheredText = new byte [1 6] ;

byte [] keyBytes = StringToByteArray (Key) ;

AesLib . Aes a = new AesLib . Aes (AesLib . Aes . KeySize . Bits192 , keyBytes) ;

//Create an Object f o r the C# AES Implementation

a . Cipher (plainText , c ipherText) ;

// Cal l Cipher to Encrypt the Pla in Text

DisplayAsBytes (c ipherText) ;

//Save the r e s u l t in to a f i l e c a l l e d CSOutput . txt

//a . InvCipher (cipherText , decipheredText) ;

//Uncomment t h i s to Decrypt the Cipher Text

s t r i n g text = System . IO . F i l e . ReadAllText (@”C:\AES\CSOutput . txt ”) ;

//Read the Cipher Text from the CSOutput . txt F i l e

109

re turn text ;

//Return the Cipher Text to the Requester

}

s t a t i c void DisplayAsBytes (byte [] bytes)

{

System . IO . F i l e . De lete (@”C:\AES\CSOutput . txt ”) ;

f o r (i n t i = 0 ; i < bytes . Length ; ++i)

{

System . IO . F i l e . AppendAllText (@”C:\AES\CSOutput . txt ” , (bytes [i] . ToString (” x2 ”))) ;

//Console . Write (bytes [i] . ToString (” x2 ”) + ” ”) ;

i f (i > 0 && i \% 16 == 0)

System . IO . F i l e . AppendAllText (@”C:\AES\CSOutput . txt ” , ”\n ”) ;

}

System . IO . F i l e . AppendAllText (@”C:\AES\CSOutput . txt ” , ” ”) ;

} // DisplayAsBytes ()

pub l i c s t a t i c byte [] StringToByteArray (s t r i n g hex)

{

re turn Enumerable . Range (0 , hex . Length)

.Where (x => x \% 2 == 0)

. S e l e c t (x => Convert . ToByte (hex . Substr ing (x , 2) , 16))

. ToArray () ;

}

}

110

Java Routing and Decision Layers

package t e s tnva s av e r s i on s ;

import java . i o . ∗ ;

import java . net . ∗ ;

import java . i o . Fi leInputStream ;

import java . u t i l . I t e r a t o r ;

import java . u t i l . Vector ;

/∗∗

∗

∗ @author MajidMalaika

∗/

pub l i c c l a s s TestNVASAVersions {

/∗∗

∗ @param args the command l i n e arguments

∗/

pub l i c s t a t i c void main (St r ing [] args) {

St r ing Key = ”” ;

St r ing PlainText = ”” ;

St r ing C Version = ”” ;

St r ing Java Vers ion = ”” ;

St r ing CS Version = ”” ;

i n t consensus = 0 ;

TestNVASAVersions tv = new TestNVASAVersions () ;

S t r i ngBu i ld e r contents = new St r ingBu i ld e r () ;

t ry {

// use bu f f e r i ng , read ing one l i n e at a time

// Fi leReader always assumes de f au l t encoding i s OK!

St r ing aF i l e = ”C:\\AES\\pwd pt2 . txt ” ;

BufferedReader input = new BufferedReader (new Fi leReader (aF i l e)) ;

t ry {

St r ing l i n e = nu l l ; // not dec la r ed with in whi le loop

/∗

∗ readLine i s a b i t quirky :

∗ i t r e tu rns the content o f a l i n e MINUS the newl ine .

∗ i t r e tu rns nu l l only f o r the END of the stream .

∗ i t r e tu rns an empty St r ing i f two newl ines appear in a row .

∗/

whi le ((l i n e = input . readLine ()) != nu l l) {

St r ing [] s t = l i n e . s p l i t (” : ”) ;

Key = st [0] ;

PlainText = s t [1] ;

/∗ Cal l the C# Vers ion with the given Key and PlainText

∗ and s t o r e the r e s u l t in CS Version St r ing ∗/

CS Version = tv . CS Version (Key , PlainText) ;

//System . out . p r i n t l n (”C# Vers ion Output : \”” +

// CS Version + ”\””) ;

111

/∗ Cal l the Java Vers ion with the given Key and PlainText

∗ and s t o r e the

r e s u l t in Java Vers ion St r ing ∗/

Java Vers ion = tv . Java Vers ion (Key , PlainText) ;

// System . out . p r i n t l n (” Java Vers ion Output : \”” +

// Java Vers ion + ”\””) ;

/∗ Cal l the C/C++ Vers ion with the given Key and PlainText

∗ and s t o r e the r e s u l t in C Version St r ing ∗/

C Version = tv . CPP Version (Key , PlainText) ;

//System . out . p r i n t l n (”C/C++ Vers ion Output : \”” +

// C Version + ”\””) ;

// NVASA Dec i s ion Maker

consensus = tv . NVASA Decision (CS Version ,

Java Version , C Version) ;

// i f (consensus < 2)

System . out . p r i n t l n (”Key : ” + Key +

” , PlainText : ” + PlainText + ” , Consensus : ”

+ consensus + ” and the vers ion ’ s output i s ”

+ ”as fo l l ow , C: ”+C Version + ” , J : ”+

Java Vers ion + ” , C#: ” + CS Version) ;

}

} f i n a l l y {

input . c l o s e () ;

}

} catch (IOException ex) {

ex . pr intStackTrace () ;

}

}

pr i va t e St r ing CS Version (St r ing Key , St r ing PT) {

SoapRequestBuilder s = new SoapRequestBuilder () ;

s . Server = ”129 . 119 . 107 . 191” ;

// Server IP address , f o r l o c a l h o s t I use 1 2 7 . 0 . 0 . 1

s .MethodName = ”AES Inter face ” ;

s . XmlNamespace = ”http :// tempuri . org /” ;

s . WebServicePath = ”/ Se rv i c e . asmx ” ;

s . SoapAction = s . XmlNamespace + s .MethodName ;

s . Key = Key ;

s . PlainText = PT;

St r ing response = s . sendRequest () ;

r e turn response ;

}

pr i va t e St r ing Java Vers ion (St r ing Key , St r ing PT) {

St r ing s t r l n = new Str ing () ;

t ry {

// Create two f i l e s one f o r the p l a in text and one f o r the key

// these two f i l e s would work as the f e e d e r s to the Vers ions

112

Fi l eWr i t e r fstreamPT = new Fi l eWr i t e r (

”C:\\AES\\ p la in textWr i t e . txt ”) ;

F i l eWr i t e r fstreamK = new Fi l eWr i t e r (”C:\\AES\\keyWrite . txt ”) ;

Buf feredWriter outPT = new Buf feredWriter (fstreamPT) ;

Buf feredWriter outK = new Buf feredWriter (fstreamK) ;

outPT . wr i t e (PT) ;

outK . wr i t e (Key) ;

//Close the output stream

outPT . c l o s e () ;

outK . c l o s e () ;

} catch (Exception e) {//Catch except ion i f any

System . e r r . p r i n t l n (” Error : ” + e . getMessage ()) ;

}

//Encrypting the User PlainText us ing the User ’ s Key

//Test ing Implementation 1 Java

//Read the PT and K from the 2 created f i l e s

GetBytes getInput = new GetBytes (”C:\\AES\\ p la in textWr i t e . txt ” , 1 6) ;

byte [] in = getInput . getBytes () ;

GetBytes getKey = new GetBytes (”C:\\AES\\keyWrite . txt ” , 2 4) ;

byte [] key = getKey . getBytes () ;

AESencrypt aes = new AESencrypt (key , 6) ;

// Pr int . pr intArray (” P la in t ex t : ” , in) ;

// Pr int . pr intArray (”Key : ” , key) ;

byte [] out = new byte [1 6] ;

aes . Cipher (in , out) ;

// Pr int . pr intArray (” Ciphertext : ” , out) ;

// Pr int the Cipher Text to C:\\AES\\OutPutAES . txt

// This i s de f ined in the Pr int Class

Pr int . pr intArrayToFi le (”” , out) ;

t ry {

FileInputStream fstream = new Fi leInputStream (

”C:\\AES\\OutPutAES . txt ”) ;

DataInputStream inCipher = new DataInputStream (fstream) ;

BufferedReader br = new BufferedReader (

new InputStreamReader (inCipher)) ;

s t r l n = br . readLine () ;

} catch (Exception e) {//Catch except ion i f any

System . e r r . p r i n t l n (” Error : ” + e . getMessage ()) ;

}

s t r l n = s t r l n . r ep l a c e (” ” , ” ”) ;

re turn s t r l n ;

}

pr i va t e St r ing CPP Version (St r ing Key , S t r ing PT) {

St r ing inputLine = ”” ;

t ry {

113

URL c URL = new URL(” http : //129 . 119 . 107 . 182/ cgi−bin / ccode . c g i ?Key=”

+ Key + ”&PlainText=” + PT) ;

URLConnection yc = c URL . openConnection () ;

BufferedReader in = new BufferedReader (

new InputStreamReader (

yc . getInputStream ())) ;

inputLine = in . readLine () ;

in . c l o s e () ;

} catch (Exception e) {

System . out . p r i n t l n (” Error with C/C++ Vers ion : ”

+ e) ;

}

re turn inputLine ;

}

pr i va t e i n t NVASA Decision (St r ing CS, St r ing Java , S t r ing CPP){

i n t num = 0 ;

i f (Java . equa l s (CS))

++num;

i f (Java . equa l s (CPP))

++num;

return num;

}

}

114

Java AES Implementation

The Java AES implementation and the routing and decision layer ran on a Win-

dows 7 VM. Therefore, we didn’t need to expose the Java implementation as a web

service, a procedure call was sufficient in this case, but since the routing and deci-

sion layer needed to communicate with the other N-Versions, we needed to create a

SOAP request to be able to connect to the C# .NET version (Shown in SoapRequest-

Builder.java) and needed to create a URL request to connect to the C/C++ version

(Shown in the TESTNVASAVersions.java).

AESEncrypt.java

/∗

∗ To change t h i s template , choose Tools | Templates

∗ and open the template in the ed i t o r .

∗/

package t e s tnva s av e r s i on s ;

pub l i c c l a s s AESencrypt {

pr i va t e f i n a l i n t Nb = 4 ; // words in a block , always 4 f o r now

pr i va t e i n t Nk ; // key length in words

p r i va t e i n t Nr ; // number o f rounds , = Nk + 6

pr i va t e i n t wCount ; // po s i t i o n in w f o r RoundKey (= 0 each encrypt)

p r i va t e AEStables tab ; // a l l the t ab l e s needed f o r AES

pr i va t e byte [] w; // the expanded key

// AESencrypt : con s t ruc to r f o r c l a s s . Mainly expands key

pub l i c AESencrypt (byte [] key , i n t NkIn) {

Nk = NkIn ; // words in a key , = 4 , or 6 , or 8

Nr = Nk + 6 ; // corresponding number o f rounds

tab = new AEStables () ; // c l a s s to g ive va lues o f var i ous func t i on s

w = new byte [4∗Nb∗(Nr+1)] ; // room f o r expanded key

KeyExpansion (key , w) ;

}

// Cipher : ac tua l AES encryt ion

pub l i c void Cipher (byte [] in , byte [] out) {

wCount = 0 ; // count bytes in expanded key throughout encrypt ion

byte [] [] s t a t e = new byte [4] [Nb] ; // the s t a t e array

115

Copy . copy (s tate , in) ; // ac tua l component−wise copy

AddRoundKey(s t a t e) ; // xor with expanded key

f o r (i n t round = 1 ; round < Nr ; round++) {

// Pr int . pr intArray (” Star t round ” + round + ” :” , s t a t e) ;

SubBytes (s t a t e) ; // S−box sub s t i t u t i o n

ShiftRows (s t a t e) ; // mix up rows

MixColumns (s t a t e) ; // compl icated mix o f columns

AddRoundKey(s t a t e) ; // xor with expanded key

}

// Pr int . pr intArray (” Star t round ” + Nr + ” :” , s t a t e) ;

SubBytes (s t a t e) ; // S−box sub s t i t u t i o n

ShiftRows (s t a t e) ; // mix up rows

AddRoundKey(s t a t e) ; // xor with expanded key

Copy . copy (out , s t a t e) ;

}

// KeyExpansion : expand key , byte−o r i en t ed code , but t rack s words

p r i va t e void KeyExpansion (byte [] key , byte [] w) {

byte [] temp = new byte [4] ;

// f i r s t j u s t copy key to w

in t j = 0 ;

whi le (j < 4∗Nk) {

w[j] = key [j ++];

}

// here j == 4∗Nk;

i n t i ;

whi le (j < 4∗Nb∗(Nr+1)) {

i = j /4 ; // j i s always mul t ip l e o f 4 here

// handle everyth ing word−at−a time , 4 bytes at a time

f o r (i n t iTemp = 0 ; iTemp < 4 ; iTemp++)

temp [iTemp] = w[j−4+iTemp] ;

i f (i \% Nk == 0) {

byte ttemp , tRcon ;

byte oldtemp0 = temp [0] ;

f o r (i n t iTemp = 0 ; iTemp < 4 ; iTemp++) {

i f (iTemp == 3) ttemp = oldtemp0 ;

e l s e ttemp = temp [iTemp+1] ;

i f (iTemp == 0) tRcon = tab . Rcon (i /Nk) ;

e l s e tRcon = 0 ;

temp [iTemp] = (byte) (tab . SBox(ttemp) ˆ tRcon) ;

}

}

e l s e i f (Nk > 6 && (i\%Nk) == 4) {

f o r (i n t iTemp = 0 ; iTemp < 4 ; iTemp++)

temp [iTemp] = tab . SBox(temp [iTemp]) ;

}

f o r (i n t iTemp = 0 ; iTemp < 4 ; iTemp++)

w[j+iTemp] = (byte) (w[j − 4∗Nk + iTemp] ˆ temp [iTemp]) ;

j = j + 4 ;

}

}

// SubBytes : apply Sbox sub s t i t u t i o n to each byte o f s t a t e

116

pr i va t e void SubBytes (byte [] [] s t a t e) {

f o r (i n t row = 0 ; row < 4 ; row++)

f o r (i n t c o l = 0 ; c o l < Nb; co l++)

s t a t e [row] [c o l] = tab . SBox(s t a t e [row] [c o l]) ;

}

// ShiftRows : s imple c i r c u l a r s h i f t o f rows 1 , 2 , 3 by 1 , 2 , 3

p r i va t e void ShiftRows (byte [] [] s t a t e) {

byte [] t = new byte [4] ;

f o r (i n t r = 1 ; r < 4 ; r++) {

f o r (i n t c = 0 ; c < Nb; c++)

t [c] = s t a t e [r] [(c + r)\%Nb] ;

f o r (i n t c = 0 ; c < Nb; c++)

s t a t e [r] [c] = t [c] ;

}

}

// MixColumns : complex and s oph i s t i c a t e d mixing o f columns

pr i va t e void MixColumns (byte [] [] s) {

i n t [] sp = new in t [4] ;

byte b02 = (byte)0 x02 , b03 = (byte)0 x03 ;

f o r (i n t c = 0 ; c < 4 ; c++) {

sp [0] = tab .FFMul(b02 , s [0] [c]) ˆ tab .FFMul(b03 , s [1] [c]) ˆ

s [2] [c] ˆ s [3] [c] ;

sp [1] = s [0] [c] ˆ tab .FFMul(b02 , s [1] [c]) ˆ

tab .FFMul(b03 , s [2] [c]) ˆ s [3] [c] ;

sp [2] = s [0] [c] ˆ s [1] [c] ˆ

tab .FFMul(b02 , s [2] [c]) ˆ tab .FFMul(b03 , s [3] [c]) ;

sp [3] = tab .FFMul(b03 , s [0] [c]) ˆ s [1] [c] ˆ

s [2] [c] ˆ tab .FFMul(b02 , s [3] [c]) ;

f o r (i n t i = 0 ; i < 4 ; i++) s [i] [c] = (byte) (sp [i]) ;

}

}

// AddRoundKey : xor a por t ion o f expanded key with s t a t e

p r i va t e void AddRoundKey(byte [] [] s t a t e) {

f o r (i n t c = 0 ; c < Nb; c++)

f o r (i n t r = 0 ; r < 4 ; r++)

s t a t e [r] [c] = (byte) (s t a t e [r] [c] ˆ w[wCount++]);

}

}

AEStables.java

/∗

∗ To change t h i s template , choose Tools | Templates

∗ and open the template in the ed i t o r .

∗/

117

package t e s tnva s av e r s i on s ;

// AEStables : cons t ruc t var i ous 256−byte t ab l e s needed f o r AES

pub l i c c l a s s AEStables {

pub l i c AEStables () {

loadE () ; loadL () ; loadInv () ;

loadS () ; loadInvS () ; loadPowX () ;

}

pr i va t e byte [] E = new byte [2 5 6] ; // ”exp” tab l e (base 0x03)

p r i va t e byte [] L = new byte [2 5 6] ; // ”Log” tab l e (base 0x03)

p r i va t e byte [] S = new byte [2 5 6] ; // SubBytes tab l e

p r i va t e byte [] invS = new byte [2 5 6] ; // i nv e r s e o f SubBytes tab l e

p r i va t e byte [] inv = new byte [2 5 6] ; // mu l t i p l i c a t i v e i nv e r s e tab l e

p r i va t e byte [] powX = new byte [1 5] ; // powers o f x = 0x02

// Routines to ac c e s s t ab l e e n t r i e s

pub l i c byte SBox(byte b) {

re turn S [b & 0 x f f] ;

}

pub l i c byte invSBox (byte b) {

re turn invS [b & 0 x f f] ;

}

pub l i c byte Rcon(i n t i) {

re turn powX[i −1] ;

}

// FFMulFast : f a s t mult ip ly us ing tab l e lookup

pub l i c byte FFMulFast (byte a , byte b){

i n t t = 0 ; ;

i f (a == 0 | | b == 0) return 0 ;

t = (L [(a & 0 x f f)] & 0 x f f) + (L [(b & 0 x f f)] & 0 x f f) ;

i f (t > 255) t = t − 255 ;

re turn E [(t & 0 x f f)] ;

}

// FFMul : slow mult iply , us ing s h i f t i n g

pub l i c byte FFMul(byte a , byte b) {

byte aa = a , bb = b , r = 0 , t ;

whi le (aa != 0) {

i f ((aa & 1) != 0)

r = (byte) (r ˆ bb) ;

t = (byte) (bb & 0x80) ;

bb = (byte) (bb << 1) ;

i f (t != 0)

bb = (byte) (bb ˆ 0x1b) ;

aa = (byte) ((aa & 0 x f f) >> 1) ;

}

re turn r ;

}

// loadE : c r ea t e and load the E tab l e

118

pr i va t e void loadE () {

byte x = (byte)0 x01 ;

i n t index = 0 ;

E[index++] = (byte)0 x01 ;

f o r (i n t i = 0 ; i < 255 ; i++) {

byte y = FFMul(x , (byte)0 x03) ;

E [index++] = y ;

x = y ;

}

}

// loadL : load the L tab l e us ing the E tab l e

p r i va t e void loadL () { // c a r e f u l : had 254 below s e v e r a l p l a c e s

i n t index ;

f o r (i n t i = 0 ; i < 255 ; i++) {

L [E[i] & 0 x f f] = (byte) i ;

}

}

// loadS : load in the tab l e S

p r i va t e void loadS () {

i n t index ;

f o r (i n t i = 0 ; i < 256 ; i++)

S [i] = (byte) (subBytes ((byte) (i & 0 x f f)) & 0 x f f) ;

}

// loadInv : load in the tab l e inv

p r i va t e void loadInv () {

i n t index ;

f o r (i n t i = 0 ; i < 256 ; i++)

inv [i] = (byte) (FFInv ((byte) (i & 0 x f f)) & 0 x f f) ;

}

// loadInvS : load the invS tab l e us ing the S tab l e

p r i va t e void loadInvS () {

i n t index ;

f o r (i n t i = 0 ; i < 256 ; i++) {

invS [S [i] & 0 x f f] = (byte) i ;

}

}

// loadPowX : load the powX tab l e us ing mu l t i p l i c a t i o n

p r i va t e void loadPowX () {

i n t index ;

byte x = (byte)0 x02 ;

byte xp = x ;

powX [0] = 1 ; powX [1] = x ;

f o r (i n t i = 2 ; i < 15 ; i++) {

xp = FFMul(xp , x) ;

powX[i] = xp ;

}

}

119

// FFInv : the mu l t i p l i c a t i v e i nv e r s e o f a byte value

pub l i c byte FFInv (byte b) {

byte e = L [b & 0 x f f] ;

r e turn E[0 x f f − (e & 0 x f f)] ;

}

// i thBI t : re turn the i th b i t o f a byte

pub l i c i n t i t hB i t (byte b , i n t i) {

i n t m[] = {0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 } ;

r e turn (b & m[i]) >> i ;

}

// subBytes : the subBytes func t i on

pub l i c i n t subBytes (byte b) {

byte inB = b ;

i n t r e s = 0 ;

i f (b != 0) // i f b == 0 , l eave i t a lone

b = (byte) (FFInv (b) & 0 x f f) ;

byte c = (byte)0 x63 ;

f o r (i n t i = 0 ; i < 8 ; i++) {

i n t temp = 0 ;

temp = i thB i t (b , i) ˆ i t hB i t (b , (i +4)\%8) ˆ i thB i t (b , (i +5)\%8) ˆ

i thB i t (b , (i +6)\%8) ˆ i thB i t (b , (i +7)\%8) ˆ i thB i t (c , i) ;

r e s = re s | (temp << i) ;

}

re turn r e s ;

}

}

Copy.java

/∗

∗ To change t h i s template , choose Tools | Templates

∗ and open the template in the ed i t o r .

∗/

package t e s tnva s av e r s i on s ;

pub l i c c l a s s Copy {

pr i va t e s t a t i c f i n a l i n t Nb = 4 ;

// copy : copy in to s t a t e

pub l i c s t a t i c void copy (byte [] [] s tate , byte [] in) {

i n t inLoc = 0 ;

f o r (i n t c = 0 ; c < Nb; c++)

f o r (i n t r = 0 ; r < 4 ; r++)

s t a t e [r] [c] = in [inLoc++];

}

// copy : copy s t a t e to out

pub l i c s t a t i c void copy (byte [] out , byte [] [] s t a t e) {

120

i n t outLoc = 0 ;

f o r (i n t c = 0 ; c < Nb; c++)

f o r (i n t r = 0 ; r < 4 ; r++)

out [outLoc++] = s t a t e [r] [c] ;

}

}

//The c l a s s Pr int p r i n t s 1−and 2−dimens ional a r rays o f bytes f o r debugging :

GetBytes.java

/∗

∗ To change t h i s template , choose Tools | Templates

∗ and open the template in the ed i t o r .

∗/

package t e s tnva s av e r s i on s ;

// GetBytes : f e t ch array o f bytes , r epre s ented in hex

import java . i o . ∗ ;

pub l i c c l a s s GetBytes {

pr i va t e St r ing f i leName ; // input f i l ename

pr i va t e i n t a r rayS i z e ; // number o f bytes to read

pr i va t e Reader in ;

// GetBytes : const ructor , opens input f i l e

pub l i c GetBytes (S t r ing f i l e , i n t n) {

f i leName = f i l e ;

a r rayS i z e = n ;

t ry {

in = new Fi leReader (f i leName) ;

} catch (IOException e) {

System . out . p r i n t l n (” Exception opening ” + fi leName) ;

}

}

// getNextChar : f e t c h e s next char

p r i va t e char getNextChar () {

char ch = ’ ’ ; // = ’ ’ to keep compi ler happy

try {

ch = (char) in . read () ;

} catch (IOException e) {

System . out . p r i n t l n (” Exception read ing charac t e r ”) ;

}

re turn ch ;

}

// va l : r e turn in t value o f hex d i g i t

p r i va t e i n t va l (char ch) {

121

i f (ch >= ’0 ’ && ch <= ’9 ’) re turn ch − ’ 0 ’ ;

i f (ch >= ’a ’ && ch <= ’ f ’) re turn ch − ’ a ’ + 10 ;

i f (ch >= ’A’ && ch <= ’F ’) re turn ch − ’A’ + 10 ;

re turn −1000000;

}

// getBytes : f e t ch array o f bytes in hex

pub l i c byte [] getBytes () {

byte [] r e t = new byte [a r rayS i z e] ;

f o r (i n t i = 0 ; i < a r rayS i z e ; i++) {

char ch1 = getNextChar () ;

char ch2 = getNextChar () ;

r e t [i] = (byte) (va l (ch1)∗16 + val (ch2)) ;

}

re turn r e t ;

}

}

Print.java

/∗

∗ To change t h i s template , choose Tools | Templates

∗ and open the template in the ed i t o r .

∗/

package t e s tnva s av e r s i on s ;

import java . i o . ∗ ;

// Pr int : p r in t ar rays o f bytes

pub l i c c l a s s Pr int {

pr i va t e s t a t i c f i n a l i n t Nb = 4 ;

p r i va t e s t a t i c S t r ing [] d ig = {”0” ,”1” ,”2” ,”3” ,”4” ,”5” ,”6” ,”7” ,

”8” ,”9” ,” a ” ,”b” ,” c ” ,”d” ,” e ” ,” f ”} ;

// hex : p r in t a byte as two hex d i g i t s

pub l i c s t a t i c S t r ing hex (byte a) {

re turn dig [(a & 0 x f f) >> 4] + dig [a & 0 x0f] ;

}

pub l i c s t a t i c void pr intArray (St r ing name , byte [] a) {

System . out . p r in t (name + ” ”) ;

f o r (i n t i = 0 ; i < a . l ength ; i++)

System . out . p r in t (hex (a [i]) + ” ”) ;

System . out . p r i n t l n () ;

}

pub l i c s t a t i c void pr intArrayToFi le (S t r ing name , byte [] a) {

t ry {

122

// Create f i l e

F i l eWr i t e r fstreamPT = new Fi l eWr i t e r (”C:\\AES\\OutPutAES . txt ”) ;

Buf feredWriter outPT = new Buf feredWriter (fstreamPT) ;

//Close the output stream

outPT . wr i t e (name + ” ”) ;

f o r (i n t i = 0 ; i < a . l ength ; i++)

outPT . wr i t e (hex (a [i]) + ” ”) ;

outPT . wr i t e (’\n ’) ;

outPT . c l o s e () ;

} catch (Exception e){//Catch except ion i f any

System . e r r . p r i n t l n (” Error : ” + e . getMessage ()) ;

}

}

pub l i c s t a t i c void pr intArray (St r ing name , byte [] [] s) {

System . out . p r in t (name + ” ”) ;

f o r (i n t c = 0 ; c < Nb; c++)

f o r (i n t r = 0 ; r < 4 ; r++)

System . out . p r in t (hex (s [r] [c]) + ” ”) ;

System . out . p r i n t l n () ;

}

}

SoapRequestBuilder.java

/∗

∗ Majid Malaika

∗ This Request Bui lder was taken from David S Hobbs and was modi f ied

∗ to f i t the NVASA Implementation f o r AES Encryption .

∗ Link Provided in Re fe rences .

∗/

package t e s tnva s av e r s i on s ;

import java . app le t . Applet ;

import java . awt . ∗ ;

import java . net . ∗ ;

import java . u t i l . ∗ ;

import java . i o . ∗ ;

/∗∗

∗

∗ @author MajidMalaika

∗/

c l a s s SoapRequestBuilder {

St r ing Server = ”” ;

St r ing WebServicePath = ”” ;

St r ing SoapAction = ”” ;

123

St r ing MethodName = ”” ;

St r ing XmlNamespace = ”” ;

St r ing Key = ”” ;

St r ing PlainText = ”” ;

p r i va t e Vector ParamNames = new Vector () ;

p r i va t e Vector ParamData = new Vector () ;

pub l i c void AddParameter (St r ing Name, St r ing Data) {

ParamNames . addElement ((Object) Name) ;

ParamData . addElement ((Object) Data) ;

}

pub l i c S t r ing sendRequest () {

St r ing r e t v a l = ”” ;

Socket socket = nu l l ;

t ry {

socket = new Socket (Server , 5791) ; //53671) ;

}

catch (Exception ex1) {

re turn (” Error : ”+ex1 . getMessage ()) ;

}

t ry {

OutputStream os = socket . getOutputStream () ;

boolean auto f lu sh = true ;

Pr intWriter out = new PrintWriter (socket . getOutputStream () , au to f l u sh) ;

BufferedReader in = new BufferedReader (new InputStreamReader (socket .

getInputStream ())) ;

//Here I c a l c u l a t e the Length to be a s s o c i a t ed with the SOAP Request

// The length depends on the number o f Char o f the e n t i r e r eques t

// In my Case i t s 314 (295) f o r a l l the s t a t i c par t s p lus the Key and Pla in

//Text l eng ths

i n t l ength = 295 + Server . l ength () + (MethodName . l ength () ∗ 2) +

XmlNamespace . l ength () ;

l ength+= Key . l ength () ;

l ength+= PlainText . l ength () ;

// send an HTTP reques t to the web s e r v i c e

out . p r i n t l n (”POST ” + WebServicePath + ” HTTP/1 . 1 ”) ;

out . p r i n t l n (”Host : ” + Server) ;

out . p r i n t l n (”Content−Type : t ext /xml ; cha r s e t=utf −8”);

out . p r i n t l n (”Content−Length : ” + Str ing . valueOf (l ength)) ;

out . p r i n t l n (”SOAPAction : \”” + ”http :// tempuri . org /AES Inter face ” + ”\””) ;

out . p r i n t l n () ;

out . p r i n t l n (”<?xml ve r s i on =\”1.0\” encoding=\”utf −8\”?>”);

out . p r i n t l n (”<soap : Envelope xmlns : x s i=\”http ://www.w3 . org /2001/XML”

+ ”Schema−i n s tance \” xmlns : xsd=\”http ://www.w3 . org /2001/”

+ ”XMLSchema\” xmlns : soap=\”http :// schemas . xmlsoap . org / soap /”

+ ” envelope /\”>”);

out . p r i n t l n (”<soap : Body>”);

out . p r i n t l n (”<” + MethodName + ” xmlns=\”” + XmlNamespace + ”\”>”);

out . p r i n t l n (”<Key>”+Key+”</Key>”);

124

out . p r i n t l n (”<PlainText>”+PlainText+”</PlainText >”);

out . p r i n t l n (”</” + MethodName + ”>”);

out . p r i n t l n (”</soap : Body>”);

out . p r i n t l n (”</soap : Envelope >”);

out . p r i n t l n () ;

// Read the response from the s e rv e r . . . t imes out i f the response takes

// more than 3 seconds

St r ing inputLine ;

S t r i ngBu f f e r sb = new St r i ngBu f f e r (5000) ;

i n t wa i t seconds = 3 ;

boolean timeout = f a l s e ;

long m = System . cur rentTimeMi l l i s () ;

inputLine = in . readLine () ;

whi le (inputLine != nu l l && ! timeout) {

sb . append (inputLine + ”\n ”) ;

out . p r i n t l n (” a ”) ;

i f ((System . cur rentTimeMi l l i s () − m) > (1000 ∗ wai t seconds))

timeout = true ;

inputLine = in . readLine () ;

}

in . c l o s e () ;

// The St r i ngBu f f e r sb now conta ins the complete r e s u l t from the

// webserv ice in XML format . You can parse t h i s XML i f you want to

// get more compl icated r e s u l t s than a s i n g l e value .

i f (! t imeout) {

St r ing returnparam = MethodName + ”Result ” ;

i n t s t a r t = sb . t oS t r ing () . indexOf (”<” + returnparam + ”>”) +

returnparam . length () + 2 ;

i n t end = sb . t oS t r ing () . indexOf (”</” + returnparam + ”>”);

// Extract a s inge return parameter

r e t v a l = sb . t oS t r i ng () . sub s t r i ng (s ta r t , end) ;

}

e l s e {

r e t v a l=”Error : re sponse timed out . ” ;

}

socket . c l o s e () ;

}

catch (Exception ex) {

re turn (” Error : cannot communicate . ” + ex) ;

}

re turn r e t v a l ;

}

}

Java Source Code Parser

NVASA Parser.java

125

package nvasa par se r ;

import java . i o . ∗ ;

import java . u t i l . Hashtable ;

pub l i c c l a s s NVASA Parser {

s t a t i c i n t LOC = 0 ;

s t a t i c i n t LOCC = 0 ;

s t a t i c i n t NOF = 0 ;

s t a t i c S t r ing c r i t i c lC od e = ” fopen ” ;

s t a t i c S t r ing F i l eD i r e c t o ry=”C:\\MoodleFi les \\Mood l e f i l e s ”

+c r i t i c lCod e +”. txt ” ;

pub l i c s t a t i c void main (St r ing [] args) {

// d i r e c t o r y i s the f o l d e r ho ld ing the source code to be parsed

F i l e d i r e c t o r y = new F i l e (”C:\\moodle ”) ;

//Moodle Fi l e s . txt conta in s a l l unique f i l e s that conta in the

// c r i t i c a l code .

F i l e f = new F i l e (F i l eD i r e c t o ry) ;

F i l e f i l e s [] = d i r e c t o r y . l i s t F i l e s () ;

S t r ing [] l i s t = d i r e c t o r y . l i s t () ;

// c r i t i c a lCod e conta ins the c r i t i c a l command we ’ re s ea r ch ing f o r .

i f (f . e x i s t s ())

f . d e l e t e () ;

NVASA Parser np = new NVASA Parser () ;

np . r ecur (”C:\\moodle ” , c r i t i c lCod e) ;

System . out . p r i n t l n (”∗∗∗”);

System . out . p r i n t l n (” Total PHP F i l e s Parsed : ”+NOF) ;

System . out . p r i n t l n (” Total l i n e s o f code : ”+LOC) ;

System . out . p r i n t l n (” Total l i n e s o f \”” + c r i t i c lCod e + ”\” = ” +LOCC) ;

System . out . p r i n t l n (”Unique F i l e s conta in ing \”” + c r i t i c lCod e + ”\” = ”+

np . numOfFiles (F i l eD i r e c t o ry)) ;

System . out . p r i n t l n (”∗∗∗”);

System . out . p r i n t l n (”Unique f i l e s with in gathered so f a r : ”

+np . t o t a lUn i qF i l e s ()) ;

}

pub l i c void recur (St r ing Directory , S t r ing ccode){

i f (D i rec tory . conta ins (” . php”)){

t ry {

// Open the f i l e that i s the f i r s t

// command l i n e parameter

NOF++;

Fi leInputStream fstream =

new Fi leInputStream (Direc tory) ;

// Get the ob j e c t o f DataInputStream

DataInputStream in = new DataInputStream (fstream) ;

BufferedReader br = new BufferedReader (new InputStreamReader (in)) ;

S t r ing st rL ine , tempString ;

126

//Read F i l e Line By Line

whi le ((s t rL in e = br . readLine ()) != nu l l){

// Pr int the content on the conso l e

//System . out . p r i n t l n (s t rL in e) ;

tempString = s t rL ine . r e p l a c eA l l (”\\ s+”, ” ”) ;

i f (! tempString . startsWith (”//”)){

//System . out . p r i n t l n (tempString) ;

LOC++;

i f (s t rL in e . conta in s (ccode)){

LOCC++;

i f (! checkForSt r ing InF i l e (Di rec tory))

wr i teToFi l e (Di rec tory) ;

}

}

}

} catch (Exception e){}

}

e l s e i f (Di rec tory . conta in s (” . ”)){

// Ignore other types o f f i l e s

}

e l s e {

t ry {

F i l e d i r e c t o r y = new F i l e (Di rec tory) ;

F i l e f i l e s [] = d i r e c t o r y . l i s t F i l e s () ;

f o r (F i l e f : f i l e s){

t h i s . r ecur (f . t oS t r ing () , ccode) ;

}

} catch (Nul lPo interExcept ion e){}

}

}

pub l i c void wr i teToFi l e (S t r ing s t){

t ry {

Fi l eWr i t e r wstream = new

Fi l eWr i t e r (F i l eD i r e c to ry , t rue) ;

Buf feredWriter out= new

Buf feredWriter (wstream) ;

out . wr i t e (s t+”\n ”) ;

out . c l o s e () ;

} catch (Exception e){System . out . p r i n t l n (e) ;}

}

pub l i c boolean checkForSt r ing InF i l e (S t r ing s t rL ine){

boolean f l a g = f a l s e ;

t ry {

Fi leInputStream fstream =

new Fi leInputStream (F i l eD i r e c t o r y) ;

DataInputStream in = new DataInputStream (fstream) ;

BufferedReader br = new BufferedReader (new InputStreamReader (in)) ;

S t r ing s s t rL i n e ;

//Read F i l e Line By Line

whi le ((s s t rL i n e = br . readLine ()) != nu l l){

i f (s s t rL i n e . conta ins (s t rL in e))

127

re turn true ;

}

} catch (Exception e){}

re turn f a l s e ;

}

pr i va t e i n t numOfFiles (S t r ing Direc tory){

i n t i =0;

t ry {

FileInputStream fstream =

new Fi leInputStream (Direc tory) ;

// Get the ob j e c t o f DataInputStream

DataInputStream in = new DataInputStream (fstream) ;

BufferedReader br = new BufferedReader (new InputStreamReader (in)) ;

S t r ing st rL ine , tempString ;

//Read F i l e Line By Line

whi le ((s t rL in e = br . readLine ()) != nu l l){

i++;

}

} catch (Exception e){}

re turn i ;

}

pr i va t e i n t t o t a lUn i qF i l e s (){

Hashtable ht = new Hashtable () ;

i n t i =0;

t ry {

F i l e d i r e c t o r y = new F i l e (”C:\\MoodleFi les \\”) ;

F i l e f i l e s [] = d i r e c t o r y . l i s t F i l e s () ;

f o r (F i l e f : f i l e s){

t ry {

Fi leInputStream fstream =

new Fi leInputStream (f) ;

// Get the ob j e c t o f DataInputStream

DataInputStream in = new DataInputStream (fstream) ;

BufferedReader br = new BufferedReader (new

InputStreamReader (in)) ;

S t r ing st rL ine , tempString ;

//Read F i l e Line By Line

whi le ((s t rL in e = br . readLine ()) != nu l l){

i f (! ht . containsKey (s t rL in e . hashCode ())){

i++;

ht . put (s t rL ine . hashCode () , s t rL in e) ;

}

}

} catch (Exception e){}

}

} catch (Nul lPo interExcept ion e){}

re turn i ;

}

}

128

REFERENCES

[1] Ada programming language,
http://www.wordiq.com/definition/Ada_programming_language.

[2] Android developing community,
http://developer.android.com/index.html.

[3] Antivirus bypass
http://www.offensive-security.com/metasploit-unleashed/Antivirus_

Bypass.

[4] Apache on ubuntu: Installing a web server,
http://www.easy-ubuntu-linux.com/apache-ubuntu-install.html.

[5] Apple fixes 130 mac os x vulnerabilities.

[6] Appsamuck free iphone apps development community,
http://appsamuck.com/.

[7] Banned c/c++ functions,
http://www.microsoft.com/download/en/details.aspx?id=24817.

[8] Banned.h c/c++ functions tutorial,
http://msdn.microsoft.com/en-us/security/Video/gg675008.

[9] Buffer-over-flow,
https://www.owasp.org/index.php/Buffer_overflow.

[10] C to java translator,
http://download.cnet.com/C-To-Java-Converter/3000-2213_

4-10080009.html.

[11] Can a canary solve the buffer overflow problem?
http://www.networkworld.com/newsletters/sec/0830sec1.html.

[12] Citigroup admits 2.7 million dollars of customers money stolen due to hack
http://techland.time.com/2011/06/27/citigroup-admits-2-7-million\

-of-customers-money-lost-due-to-hack/.

129

http://www.wordiq.com/definition/Ada_programming_language
http://developer.android.com/index.html
http://www.offensive-security.com/metasploit-unleashed/Antivirus_Bypass
http://www.offensive-security.com/metasploit-unleashed/Antivirus_Bypass
http://www.easy-ubuntu-linux.com/apache-ubuntu-install.html
http://appsamuck.com/
http://www.microsoft.com/download/en/details.aspx?id=24817
http://msdn.microsoft.com/en-us/security/Video/gg675008
https://www.owasp.org/index.php/Buffer_overflow
http://download.cnet.com/C-To-Java-Converter/3000-2213_4-10080009.html
http://download.cnet.com/C-To-Java-Converter/3000-2213_4-10080009.html
http://www.networkworld.com/newsletters/sec/0830sec1.html
http://techland.time.com/2011/06/27/citigroup-admits-2-7-million\-of-customers-money-lost-due-to-hack/
http://techland.time.com/2011/06/27/citigroup-admits-2-7-million\-of-customers-money-lost-due-to-hack/

[13] Cross site scripting (xss) cheat sheet,
http://ha.ckers.org/xss.html.

[14] The cross-site scripting (xss) faq,
http://www.cgisecurity.com/xss-faq.html.

[15] Cross-site scripting (xss),
https://www.owasp.org/index.php/Top_10_2010-A2.

[16] Eucalyptus open source cloud,
http://www.eucalyptus.com/.

[17] Foundations: What are buffer overflows?
http://www.watchguard.com/infocenter/editorial/135136.asp.

[18] The gnu prolog (prolog to c translator),
http://www.gprolog.org/.

[19] How and why to use parameterized queries,
http://blogs.msdn.com/b/sqlphp/archive/2008/09/30/

how-and-why-to-use-parameterized-queries.aspx.

[20] How to develop a simple iphone app submit it to itunes,
http://www.makeuseof.com/tag/develop-simple-iphone-app\

-submit-itunes/.

[21] How to install apache2 webserver with php,cgi and perl support in ubuntu
server,
http://www.ubuntugeek.com/how-to-install-apache2-webserver-with\

-phpcgi-and-perl-support-in-ubuntu-server.html.

[22] How to: Protect from sql injection in asp.net,
http://msdn.microsoft.com/en-us/library/ff648339.aspx.

[23] Html input types used by php,
http://www.w3schools.com/html/html_forms.asp.

[24] Java to c translator,
http://www.cs.arizona.edu/projects/sumatra/toba/doc/.

[25] Java to paython translator,
http://code.google.com/p/java2python/.

[26] Moodle a course management system (cms)
http://moodle.org/.

130

http://ha.ckers.org/xss.html
http://www.cgisecurity.com/xss-faq.html
https://www.owasp.org/index.php/Top_10_2010-A2
http://www.eucalyptus.com/
http://www.watchguard.com/infocenter/editorial/135136.asp
http://www.gprolog.org/
http://blogs.msdn.com/b/sqlphp/archive/2008/09/30/how-and-why-to-use-parameterized-queries.aspx
http://blogs.msdn.com/b/sqlphp/archive/2008/09/30/how-and-why-to-use-parameterized-queries.aspx
http://www.makeuseof.com/tag/develop-simple-iphone-app\-submit-itunes/
http://www.makeuseof.com/tag/develop-simple-iphone-app\-submit-itunes/
http://www.ubuntugeek.com/how-to-install-apache2-webserver-with\-phpcgi-and-perl-support-in-ubuntu-server.html
http://www.ubuntugeek.com/how-to-install-apache2-webserver-with\-phpcgi-and-perl-support-in-ubuntu-server.html
http://msdn.microsoft.com/en-us/library/ff648339.aspx
http://www.w3schools.com/html/html_forms.asp
http://www.cs.arizona.edu/projects/sumatra/toba/doc/
http://code.google.com/p/java2python/
http://moodle.org/

[27] Nagios the industry standard in it infrastructure monitoring,
http://www.nagios.org/.

[28] Openxenmanager graphical interface to manage xen cloud platform,
http://sourceforge.net/projects/openxenmanager/.

[29] Penetration testing reading room, sans institute,
http://www.sans.org/reading_room/whitepapers/testing/.

[30] Php file upload,
http://www.w3schools.com/php/php_file_upload.asp.

[31] Php sql injection,
http://en.wikibooks.org/wiki/PHP_Programming/SQL_Injection.

[32] Preventing sql injection in java,
https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java.

[33] Prolog cafe (prolog to java translator),
http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/.

[34] Rollback mysql,
http://dev.mysql.com/doc/refman/5.0/en/commit.html.

[35] Rollback transaction microsoft sql server,
http://msdn.microsoft.com/en-us/library/ms181299.aspx.

[36] Securityfocus bypassing filters,
http://www.securityfocus.com/archive/1/archive/1/514939/100/0/

threaded.

[37] Sony estimates 171 million dollar loss due to psn hack
http://gengame.net/2011/05/sony-estimates-171-million-dollar-\

loss-due-to-psn-hack/.

[38] Sql injection - are parameterized queries safe?,
http://taylorza.blogspot.com/2009/04/sql-injection-are-\

parameterized-queries.html.

[39] Sql injection cheat sheet esp: for filter evasion,
http://ha.ckers.org/sqlinjection/.

[40] Sql injection cheat sheet,
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/.

131

http://www.nagios.org/
http://sourceforge.net/projects/openxenmanager/
http://www.sans.org/reading_room/whitepapers/testing/
http://www.w3schools.com/php/php_file_upload.asp
http://en.wikibooks.org/wiki/PHP_Programming/SQL_Injection
https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java
http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/
http://dev.mysql.com/doc/refman/5.0/en/commit.html
http://msdn.microsoft.com/en-us/library/ms181299.aspx
http://www.securityfocus.com/archive/1/archive/1/514939/100/0/threaded
http://www.securityfocus.com/archive/1/archive/1/514939/100/0/threaded
http://gengame.net/2011/05/sony-estimates-171-million-dollar-\loss-due-to-psn-hack/
http://gengame.net/2011/05/sony-estimates-171-million-dollar-\loss-due-to-psn-hack/
http://taylorza.blogspot.com/2009/04/sql-injection-are-\parameterized-queries.html
http://taylorza.blogspot.com/2009/04/sql-injection-are-\parameterized-queries.html
http://ha.ckers.org/sqlinjection/
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

[41] Sql stored procedures,
http://msdn.microsoft.com/en-us/library/aa174792(v=sql.80).aspx.

[42] Stored procedure,
http://en.wikipedia.org/wiki/Stored_procedure.

[43] Tips for securing your ec2 instance,
http://aws.amazon.com/articles/1233.

[44] Total virus multiple anti-virus analysis tool,
http://www.virustotal.com/.

[45] Ubuntu enterprise cloud computing,
http://www.ubuntu.com/cloud.

[46] Ubuntu enterprise cloud computing server guide,
https://help.ubuntu.com/10.04/serverguide/C/uec.html.

[47] Ubuntu linux openssh server installation and configuration,
http://www.cyberciti.biz/faq/ubuntu-linux-openssh-server-\

installation-and-configuration/.

[48] Unrestricted file upload,
https://www.owasp.org/index.php/Unrestricted_File_Upload.

[49] Why file upload forms are a major security threat,
http://www.acunetix.com/websitesecurity/upload-forms-threat.htm.

[50] Xen private cloud platform,
http://xen.org/products/cloudxen.html.

[51] Cyber security: A crisis of prioritization19. Tech. rep., Presidents Information
Technology Advisory Committee, 2005.

[52] 2008 internet crime report. Tech. rep., The National White Collar Crime Center
Annual Report, 2008.

[53] Application security and development. Tech. rep., DISA for the DoD, 2008.

[54] Security threat report,
http://viewer.media.bitpipe.com/978207627_109/1286217697_648/

sophossecuritythreatreportmidyear2010wpna.pdf. Tech. rep., SOPHOS,
2010.

[55] 359r, I. J. S. W. . N. Programming languages - guide for the use of the ada.
Tech. rep., National White Collar Crime Center, 2001.

132

http://msdn.microsoft.com/en-us/library/aa174792(v=sql.80).aspx
http://en.wikipedia.org/wiki/Stored_procedure
http://aws.amazon.com/articles/1233
http://www.virustotal.com/
http://www.ubuntu.com/cloud
https://help.ubuntu.com/10.04/serverguide/C/uec.html
http://www.cyberciti.biz/faq/ubuntu-linux-openssh-server-\installation-and-configuration/
http://www.cyberciti.biz/faq/ubuntu-linux-openssh-server-\installation-and-configuration/
https://www.owasp.org/index.php/Unrestricted_File_Upload
http://www.acunetix.com/websitesecurity/upload-forms-threat.htm
http://xen.org/products/cloudxen.html
http://viewer.media.bitpipe.com/978207627_109/1286217697_648/sophossecuritythreatreportmidyear2010wpna.pdf
http://viewer.media.bitpipe.com/978207627_109/1286217697_648/sophossecuritythreatreportmidyear2010wpna.pdf

[56] Alliance, C. S. Security guidance for critical areas of focus in cloud comput-
ing. Tech. rep., Cloud Security Alliance Security Guidance, V2.1, 2009.

[57] Anley, C. Advanced sql injection in sql server applications. An NGSSoftware
Insight Security Research (NISR).

[58] Avizienis, A. The Methodology of N-version Programming. John Wiley and
Sons, 1995.

[59] Ayewah, N., Hovemeyer, D., Morgenthaler, J., Penix, J., and
Pugh, W. Using static analysis to find bugs.

[60] Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, October 1999.

[61] Belk, M., Coles, M., Goldschmidt, C., Howard, M., Randolph, K.,
Saario, M., Sondhi, R., Tarandach, I., Vh-Sipil, A., and Yonchev,
Y. Fundamental practices for secure software development. Tech. rep., SAFE-
Code, 2011.

[62] Brain, R. Bypassing asp .net “validaterequest” for script injection attacks.
Tech. rep., SAFECode, 2008.

[63] Brilliant, S., Knight, J., and Leveson, N. Analysis of faults in an
n-version software experiment.

[64] Brown, M. Cwe/sans top 25 most dangerous software errors of 2010.

[65] Buecker, A., Ashley, A., Borrett, M., Lu, M., Muppidi, S., and
Readshaw, N. Understanding soa security design and implementation. Tech.
rep., IBM, 2007.

[66] Catteddu, D., and Massonet, P. Cloud computing, benefits, risks and
recommendations. Information Security European Network and Information
Security.

[67] CCMB. Common criteria information technology security evaluation. Tech.
rep., CCMB, 2009.

[68] Cowan, C., Wagle, P., Pu, C., Beattie, S., and Walpole, J. Buffer
overflows: Attacks and defenses for the vulnerability of the decade. System
Administration and Network Security (SANS).

[69] Developers, C. Code review at cisco systems. Tech. rep., Cisco Systems Inc.
Labs, June 2006.

133

[70] Eden, A., and Hirshfeld, Y. Principles in formal specification of object
oriented design and architecture. Centre for Advanced Studies on Collaborative
research.

[71] Eigler, F. Mudflap: Pointer use checking for c/c++. Tech. rep., In Proc. of
the GCC Developers Summit, 2003.

[72] Etoh, Hiroaki, and Yoda, K. Protecting from stack-smashing attacks.
Tech. rep., IBM Labs, 2000.

[73] Fong, E., and Okun, V. Web application scanners: Definitions and func-
tions. Proceedings of the 40th Hawaii International Conference on System Sci-
ences.

[74] Garlan, D., and Shaw, M. An introduction to software architecture.

[75] Grossman, J. Vulnerability assessment plus web application firewall
(va+waf).

[76] IC3. 2009 internet crime report. Tech. rep., National White Collar Crime
Center, 2009.

[77] Jourdan, G. Command injection. Tech. rep., 2005.

[78] Kaner, C., Falk, J., and Nguyen, H. Testing Computer Software, sec-
ond ed. Wiley, 1999.

[79] Kissel, R., Stine, K., Scholl, M., Rossman, H., Fahlsing, J., and
Gulick, J. Security considerations in the system development life cycle. NIST
Special Publication 800-64 Revision 2.

[80] Knight, J. Detection of faults and software reliability analysis. Tech. rep.,
NASA Publication, 1986.

[81] Labs, S. M. C. Cloud computing, 2008.

[82] Lyu, M., and Avizienis, A. Assuring design diversity in n-version software:
A design paradigm for n-version programming. PROC. DCCA.

[83] Malaika, M., Nair, S., and Coyle, F. Application security automation
for cloud computing. CloudComp.

[84] McCaffrey, J. Keep your data secure with the new advanced encryption
standard, 2003.

[85] Messmer, E. Security of virtualization, cloud computing divides it and secu-
rity pros.

134

[86] Miller, J. Overview whitepaper of application security testing methodologies.
BlackHat, 2009.

[87] Netinant, P., Elrad, T., and Fayad, M. A layered approach to building
open aspect-oriented systems: a framework for the design of on-demand system
demodularization.

[88] Niyaz, P. Advanced encryption standard c/c++.

[89] Northcutt, S., Shenk, J., Shackleford, D., Rosenberg, T., Siles,
R., and Mancini, S. Penetration testing: Assessing your overall security
before attackers do. Tech. rep., SANS Institute, 2006.

[90] Olzak, T. Web application security - buffer overflows: Are you really at risk?

[91] Rabah, K. Building your own private clouds using ubuntu and eucalyptus,
http://www.docstoc.com/docs/40802356/Build-your-Own-Private-\

Clouds-using-Ubuntu-1004-Eucalyptus-Enterprise-Cloud-Computing-\

Platform. Tech. rep.

[92] Rae, A., and Fidge, C. Identifying critical components during information
security evaluation. Australian Computer Society Inc.

[93] Sachitano, A., Chapman, R., and Hamilton, J. Security in software
architecture: A case study, 2004.

[94] Schneier, B. Secrets and Lies. John Wiley and Sons, New York, NY, 2000.

[95] Schneier, B. The commercial speech arms race, October 2009.

[96] Schneier, B. Software monoculture, December 2010.

[97] scut / team TESO Hacking Group. Exploiting format string vulnerabil-
ities. Tech. rep., 2001.

[98] Seltzer, L. Apple releases vast os x security update.

[99] Sha, L. Using simplicity to control complexity. 0740-7459/01 IEEE Software.

[100] Singh, A., Sinha, N., Agrawal, N. N. L., and Princeton). Avatars
pennies: Cheap n-version programming for replication. HotDep.

[101] Sotirov, A. Automatic Vulnerability Detection Using Static Source Code
Analysis Thesis. PhD thesis, 2005.

[102] Sutton, Greene, A., and Amini, P. Fuzzing: Brute force vulnerability
discovery. Recon.

135

http://www.docstoc.com/docs/40802356/Build-your-Own-Private-\Clouds-using-Ubuntu-1004-Eucalyptus-Enterprise-Cloud-Computing-\Platform
http://www.docstoc.com/docs/40802356/Build-your-Own-Private-\Clouds-using-Ubuntu-1004-Eucalyptus-Enterprise-Cloud-Computing-\Platform
http://www.docstoc.com/docs/40802356/Build-your-Own-Private-\Clouds-using-Ubuntu-1004-Eucalyptus-Enterprise-Cloud-Computing-\Platform

[103] Team, E. D. Amazon web services: Overview of security processes. Tech.
rep., Amazon, 2009.

[104] Team, E. D. Security best practices. Tech. rep., Amazon, 2010.

[105] Team, I. D. Ibm point of view: Security and cloud computing. Tech. rep.,
IBM, 2009.

[106] Vaughan-Nichols, S. Openbsd: The most secure os around,
http://www.zdnet.com/news/openbsd-the-most-secure-os-around/

298564.

[107] Viega, J., and McGraw, G. Building Secure Software: How to Avoid Se-
curity Problems the Right Way. Addison-Wesley, New York, NY, 2001.

[108] Virtualization, S. S. Cloud computing virtualization benefits, 2006.

[109] W3Schools. Long term trends of operating system usage, a statistical anal-
ysis. Tech. rep., W3Schools, 2010.

[110] Wagner, N. Laws of cryptography: Java code for aes encryption, 2001.

[111] WhiteHat. Whitehat website security statistic report. Tech. rep., WhiteHat
Quarterly Security Report, 9th Edition, 2010.

[112] Williams, J., Wicher, D., and Alamri, L. Owasp top 10 for 2010 released
will you help us reach every web developer in the world?

136

http://www.zdnet.com/news/openbsd-the-most-secure-os-around/298564
http://www.zdnet.com/news/openbsd-the-most-secure-os-around/298564

	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	The Security Problem
	Chapter Conclusion

	RELATED WORK
	Chapter Introduction
	Application Security
	Code Review
	Static Code Analysis
	Code Testing
	Runtime Check
	Penetration Testing
	Application Security Attack Phases and Countermeasures
	Top Known Application Security Attacks and Current Mitigation schemes
	SQL Injection Attack
	OS Command Injection Attack
	Classic Buffer Overflow Attack
	Upload of Dangerous File Types Attack
	Cross Site Scripting (XSS) Attack

	The Methodology of N-Version Programming (NVP)
	Chapter Conclusion

	N-VERSIONS ARCHITECTURAL FRAMEWORK FOR APPLICATION SECURITY AUTOMATION (NVASA)
	Chapter Introduction
	NVASA Building Blocks
	N-Version Routing Layer
	N-Version Environment Layer
	N-Version Decision Layer
	N-Version Backend Application Layer

	Reduction Techniques In the NVASA Framework
	Compartmentalization
	Identifying the Critical Components

	Source-to-source Language translator
	Cross Platform Compilers
	Study of how the Compartmentalized NVASA Framework would Detect and Prevent the Top Application Vulnerabilities
	SQL Injection Attack
	OS Command Injection Attack
	Classic Buffer Overflow Attack
	Upload of Dangerous File Types Attack
	Cross Site Scripting (XSS) Attack

	Chapter Conclusion

	NVASA FRAMEWORK FOR CLOUD COMPUTING APPLICATIONS
	Chapter Introduction
	Cloud Computing Paradigm
	Issues with Security in Cloud Computing
	Related Work in Cloud Computing
	Virtualization Characteristics
	Related Work in Cloud Computing Security

	Implementing NVASA Framework in Cloud Computing
	Virtualized NVASA Framework
	N-Version Management and Auditing
	Strict Privilege-Mode of NVASA framework Layers

	Chapter Conclusion

	EXPERIMENTAL RESULTS
	Chapter Introduction
	Experiment One: Simple Text Input Implementation
	Experiment Use Cases

	Experiment Two: AES Implementation
	Setting up the Private Cloud Environment
	Eucalyptus Cloud Architecture
	XEN Cloud Architecture

	Testing the Standalone Implementations
	Building the AES NVASA Framework

	Experiment Three: Moodle Analysis
	Guidelines and Policies
	Operating System
	Network Configuration
	Software Development

	Chapter Conclusion

	CONCLUSIONS AND FUTURE WORK
	Future Work
	Application Attacks
	New Reduction Schemes
	Automation of the NVASA Project
	Extra Protection Through a Buffer/Translator and a Learning Algorithm
	NVASA framework to Protect the Client-Side from Zero-Day Attacks
	Automate Security for Cloud-Customers through a Specific NVASA Framework Model
	Economic Analysis of the NVASA Framework

	SOURCE CODE
	REFERENCES

