
A Distributed Architecture for Phishing Detection
using Bayesian Additive Regression Trees

Saeed Abu-Nimeh1, Dario Nappa2, Xinlei Wang2, Suku Nair1
SMU HACNet Lab

Southern Methodist University
Dallas, TX 75275

1{sabunime,nair}@engr.smu.edu
2{dnappa,swang}@smu.edu

Abstract—With the variety of applications in mobile devices,
such devices are no longer deemed calling gadgets merely. Various
applications are used to browse the Internet, thus access financial
data, and store sensitive personal information. In consequence,
mobile devices are exposed to several types of attacks. Specifically,
phishing attacks can easily take advantage of the limited or
lack of security and defense applications therein. Furthermore,
the limited power, storage, and processing capabilities render
machine learning techniques inapt to classify phishing and
spam emails in such devices. The present study proposes a
distributed architecture hinging on machine learning approaches
to detect phishing emails in a mobile environment based on a
modified version of Bayesian Additive Regression Trees (BART).
Apparently, BART suffers from high computational time and
memory overhead, therefore, distributed algorithms are proposed
to accommodate detection applications in resource constrained
wireless environments.

I. INTRODUCTION

Wireless and mobile technologies continue to prosper due
to their convenience and portability. According to JiWire
[14] there were more than 100,000 WiFi hotspots worldwide
in 2006. Further, the total revenue of WLAN equipment
is estimated to be $4.3 billion in 2009 as revealed by the
Dell’Oro Group [10]. Moreover, users are using blackberries,
personal digital assistants (PDAs), or even cell phones to store
sensitive information and access financial data. Despite their
convenience and ease of use, these wireless devices suffer
from several limitations due to their limited power capacity.
Processing capabilities and storage capacities are limited.
These limitations certainly affect security and privacy solutions
built for such devices to protect users against attacks [18].
Solutions that are designed to cope with such limitations need
be light-weight, have less processing requirements, consume
less storage, and thus require less power.

Studies show a steady increase in phishing activities as well
as the related cost. In 2003 direct phishing-related loss to US
banks and credit card issuers was estimated by $1.2 billion
which grew to $2 billion in 2005. In December 2007 Gartner
Group published results of a survey showing that in 2007
phishing attacks in the U.S. increased compared to the past
two years. In 2006, approximately, 3.25 million victims were
spoofed by phishing attacks. In 2007, the number increased

almost by 1.3 million victims. Moreover, in 2007, monetary
losses, related to phishing, were estimated by $3.2 billion.

Despite the abundance of applications available for phishing
detection, unlike spam classification, there are only few stud-
ies that compare machine learning techniques in predicting
phishing emails [1]. Moreover, several solutions proposed and
implemented for detection and prevention of phishing attacks
suffer from unacceptable levels of false positives or miss
detection. Furthermore, most of these algorithms are based
on server-side, computationally intensive, algorithms which
will not lend easily to implementation on resource constrained
mobile devices.

Previous research [2] showed that Bayesian Additive Re-
gression Trees (BART) is a promising technique for spam
classification. A modified version of BART, hereafter CBART,
outperformed six other classifiers and achieved the maximum
predictive accuracy on three different spam corpora. However,
CBART performed the worst in computational time and re-
quired memory size. In order to overcome this latter drawback,
we propose a distributed architecture for phishing detection.
The contribution of this study is to propose a distributed client-
server architecture to conceal the overhead caused by CBART,
albeit take advantage of its high predictive accuracy. Note that
our approach is not regarded as distributed classification nor
distributed data mining. It is rather a distributed client-server
architecture that exploits the competitive predictive accuracy
of CBART and feeds it to other classifiers.

The rest of the paper is organized as follows. In Section II
we discuss related work and the machine learning approaches
demonstrated in the study. Section III introduces BART and
the new modified model CBART. In Section IV we introduce
the distributed approach for phishing detection. Section V
demonstrates the experimental studies. We discuss the results
in Section VI then conclude and motivate for future work in
Section VII.

II. RELATED WORK

Chandrasekaran et al. [7] proposed an approach to classify
phishing based on phishing emails’ structural properties. 25

978-1-4244-2969-1/08$25.00 c©2008 IEEE

features, mixed between style markers (e.g. the words sus-
pended, account, and security) and structural attributes, such
as the structure of the subject line of the email and the
structure of the greeting in the body, were used in the study.
200 emails (100 phishing and 100 legitimate) were tested.
Simulated annealing was applied as an algorithm for feature
selection. After a feature set was chosen, information gain (IG)
was used to rank these features based on their relevance. Thus,
they applied one-class SVM to classify phishing emails based
on the selected features. The results demonstrated a detection
rate of 95% of phishing emails with a low false positive rate.

Fette et al. [11] compared a number of commonly-used
learning methods through their performance in phishing detec-
tion on a past phishing data set, and finally Random Forests
were implemented in their algorithm PILFER. The authors
claim that the methods can be used in the detection of phishing
websites as well. 860 phishing emails and 6950 legitimate
emails were tested. The proposed method detected correctly
96% of the phishing emails with a false positive rate of 0.1%.
Ten handpicked features were selected for training using a
phishing dataset that was collected in 2002 and 2003. As
pointed out by the authors themselves, their implementation
is not optimal and further work in this area is warranted.

Abu-Nimeh et al. [1] compared six machine learning tech-
niques to classify phishing emails. Their phishing corpus
consisted of a total of 2889 emails and they used 43 features
(variables). They used a bag-of-words as their feature set and
the results demonstrated that using a spam detection mecha-
nism merely, i.e. bag-of-words only, achieves high predictive
accuracy. However, obviously relying on textual features,
results in high false positive rates, as phishing emails are
very similar to legitimate ones. The studied classifiers could
successfully predict more than 92% of the phishing emails.
In addition, the study showed that Random Forests achieved
the maximum predictive accuracy and Logistic Regression
achieved the minimum false positives on the studied corpus.

To our best knowledge, there exist no research studies
that investigate the application of phishing detection via
machine learning in a mobile environment. Current studies
and solutions either scrutinize the effectiveness of existing
machine learning techniques in the phishing domain, or focus
on building applications to detect phishing in mobile devices.
To the contrary, our approach utilizes the competitive perfor-
mance of machine learning techniques and applies distributed
architectures to conceal the overhead associated with them.

We note that most of the machine learning algorithms
discussed here are categorized as supervised machine learning,
where an algorithm (classifier) is used to map inputs to desired
outputs using a specific function. In classification problems a
classifier tries to learn several features (variables or inputs) to
predict an output (response). In the case of phishing classifi-
cation, a classifier will try to classify an email to phishing
or legitimate (response) by learning certain characteristics
(features) in the email. In the following we briefly describe
the classifiers used in our experiments.

A. Classification and Regression Trees

CART or Classification and Regression Trees [6] is a model
that describes the conditional distribution of y given x. The
model consists of two components; a tree T with b terminal
nodes, and a parameter vector Θ = (θ1, θ2, . . . , θb) where θi

is associated with the ith terminal node. The model can be
considered a classification tree if the response y is discrete
or a regression tree if y is continuous. A binary tree is
used to partition the predictor space recursively into distinct
homogenous regions, where the terminal nodes of the tree
correspond to the distinct regions. The binary tree structure can
approximate well non-standard relationships (e.g. non-linear
and non-smooth). In addition, the partition is determined by
splitting rules associated with the internal nodes of the binary
tree. Should the splitting variable be continuous, a splitting
rule in the form {xi ∈ C} and {xi /∈ C} is assigned to
the left and the right of the split node respectively. However,
should the splitting variable be discrete, a splitting rule in the
form {xi ≤ s} and {xi > s} is assigned to the right and the
left of the splitting node respectively [8].

CART is flexible in practice in the sense that it can easily
model nonlinear or nonsmooth relationships. It has the ability
of interpreting interactions among predictors. It also has great
interpretability due to its binary structure. However, CART
has several drawbacks such as it tends to overfit the data. In
addition, since one big tree is grown, it is hard to account for
additive effects.

B. Logistic Regression

Logistic regression is the most widely used statistical model
in many fields for binary data (0/1 response) prediction, due
to its simplicity and great interpretability. As a member of
generalized linear models it typically uses the logit function.
That is

log
P (x;β)

1− P (x;β)
= βTx

where x is a vector of p predictors x = (x1, x2, . . . , xp), y
is the binary response variable, and β is a p × 1 vector of
regression parameters.

Logistic regression performs well when the relationship in
the data is approximately linear. However, it performs poorly if
complex nonlinear relationships exist between the variables. In
addition, it requires more statistical assumptions before being
applied than other techniques. Also, the prediction rate gets
affected if there is missing data in the data set.

C. Neural Networks

A neural network is structured as a set of interconnected
identical units (neurons). The interconnections are used to
send signals from one neuron to the other. In addition, the
interconnections have weights to enhance the delivery among
neurons [15]. The neurons are not powerful by themselves,
however, when connected to others they can perform complex
computations. Weights on the interconnections are updated
when the network is trained, hence significant interconnection

plays more role during the testing phase. Figure 1 depicts
an example of neural network. The neural network in the

Fig. 1. Neural Network.

figure consists of one input layer, one hidden layer, and
one output layer. Since interconnections do not loop back
or skip other neurons, the network is called feedforward.
The power of neural networks comes from the nonlinearity
of the hidden neurons. In consequence, it is significant to
introduce nonlinearity in the network to be able to learn
complex mappings. The commonly used function in neural
network research is the sigmoid function, which has the form
[16]

a(x) =
1

1 + e−x

Although competitive in learning ability, the fitting of neural
network models requires some experience, since multiple local
minima are standard and delicate regularization is required.

D. Random Forests

Random forests are classifiers that combine many tree
predictors, where each tree depends on the values of a random
vector sampled independently. Furthermore, all trees in the
forest have the same distribution [5]. In order to construct a
tree we assume that n is the number of training observations
and p is the number of variables (features) in a training set.
In order to determine the decision node at a tree we choose
k � p as the number of variables to be selected. We select
a bootstrap sample from the n observations in the training
set and use the rest of the observations to estimate the error
of the tree in the testing phase. Thus, we randomly choose
k variables as a decision at a certain node in the tree and
calculate the best split based on the k variables in the training
set. Trees are always grown and never pruned compared to
other tree algorithms.

Random forests can handle large numbers of variables in
a data set. Also, during the forest building process they
generate an internal unbiased estimate of the generalization
error. In addition, they can estimate missing data well. A major
drawback of random forests is the lack of reproducibility,
as the process of building the forest is random. Further,
interpreting the final model and subsequent results is difficult,
as it contains many independent decisions trees.

E. Support Vector Machines

Support Vector Machines (SVM) are one of the most pop-
ular classifiers these days. The idea here is to find the optimal
separating hyperplane between two classes by maximizing the
margin between the classes closest points. Assume that we
have a linear discriminating function and two linearly sepa-
rable classes with target values +1 and -1. A discriminating
hyperplane will satisfy:

w
′
xi + w0 ≥ 0 if ti = +1;

w
′
xi + w0 < 0 if ti = −1

Now the distance of any point x to a hyperplane is | w′
xi+w0 |

/ ‖ w ‖ and the distance to the origin is | w0 | / ‖ w ‖. As
shown in Figure 2 the points lying on the boundaries are called
support vectors, and the middle of the margin is the optimal
separating hyperplane that maximizes the margin of separation
[15].

Fig. 2. Support Vector Machines.

Though SVMs are very powerful and commonly used
in classification, they suffer from several drawbacks. They
require high computations to train the data. Also, they are
sensitive to noisy data and hence prone to overfitting.

III. INTRODUCTION TO BART
Bayesian Additive Regression Trees (BART) is a new

learning technique, proposed by Chipman et al. [9], to discover
the unknown relationship between a continuous output and a
dimensional vector of inputs. The original model of BART
was not designed for classification problems, therefore, we
describe how to modify the current BART model and make it
applicable to classification problems in general and phishing
(or spam) classification in particular. Note that BART is a
learner to predict quantitative outcomes from observations
via regression. There is a distinction between regression and
classification problems. Regression is the process of predicting
quantitative outputs. However, when predicting qualitative
(categorical) outputs this is called a classification problem.
Phishing prediction is a binary classification problem, since we
measure two outputs of email either phishing =1 or legitimate
=0 [12]. Here, we should mention that an algorithm that
modifies and uses BART for binary classification, written in
the statistical package R, is provided online by the original au-
thors of BART [9]. However, we developed our own algorithm

in this work simultaneously, due to the fact that their algorithm
was not available at the time we started this work. Also, to
our best knowledge, no technical details or applications were
provided by them for using BART for classification.

BART discovers the unknown relationship f between a
continuous output Y and a p dimensional vector of inputs
x = (x1, ..., xp). Assume Y = f(x)+ε, where ε ∼ N(0, σ2) is
the random error. Motivated by ensemble methods in general,
and boosting algorithms in particular, the basic idea of BART
is to model or at least approximate f(x) by a sum of regression
trees,

f(x) =
m∑

i=1

gi(x); (1)

each gi denotes a binary tree with arbitrary structure, and
contributes a small amount to the overall model as a weak
learner, when m is chosen large. An example of a binary tree
structure is given in Figure 3, in which a is the root node, c
is an internal node, and b, d and e are three terminal nodes
that are associated with parameter µ1, µ2 and µ3, respectively.
Also, each of the interior (i.e., non-terminal) nodes is associ-
ated with a binary splitting rule based on some x variable. By
moving downwards from the root, an observation with given
x will be assigned to a unique terminal node, according to the
splitting rules associated with the nodes included in its path.
In consequence, the corresponding parameter of the terminal
node will be the value of g for this observation.

a

b
µ1

c

d
µ2

e
µ3

Fig. 3. A binary tree structure

Let Ti be the ith binary tree in the model (1), consisting
of a set of decision rules (associated with its interior nodes)
and a set of terminal nodes, for i = 1, · · · ,m. Let Mi be the
vector containing all terminal node parameters of Ti such that
M = {M1, · · · ,Mbi

} and bi is the number of terminal nodes
that Ti has. Now we can explicitly write

Y = g(x;T1,M1) + . . .+ g(x;Tm,Mm) + ε. (2)

Figure 4 depicts an example of a binary tree in the BART
model. Note that the BART contains multiple binary trees,
since it is an additive model. Each node in the tree represents
a feature in the dataset and the terminal nodes represent the
probability that a specific email is phishing, given that it
contains certain features. For example, if an email contains
HTML code, contains javascript, and the javascript contains
form validation, then the probability that this email is phishing
is 80% (refer to Figure 4).

BART is fully model-based and Bayesian in the sense that
a prior is specified, a likelihood is defined using the data, and
then a sequence of draws from the posterior using Markov

chain Monte Carlo (MCMC) is obtained. Specifically, a prior
distribution is needed for T , M , and σ, respectively. Each
draw represents a fitted model f∗ of the form (1). In what
follows, we describe the Bayesian implementation of BART
very briefly. It is by no means self-contained. For a complete
illustration, see [9] and the references therein.

To specify a prior distribution P (T) on T , one needs three
pieces of information; (i) determining how likely a node will
be split when a tree is created; (ii) determining which variable
will be chosen to split the node; (iii) determining the rule that
will be used for splitting. The main goal here is to generate
small trees or “weak learners”, hence each tree plays a small
share in the overall fit, but when combined all produce a
powerful “committee”.

For the prior distribution on terminal node parameters P (µ),
the parameters of the terminal nodes are assumed independent
a priori, hence the prior mean E(Y |x) =

∑m
i=1 µi. Lastly,

for the variance of noise σ2, a prior P (σ) is needed. The
parameters of the prior on σ can be specified from a least
square linear regression of Y on the original x’s.

Now given the prior distributions a backfitting MCMC
Gibbs sampler is used to sample from the posterior distri-
bution as shown below.
Repeat i = 1 to I (say I = 1000, where I is the number of
simulations):
• Sample Tj conditional on Y , all T s but Tj , all µs, and
σ.

• Sample Mj given all T s, all Ms but Mj , and σ.
• Repeat the above steps m times for j = 1, ·,m, where j

is the total number of trees available.
• Sample σ given Y and all T s, all Ms and σ.
Since this is a Markov chain, simulation i depends on sim-

ulation i − 1. The MCMC simulation changes tree structures
based on a stochastic tree generating process. The structures
can be changed by randomly using any of the following four
actions. Grow can be applied to grow a new pair of terminal
nodes from a terminal node and make it become an interior
one. Prune can be applied to prune a pair of terminal nodes
and make their parent node become a terminal one. Change
is to change a splitting rule of a non-terminal node. Swap
is to swap rules between a parent node and a child. By
these changes, MCMC generates different tree structures and
chooses the tree structure that provides the “best” sum-of-trees
model according to posterior probabilities of trees.

It is worth mentioning that BART has several appealing
features, which make it competitive compared to other learning
methods and motivate our study as well. Rather than using
a single regression tree, BART uses a sum-of-trees model
that can account for additive effects. Also, the binary tree
structure helps in approximating well nonlinear and non-
smooth relationships [12]. Furthermore, BART can conduct
automatic variable selection of inputs while searching for
models with highest posterior probabilities during MCMC
simulation. In addition, by applying Bayesian learning, BART
can use newly coming data to update the current model instead
of re-fitting the entire model.

Fig. 4. Example of a binary tree.

Despite the advantages mentioned earlier, it is well known
that a Bayesian approach usually brings heavy computation
time due to its nature. Predicting the posterior probabilities
via MCMC is usually time consuming and requires complex
computations.

A. BART for Classification (CBART)

As mentioned in Section III, BART requires the output
variable to be continuous, instead of binary. Let Y = 1 if
an email is phishing; otherwise Y = 0. To use BART with
binary outputs, we introduce a latent variable Z in connection
with Y in spirit of [3], by defining

Z = f(x) + ε, ε ∼ N(0, 1);

Y =

{
1 if Z > 0;
0 if Z ≤ 0.

(3)

where f(x) is the sum-of-trees model in (1). Note here, we fix
σ at 1, due to the simple binary nature of Y . This yields the
probit link function between the phishing probability p and
f(x),

p ≡ P (Y = 1|x) = P (Z > 0|x) = Φ(f(x)), (4)

where Φ(·) is the cumulative density function of N(0, 1).

Under the above setup of the latent variable Z, we can use
BART to learn f(x) from data, after appropriately modifying
the prior distribution on M and the MCMC algorithm pro-
posed in [9] for posterior computation. Then we can estimate
Y = 1 if the fitted f∗(x) > 0, otherwise estimate Y = 0.
Further, we can obtain the estimate of p through equation (4).

Before we describe our algorithm, let T denote a binary tree
consisting of a set of interior node decision rules and a set of
terminal nodes, and let M = {µ1, µ2, ..., µb} denote a set of
parameter values associated with each of the b terminal nodes
of T . Now we explicitly denote the ith component of the model
gi(x) by gi(x;Ti,Mi). Also, let T(j) be the set of all trees

in the sum (1) except Tj , and M(j) the associated terminal
node parameters. Let y denote the observed phishing status of
emails in the training data. Our algorithm will generate draws
from the posterior distribution

p((T1,M1), ..., (Tm,Mm), Z|y) (5)

rather than drawing from

p((T1,M1), ..., (Tm,Mm), σ|y)

in the original algorithm. A typical draw from the new poste-
rior (5) entails m successive draws of tree component(Tj ,Mj)
conditionally on (T(j),M(j), Z):

(T1,M1)|T(1),M(1), y, Z
(T2,M2)|T(2),M(2), y, Z

...
(Tm,Mm)|T(m),M(m), y, Z

(6)

followed by a draw of Z from the full conditional:

Z|(T1,M1), ..., (Tm,Mm), y. (7)

Note that there is no need to draw σ in our new algorithm
since it is set to 1.

We proceed to discuss how to implement (6) and (7).
First, we claim that the first step is essentially the same as
in the original algorithm. This is because in (6), no extra
information is given by y when Z is given, since y can
be completely determined by Z through (3). Hence we can
remove the redundant y in (6), and use the original algorithm
(substitute y by Z and set σ = 1) to draw from (6). Since
Z is latent, we need an extra step to draw values of Z
from (7). It can be verified that for the jth email in the
training data, Zj |(T1,M1), ..., (Tm,Mm), y is distributed as
N(

∑m
i=1 gi(x;Ti,Mi), 1) truncated at the left by 0 if yj = 1,

and distributed as N(
∑m

i=1 gi(x;Ti,Mi), 1) truncated at the
right by 0 if yj = 0. Thus, drawing from (7) can be easily
done by drawing values from the normal distributions and then

truncating them by 0 either from the right or from the left
based on the value of y.

As shown above, BART is well suited for binary classifica-
tion, under the probit setup with the use of the latent variable.
In this case, it is even easier than before because σ is no longer
an unknown parameter and the draws of Z are extremely easy
to obtain. There is no difficulty to implement our algorithm,
especially because the original one has been provided as free
open source software.

We now briefly discuss how to use BART for prediction.
In an MCMC run, we can simply pick up the “best” f∗

(according to posterior probabilities or Bayes factor or other
criteria) from the sequence of visited models, and save it for
future prediction. Note that the selected f∗ perhaps involves a
much less number of input variables than p since BART auto-
matically screens input variables. This would allow prediction
for a new email to be quickly done since much less information
needs to be extracted from the email. A better way is to use the
posterior mean of f for prediction, approximated by averaging
the f∗over the multiple draws from (5), and further gauge the
uncertainty of our prediction by the variation across the draws.
However, this involves saving multiple models in a physical
place for future use. A more realistic approach is to use the
best B fitted models for prediction that account for the 95%
posterior probabilities over the space of sum-of-tree models.
Usually, B is a number less than 20 and again, when predicting
a new email is or not, a much less number of input variables
than p are expected to be used.

IV. DISTRIBUTED PHISHING DETECTION

CBART suffers from high overhead in computation time
and memory usage when compared to other classifiers. Gen-
erally, this is due to MCMC simulations required to draw the
posterior probabilities and is regarded as a known drawback
of the Bayesian approach [2]. Therefore, the implementation
of CBART is impractical in resource constrained devices due
to several limitations, albeit suitable in servers due to the
abundance of resources (processing, power, and memory). Yet,
we can take advantage of the superior predictive accuracy of
CBART to improve the predictive accuracy in client devices.
The basic idea is to use the predicted output by CBART and
feed it to resource constrained clients in order to improve their
predictive accuracy.

In the client side, a light weight classifier is needed to
accommodate the limitations in client devices. Two vital char-
acteristics need exist in such classifier; low computation time
and memory overhead and competitive predictive accuracy.
Based on the results in [2], CART requires the least amount of
memory and takes the minimum computational time to predict
spam emails. In addition, the predictive accuracy and the area
under the curve (AUC) of CART are comparable to, yet do
not outperform, other classifiers, hence the predictive accuracy
of CART needs to be improved. As we mentioned earlier, we
expect that this improvement can be accomplished by feeding
the predicted output of CBART to the clients and adding it as
a new feature to the dataset.

In Figure 5 we depict a block diagram of the distributed
architecture. First, CBART is trained on a subset of the
phishing dataset, thus used to predict the status of the testing
set. Secondly, the predicted output of CBART is fed to the
clients and added as a new feature to the testing subset. Now,
the client devices are introduced to new data and CART is
used to predict the status of new emails.

V. EXPERIENTIAL STUDIES

A. Phishing Dataset

6561 raw emails are used in building the dataset, from which
1409 emails are phishing. These emails are donated by [17]
covering many of the new trends in phishing and collected
between August 7, 2006 and August 7, 2007. The total
number of legitimate emails is 5152, which are collected from
financial-related and other regular communication emails. The
financial-related emails are received from financial institutions
such as Bank of America, eBay, PayPal, American Express,
Chase, Amazon, AT&T, and many others. Table I shows that
the percentage of these emails is 3% of the complete dataset.
The remaining part of the legitimate set is collected from the
authors’ mailboxes. These emails represent regular communi-
cations, emails about conferences and academic events, and
emails from several mailing lists.

TABLE I
CORPUS DESCRIPTION.

Corpus No. of Emails Percentage (%)
Phishing 1409 21%
Legitimate (financial) 178 3%
Legitimate (other) 4974 76%
Total 6561 100%

The dataset constitutes of 71 features, in which the first
feature represent the class of the email, whether it is phishing
=1 or legitimate =0. Thus, the following 60 features represent
the terms that frequently appear in phishing emails gauged
by term frequency inverse document frequency (TF/ IDF).
TF/IDF calculates the number of times a word appears in a
document multiplied by a (monotone) function of the inverse
of the number of documents in which the word appears.
Therefore, terms that appear often in a document and do not
appear in many documents have a higher weight [4]. The
last 10 features represent structural characteristics of phishing
emails and several styles used by phishers to lure victims to
make phishing emails look legitimate.

B. Experimental Setup

The area under the receiver operating characteristic (ROC)
curve (AUC) is used as the primary measure to compare
the performance of classifiers. In [13] the authors prove
theoretically and empirically that AUC is more accurate than
error rate to evaluate classifiers’ performance. The AUC shows
the trade off between the false positives and true positives
at different cut-off points. Although classifiers’ error rate
(WErr) or sometimes classifiers’ accuracy (WAcc) have been
widely used in comparing classifiers’ performance, they have

Fig. 5. Distributed phishing detection using feature addition block diagram.

been criticized for highly depending on the probability of the
threshold chosen to approximate the positive classes. Here we
note that, when using the error rate, we assign new classes to
the positive class if the probability of the class is greater than
or equal to 0.5 (i.e. threshold=0.5).

Let NL denote the total number of legitimate emails,
and NP denote the total number of phishing emails. Now,
let nL→L be the number of legitimate messages classified
as legitimate, nL→P be the number of legitimate messages
misclassified as phishing, nP→L be the number of phishing
messages misclassified as legitimate, and nP→P be the number
of phishing messages classified as phishing. False positives are
legitimate emails that are classified as phishing, hence the false
positive rate (FP) is denoted as:

FP =
nL→P

NL
.

True positives are phishing emails that are classified as
phishing, hence the true positive rate (TP) is denoted as:

TP =
nP→P

NP
.

False negatives are phishing emails that are classified as
legitimate, hence the false negative rate (FN) is denoted as:

FN =
nP→L

NP
.

True negatives are legitimate emails that are classified as
legitimate, hence the true negative rate (TN) is denoted as:

TN =
nL→L

NL
.

In order to stay consistent with previous research though, we
also compare the error rate of classifiers. According to [19] and

[20] the predictive accuracy of classifiers is measured by the
weighted error (WErr). We assign equal weights on legitimate
and phishing emails, hence λ = 1. Now, the weighted error
rate WErr(λ), can be calculated as follows

WErr(λ) =
λ · nL→P + nP→L

λ ·NL +NP
.

We optimize the classifiers’ performance by testing them
using different input parameters. In order to find the maxi-
mum AUC, we test the classifiers using the complete dataset
applying different input parameters. Also, we apply 10-fold-
cross-validation and average the estimates of all 10 folds
(sub-samples) to evaluate the average error rate for each
of the classifiers, using the 70 features and 6561 emails.
We do not perform any preliminary variable selection since
most classifiers in the study can perform automatic variable
selection. To be fair, we use L1-SVM and penalized LR, where
variable selection is performed automatically. The optimum
classifiers’ parameters are summarized in Table II.

TABLE II
OPTIMIZED INPUT PARAMETERS IN CLASSIFIERS.

Classifier Input parameters
CBART number of trees= 100 power = 1
LR λ = 1× 10−4

RF number of trees= 50
SVM γ = 0.1 cost (c) = 12
NNet size (s) = 35 weight decay (w) = 0.7

C. Experimental Results
In this section we present the experimental results by

measuring the AUC using the complete dataset. In addition, we

compare the FP , FN , and WErr measures using the optimum
parameters achieved from the previous section.

In Table III, we compare the AUC before and after applying
the distributed approach on the complete dataset. Figure 6 and
Figure 7 depict the ROCs for all classifiers before and after
using the distributed approach respectively. Furthermore, Table
IV and Table V compare the error rate, false positive, and
false negative rates before and after applying the distributed
approach respectively.

TABLE III
COMPARISON OF AUC BEFORE AND AFTER APPLYING THE DISTRIBUTED

APPROACH. THE HIGHER THE AUC, THE BETTER THE CLASSIFIER’S
PERFORMANCE.

Classifier AUC before AUC after Increase/
decrease in
AUC

CART 96.06% 97.55% +1.49%
LR 54.45% 51.45% -3.0%
RF 95.48% 95.65% +0.17%
SVM 97.18% 97.24% +0.06%
NNet 98.80% 98.84% +0.04%

TABLE IV
ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES BEFORE

APPLYING THE DISTRIBUTED APPROACH.

Classifier WErr FP FN
CART 7.00% 11.55% 22.10%
RF 3.68% 4.25% 13.20%
SVM 2.39% 5.43% 13.77%
LR 5.34% 7.29% 18.38%
NNet 4.31% 6.16% 14.32%

TABLE V
ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES AFTER

APPLYING THE DISTRIBUTED APPROACH.

Classifier WErr FP FN
CART 2.97% 3.01% 11.08%
RF 2.85% 2.60% 10.90%
SVM 3.07% 3.09% 11.45%
LR 3.37% 4.14% 11.83%
NNet 3.27% 3.77% 11.74%

TABLE VI
INCREASE OR DECREASE IN ERROR RATE, FALSE POSITIVE, AND FALSE
NEGATIVE RATES AFTER APPLYING THE DISTRIBUTED APPROACH. THE

LOWER THE ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES,
THE BETTER THE CLASSIFIER’S PERFORMANCE.

Classifier WErr FP FN
CART -4.03% -8.54% -11.02%
RF -0.83% -1.65% -2.30%
SVM 0.68% -2.34% -2.32%
LR -1.97% -3.15% -6.55%
NNet -1.04% -2.39% -2.58%

VI. DISCUSSION

The present study investigates detecting phishing emails
using a distributed architecture. A client-server architecture

Fig. 6. ROC for all classifiers using the complete dataset before applying
the distributed approach.

Fig. 7. ROC for all classifiers using the complete dataset after applying the
distributed approach.

is applied to exploit the superior detection performance of
CBART and correspondingly conceal the computational over-
head and memory requirement associated with it. The results
demonstrate that the performance of potential classifiers at
the clients, namely CART, SVM, NNet, and RF improves
after using the predicted output of CBART in their datasets.
CART achieves the maximum improvement in AUC of 1.49%.
Despite the improvement in other classifiers, namely, RF by
0.17%, SVM by 0.06%, and NNet by 0.04%, apparently,
the improvement in the AUC is unnoticeable. Unlike other
classifiers, the performance of LR worsens with a performance

decay of 3.0%. Figure 8 depicts the performance improvement
or decay for each of the classifiers separately.

The results show (see Table VI) that the predictive ac-
curacy of CART improves by 57.52%, leaving behind all
rivals. In addition, the predictive accuracy of LR improves
by 36.95%, followed by NNet with 24.13%, then RF with
22.44%. Strangely, the predictive accuracy of SVM decreases
by 28.33%.

Similarly, the FP rate of CART decreases by 73.97%,
followed by LR with 43.26%, SVM with 43.12%, RF with
38.71%, and lastly NNet with 38.86% decrease. The FN rate
of CART decreases by 49.89%, followed by LR with 35.63%,
NNet with 18.04%, RF with 17.44%, and lastly SVM with
16.87% decrease.

Clearly, the results show that CART outperforms all rivals
in terms of performance improvement. Add to that, the low
computational overhead and memory requirement associated
with CART demonstrated in previous research [2]. In conse-
quence, a long with CBART, we expect CART to be a suitable
candidate for phishing detection in the proposed distributed
architecture.

VII. CONCLUSIONS AND FUTURE WORK

There has been an aggregative rise in phishing attacks in the
past couple of years; however, there seems to be no solution
to subvert such threats. Recently, mobile devices, be it cell
phones, PDAs, or others have been frequently used to store
sensitive information and access financial accounts. Appar-
ently, the lack of security applications, limited processing and
storage capabilities, and power constraints, render such devices
prone to new vectors of phishing attacks. The present study
proposed a distributed architecture to detect phishing attacks in
a mobile environment. CBART was implemented in a central
server and associated resource constrained clients used CART,
as it showed to be lighter in computational time and memory
overhead and competitive in predictive accuracy as well.

Empirically, the results demonstrated that the superior pre-
dictive accuracy of CBART can be exploited to enhance the
performance of other classifiers. Feeding the predicted output
of CBART to light weight classifiers deployed in resource
constrained devices proved to improve their performance.
After applying the proposed distributed architecture, detection
applications in resource constrained devices, namely CART,
achieved the maximum AUC, error rate, false positive rate,
and false negative rate improvements compared to all other
rivals. CART achieved 1.49% AUC improvement and 57.52%
decrease in the error rate. The FP rate of CART improved by
73.97% and the FN rate improved by 49.89%.

The results motivate future work to explore the variable
selection feature in CBART and compare it to other well-
known variable selection approaches. Further, the automatic
variable selection feature in CBART can be scrutinized to
examine the improvement in classifiers’ performance in the
aforementioned distributed architecture.

REFERENCES

[1] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. A comparison of
machine learning techniques for phishing detection. In eCrime ’07:
Proceedings of the anti-phishing working groups 2nd annual eCrime
researchers summit, pages 60–69, New York, NY, USA, 2007. ACM.

[2] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. Bayesian additive
regression trees-based spam detection for enhanced email privacy. In
ARES ’08: Proceedings of the 3rd International Conference on Avail-
ability, Reliability and Security, pages 1044–1051, 2008.

[3] J. H. Albert and S. Chib. Bayesian analysis of binary and polychoto-
mous response data. Journal of the American Statistical Association,
88(422):669–679, 1993.

[4] M. W. Berry, editor. Survey of Text Mining: Clustering, Classification,
and Retrieval. Springer, 2004.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, October
2001.

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification
and Regression Trees. Chapman & Hall/CRC, 1984.

[7] M. Chandrasekaran, K. Narayanan, and S. Upadhyaya. Phishing email
detection based on structural properties. In NYS Cyber Security Confer-
ence, 2006.

[8] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian
CART model search. Journal of the American Statistical Association,
93(443):935–947, 1998.

[9] H. A. Chipman, E. I. George, and R. E. McCulloch. BART:
Bayesian Additive Regression Trees, 2006. Available from: http://
faculty.chicagogsb.edu/robert.mcculloch/research/code/BART-7-05.pdf.

[10] Dell’Oro Group. Wireless LAN market to double [online]. 2005.
Available from: http://www.jiwire.com/press-100k-hotspots.htm [cited
26 April 2008].

[11] I. Fette, N. Sadeh, and A. Tomasic. Learning to detect phishing emails.
In WWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 649–656, New York, NY, USA, 2007. ACM Press.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer, 2001.

[13] J. Huang and C. X. Ling. Using auc and accuracy in evaluating learning
algorithms. IEEE Transactions on knowledge and Data Engineering,
17(3), 2005.

[14] JiWire. Worldwide Wi-Fi hotspots hits the 100,000 mark [online].
2006. Available from: http://www.jiwire.com/press-100k-hotspots.htm
[cited 26 April 2008].

[15] J. P. Marques de Sa. Pattern Recognition: Concepts, Methods and
Applications. Springer, 2001.

[16] B. Massey, M. Thomure, R. Budrevich, and S. Long. Learning spam:
Simple techniques for freely-available software. In USENIX Annual
Technical Conference, FREENIX Track, pages 63–76, 2003.

[17] J. Nazario. Phishing Corpus [online]. 2007. Available from: http:
//monkey.org/∼jose/phishing/phishing3.mbox [cited 26 April 2008].

[18] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in
embedded systems: Design challenges. Trans. on Embedded Computing
Sys., 3(3):461–491, 2004.

[19] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. Spy-
ropoulos, and P. Stamatopoulos. A memory-based approach to anti-spam
filtering for mailing lists. Information Retrieval, 6(1):49–73, 2003.

[20] L. Zhang, J. Zhu, and T. Yao. An evaluation of statistical spam
filtering techniques. ACM Transactions on Asian Language Information
Processing (TALIP), 3(4):243–269, 2004.

Fig. 8. Comparison of the ROCs for individual classifiers before and after applying the distributed approach. The solid line depicts the ROC before the
distributed approach and the dashed line depicts the ROC after the distributed approach.

