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Abstract—Phishing continue to be one of the most drastic
attacks causing both financial institutions and customers huge
monetary losses. Nowadays mobile devices are widely used to
access the Internet and therefore access financial and confidential
data. However, unlike PCs and wired devices, such devices lack
basic defensive applications to protect against various types of
attacks. In consequence, phishing has evolved to target mobile
users in Vishing and SMishing attacks recently. This study
presents a client-server distributed architecture to detect phishing
e-mails by taking advantage of automatic variable selection in
Bayesian Additive Regression Trees (BART). When combined
with other classifiers, BART improves their predictive accuracy.
Further the overall architecture proves to leverage well in
resource constrained environments.

I. INTRODUCTION

Nowadays phishing attacks appear in various types and
forms. Yet, traditional attacks delivered by spoofed e-mails
remain the dominant type of phishing. Here the bad actor
forges e-mails falsely mimicking legitimate ones and thus
mails them to victims using mailers. Victims are then lured
into divulging their confidential credentials, such as credit
card information, social security numbers, or online login
credentials. Vishing, or Voice over Internet Protocol (VoIP)
phishing, has recently emerged as a new vector of phishing
attacks, as it is easy to setup and take down by phishers.
The attack can be carried by setting up a free VoIP account
then using caller ID spoofing to mimic legitimate financial
institutions’ phone numbers.

Furthermore, because of the ubiquity of mobile devices and
the various applications to access the Internet therein, many
users are using blackberries, PDAs, or even cell phones to
access their bank accounts and store sensitive personal data.
New forms of phishing attacks that target mobile devices are
on the rise. SMS phishing, dubbed as SMishing, is an emerging
vector of phishing attacks where the victim receives a short
message service (SMS) and thus is lured into clicking on a
URL to download malware or is redirected to fraudulent sites.

Surly, there are merely few solutions available to mitigate
phishing attacks in mobile devices. In addition, several ubiq-

uitous solutions available for desktop and wired computers are
generally not as readily available across wireless and mobile
devices. This is due to several known limitations in such
devices. Due to power constraints, processing capabilities and
storage capacities are limited, which in return affect security
and privacy solutions built for such devices to protect users
against various attacks. As a result, various attacks, including
phishing, can easily take advantage of the limited or lack of
security and defense applications in these devices.

Although Bayesian Additive Regression Trees (BART) has
proven to be competitive in classifying spam e-mails, previous
research [1] showed that it is very demanding in terms of
memory consumption and learning computational time. In
consequence, it cannot be deployed in resource constrained
devices. In this study we propose a distributed architecture for
the detection of phishing e-mails in a mobile environment. The
motivation behind the distributed architecture is to harden the
attack detection at the client level and conceal the overhead
associated with BART at the server level. A mutual feedback
mechanism is deployed between the server and the clients. At
the server side, that is the MTA (mail transfer agent), BART is
applied to classify the majority of the e-mails received by the
MTA. At the client side, lighter machine learning approaches
are used to classify phishing e-mails in resource constrained
devices taking advantage of automatic variable selection in
BART.

The rest of the paper is organized as follows. In Section
II we present related work and describe BART briefly. In
Section III we explain our distributed architecture in details.
Section IV demonstrates the experimental studies. The results
are discussed in Section V. We draw conclusion and motivate
for future work in Section VI.

II. RELATED WORK

In [2], the authors investigated the application of Hill
Climbing, Simulated Annealing, and Threshold Accepting
techniques as feature selection algorithms for spam filtering
and compared their performance against Linear Discriminate



Analysis. The results demonstrated that these techniques can
be used not only to reduce the dimensions of the e-mail,
but also improve the performance of the classification filter.
In addition, there exist several approaches that measure the
importance and the effectiveness of a certain feature in the
overall prediction process. Such algorithms are known as
feature ranking approaches [3]. In [4], the authors applied
simulated annealing as an algorithm for feature selection on
a phishing dataset. After a feature set was chosen, they used
information gain (IG) to rank these features based on their
relevance.

In addition, Chandrasekaran et al. [4] proposed a technique
to classify phishing based on structural properties of phishing
e-mails. They applied one-class SVM to classify phishing
e-mails based on selected features. Their results claim a
detection rate of 95% of phishing e-mails with a low false
positive rate. Fette et al. [5] compared a number of commonly-
used learning methods through their performance in phishing
detection on a past phishing dataset, and finally Random
Forests were implemented in their algorithm PILFER. The
proposed method detected correctly 96% of the phishing e-
mails with a false positive rate of 0.1%. Abu-Nimeh et al. [6]
compared six machine learning techniques to classify phishing
e-mails. They showed that, by merely using a bag-of-words
approach, the studied classifiers could successfully predict
more than 92% of the phishing e-mails.

In the approach we propose here we neither worry about
variable selection, nor feature ranking techniques, as BART
supports automatic variable selection. Thus, BART chooses
the best variables that represent the relationship between the
features and the response in the dataset during the training
phase. We describe BART in more details in the following
section.

A. Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) is a new
learning technique, proposed by [7], to discover the unknown
relationship between a continuous output and a dimensional
vector of inputs. The original model of BART was designed
for regression problems; however, in [1] the authors modified
it (and named it CBART) to be applicable to classification.

BART discovers the unknown relationship f between a
continuous output Y and a p dimensional vector of inputs
x = (x1, ..., xp). Assume Y = f(x)+ε, where ε ∼ N(0, σ2) is
the random error. Motivated by ensemble methods in general,
and boosting algorithms in particular, the basic idea of BART
is to model or at least approximate f(x) by a sum of regression
trees,

f(x) =
m∑

i=1

gi(x); (1)

each gi denotes a binary tree with arbitrary structure, and
contributes a small amount to the overall model as a weak
learner, when m is chosen large. Each of the interior (i.e., non-
terminal) nodes in the binary tree is associated with a binary
splitting rule based on some x variable. By moving downwards

from the root, an observation with given x will be assigned
to a unique terminal node, according to the splitting rules
associated with the nodes included in its path. In consequence,
the corresponding parameter of the terminal node will be the
value of g for this observation.

Let Ti be the ith binary tree in the model (1), consisting
of a set of decision rules (associated with its interior nodes)
and a set of terminal nodes, for i = 1, · · · ,m. Let Mi be the
vector containing all terminal node parameters of Ti such that
M = {M1, · · · ,Mbi

} and bi is the number of terminal nodes
that Ti has. Now we can explicitly write

Y = g(x;T1,M1) + . . .+ g(x;Tm,Mm) + ε. (2)

Figure 1 depicts an example of a binary tree in the BART
model. Note that the BART contains multiple binary trees,
since it is an additive model. Each node in the tree represents
a feature in the dataset and the terminal nodes represent the
probability that a specific e-mail is phishing, given that it
contains certain features. For example, if an e-mail contains
HTML code, contains javascript, and the javascript contains
form validation, then the probability that this e-mail is phishing
is 80% (according to the example in Figure 1).

Fig. 1. Example of a binary tree.

BART is fully model-based and Bayesian in the sense that
a prior is specified, a likelihood is defined using the data, and
then a sequence of draws from the posterior using Markov
chain Monte Carlo (MCMC) is obtained. Specifically, a prior
distribution is needed for T , M , and σ, respectively. Each
draw represents a fitted model f∗ of the form (1). Due to
space constrains, we do not provide in depth discussion of
BART. Though the interested reader can refer to [1], [7] and
the references therein for further information.

BART has several features that render it competitive to other
well-known classifiers. BART automatically selects variables
from a large pool of input predictors, while searching for
models with highest posterior probabilities for future pre-
diction, via a backfitting MCMC algorithm. Compared to
other Bayesian methods, such as Naive Bayes and Bayesian
Networks, the latter approaches require variable selection to be



done separately, otherwise they use all the variables supplied
for training, thus the performance of the classifier will be
very poor. In addition, it is well known that variable selection
in a high dimensional space is a very difficult problem that
often requires intensive computations. Note that phishing e-
mails change regularly and vastly to lure detection mechanisms
and the phishing features in e-mails may change over time
as well. Yet, the above nice feature of BART comes handy
when training on newly arriving e-mails on a regular basis.
With no additional requirements to perform variable selection,
BART simultaneously accomplishes variable selection during
the training phase.

In addition, in phishing detection hundreds of potential
features are extracted from raw e-mails. Only an unknown
subset of them is useful for prediction, however others may
be deemed irrelevant. Consequently, blindly including all
the variables during training often leads to overfitting, and
hence predicting new attacks may be poor. However, with the
automatic variable selection feature in BART this problem is
solved.

III. DISTRIBUTED PHISHING DETECTION

Based on the results of previous research [1], CBART
outperforms other classifiers when predicting spam e-mails.
Yet, the overhead associated with CBART renders its imple-
mentation impractical in resource constrained devices due to
the limitations discussed earlier. Albeit, the implementation of
CBART may be suitable in a server environment due to the
abundance of resources therein (i.e. processing, power, and
memory).

Our main goal here is to take advantage of the superior
predictive accuracy of CBART to detect the majority of
phishing e-mails at the server level. Further, by deploying
CBART at the server level, the overhead associated with
CBART can be concealed. Afterwards automatic variable
selection in CBART can be used to improve the predictive
accuracy in client devices. After CBART performs variable
selection automatically and generates the sum-of-tree model,
the selected variables are fed to clients, so classifiers in clients
can use them when predicting classes of new e-mails. By
doing this, the predictive accuracy of clients is expected to
improve, since merely the features of interest are used during
classification. Performing variable selection at the server level
not only improves the predictive accuracy of clients, but also
eliminates extra computational time and processing overhead
in clients needed to do so. Figure 2 depicts a high level
description of the architecture.

IV. EXPERIENTIAL STUDIES

A. Phishing Dataset

A phishing dataset is constructed from 6561 raw e-mails.
1409 among these e-mails are phishing donated by [8] cover-
ing many of the new trends in phishing and collected between
August 7, 2006 and August 7, 2007. The legitimate portion
of the dataset is 5152 e-mails, which are collected from
financial-related and other regular communication e-mails.

Fig. 2. Distributed phishing detection using variable selection block diagram.

The financial-related e-mails are sent by financial institutions
such as Bank of America, eBay, PayPal, American Express,
Chase, Amazon, AT&T, and many others. The remaining
part of the legitimate set is collected from the authors’
mailboxes. These e-mails represent regular communications,
e-mails about conferences and academic events, and e-mails
from several mailing lists. Table I summarizes the ratio of the
e-mails in the dataset.

TABLE I
CORPUS DESCRIPTION.

Corpus No. of e-mails Percentage (%)
Phishing 1409 21%
Legitimate (financial) 178 3%
Legitimate (other) 4974 76%
Total 6561 100%

The dataset constitutes of 71 features, in which the first
feature represent the class of the e-mail, whether it is phishing
=1 or legitimate =0. Thus, the following 60 features represent
the terms that frequently appear in phishing e-mails gauged
by term frequency inverse document frequency (TF/ IDF).
TF/IDF calculates the number of times a word appears in a
document multiplied by a (monotone) function of the inverse
of the number of documents in which the word appears.
Therefore, terms that appear often in a document and do not
appear in many documents have a higher weight [9]. The last
10 features represent structural characteristics of phishing e-
mails and several styles used by phishers to lure victims and
make phishing e-mails look legitimate.

B. Experimental Setup

We compare the classifiers’ performance using multiple
measures. Primarily, we use the area under the receiver
operating characteristic (ROC) curve (AUC) to evaluate the
performance of classifiers. The AUC shows the trade off
between the false positives and true positives at different cut-
off points. In addition, we use classifiers’ error rate (Err),
false positive rate (FP), and false negative rate (FN) to gauge
the performance of classifiers. Although classifiers’ error rate



(Err) or classifiers’ accuracy (Acc), that is 1 − Err, have
been widely used in comparing classifiers’ performance, they
have been criticized for highly depending on the probability
of the threshold chosen to approximate the positive classes.
Therefore, some researchers recommend using AUC than
classifiers’ error rate or accuracy when evaluating classifiers’
performance [10]. Here we note that, when using the error rate,
we assign new classes to the positive class if the probability
of the class is greater than or equal to 0.5 (i.e. threshold=0.5).

False positive rate is the total number of legitimate e-mails
misclassified as phishing (nL→P ) divided by the total number
of legitimate e-mails (NL).

FP =
nL→P

NL
. (3)

False negative rate is the total number of phishing e-mails
misclassified as legitimate (nP→L) divided by the total number
of phishing e-mails (NP ).

FN =
nP→L

NP
. (4)

The error rate is the total number of misclassified e-
mails divided by the total number of e-mails (legitimate and
phishing) in the dataset.

Err =
nL→P + nP→L

NL +NP
. (5)

We optimize the classifiers’ performance by testing them
using different input parameters, as shown in Table II. In
order to find the maximum AUC, we test the classifiers using
the complete dataset applying different input parameters. In
addition, to find the minimum average error rate we apply 10-
fold-cross-validation and average the estimates of all 10 folds
(sub-samples). Note that when calculating the AUC values,
the classifiers are tested using the complete dataset without
applying 10-fold-cross-validation.

Variable selection is performed using automatic variable
selection in CBART. CBART selects the variables that are
frequently used during MCMC simulations. In our experiments
the 6 most frequently used variables are selected. Note that we
performed our experiments using different number of selected
variables, namely 10, 20, and 30, though 6 variables achieved
the maximum AUC. To evaluate the effectiveness of variable
selection in CBART, we test it against Kruskal-Wallis (KW)
test [11]. KW test can be used to measure the importance of
predictors based on their p-value. In our experiments we select
all variables with p− value < 0.1. Thus the total number of
selected variables based on the KW test is 13 variables.

C. Experimental Results

In this section we present the experimental results by
comparing the AUC, FP , FN , and Err using the optimum
parameters achieved in the previous section.

Table III and Table IV compare the AUC, error rate, false
positive, and false negative rates before and after applying
the distributed approach respectively. Here we compare the

TABLE II
OPTIMIZED INPUT PARAMETERS IN CLASSIFIERS.

Classifier Input parameters
CBART number of trees= 100 power = 1
LR λ = 1× 10−4

RF number of trees= 50
SVM γ = 0.1 cost (c) = 12
NNet size (s) = 35 weight decay (w) = 0.7

performance of classifiers before using variable selection and
after selecting 6 variables by CBART. Table V summarizes the
improvement or decay in classifiers after applying variable se-
lection. Note that the performance of classifiers degrades when
the AUC decreases and/or the error rate, FP, FN increases.

Table VI compares the AUC, error rate, false positive,
and false negative rates of classifiers after applying variable
selection using the top 13 variables in KW test. Table VII
summarizes the improvement or decay in classifiers after
applying variable selection.

TABLE III
AUC, ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES

BEFORE APPLYING THE DISTRIBUTED APPROACH.

Classifier AUC Err FP FN
CART 96.06% 7.00% 11.55% 22.10%
RF 95.48% 3.68% 4.25% 13.20%
SVM 97.18% 2.39% 5.43% 13.77%
LR 54.45% 5.34% 7.29% 18.38%
NNet 98.80% 4.31% 6.16% 14.32%

TABLE IV
AUC, ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES AFTER
APPLYING THE DISTRIBUTED APPROACH. SIX VARIABLES ARE SELECTED

USING AUTOMATIC VARIABLE SELECTION IN CBART.

Classifier AUC Err FP FN
CART 94.49% 7.09% 11.31% 22.81%
RF 93.60% 2.85% 2.60% 10.90%
SVM 95.01% 5.37% 8.79% 16.93%
LR 62.85% 3.37% 4.14% 11.83%
NNet 94.95% 3.27% 3.77% 11.74%

TABLE V
INCREASE OR DECREASE IN AUC, ERROR RATE, FALSE POSITIVE, AND

FALSE NEGATIVE RATES AFTER APPLYING THE DISTRIBUTED APPROACH
USING AUTOMATIC VARIABLE SELECTION IN CBART. THE HIGHER THE

AUC VALUE THE BETTER THE CLASSIFIER’S PERFORMANCE. THE LOWER
THE ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES, THE

BETTER THE CLASSIFIER’S PERFORMANCE.

Classifier AUC Err FP FN
CART -1.57% +0.09% -0.24% +0.71%
RF -1.88% -0.83% -1.65% -2.30%
SVM -2.17% +2.98% +3.36% +3.16%
LR +8.40% -1.97% -3.15% -6.55%
NNet -3.85% -1.04% -2.39% -2.58%

V. DISCUSSION

The present study proposes a client-server architecture to
detect phishing e-mails in a resource constrained environment.



TABLE VI
AUC, ERROR RATE, FALSE POSITIVE, AND FALSE NEGATIVE RATES AFTER

APPLYING THE DISTRIBUTED APPROACH. 13 VARIABLES ARE SELECTED
USING KW TEST.

Classifier AUC Err FP FN
CART 94.90% 7.97% 15.55% 22.71%
RF 94.57% 4.60% 6.21% 15.72%
SVM 97.09% 5.58% 7.91% 18.90%
LR 37.15% 7.44% 8.58% 27.73%
NNet 96.36% 4.97% 7.53% 16.22%

TABLE VII
INCREASE OR DECREASE IN AUC, ERROR RATE, FALSE POSITIVE, AND

FALSE NEGATIVE RATES AFTER APPLYING THE DISTRIBUTED APPROACH
USING KW TEST. THE HIGHER THE AUC VALUE THE BETTER THE

CLASSIFIER’S PERFORMANCE. THE LOWER THE ERROR RATE, FALSE
POSITIVE, AND FALSE NEGATIVE RATES, THE BETTER THE CLASSIFIER’S

PERFORMANCE.

Classifier AUC Err FP FN
CART -1.16% +0.97% +4.00% +0.61%
RF -0.91% +0.92% +1.96% +2.52%
SVM -0.09% +3.19% +2.48% +5.13%
LR -17.30% +2.10% +1.29% +9.35%
NNet -2.44% +0.66% +1.37% +1.90%

CBART is deployed at the server to detect the majority of
phishing e-mails. Thus the associated clients use the variables
selected by CBART during training to improve their predic-
tive accuracy and eliminate the overhead needed to perform
variable selection. In addition, the effectiveness of CBART’s
variable selection is compared against another variable selec-
tion approach, namely Kruskal-Wallis (KW) test. The results
demonstrate that when using variable selection via CBART,
the AUC of all classifiers decreases, except in LR, indicating
a decay in classifiers’ performance. Similarly, when using vari-
able selection via KW the AUC in all classifiers decreases. On
the other hand, when using variable selection via CBART, the
error rate, false positive rate, and false negative rate decrease,
in all classifiers, except in SVM, showing an improvement
in classifiers’ performance. One of the known disadvantages
of SVM is that it is prone to overfitting. We expect that this
is the reason behind the decay in the performance of SVM.
When SVM is trained on more variables, it overfits the data
and the performance of classifiers improves (see Table III).
However, when the number of variables decreases noticeably,
the performance of SVM decreases as shown in Table IV.

To the contrary, when using a different variable selection
approach, namely KW test, the selected variables do not
improve the performance in any of the classifiers (see Table
VII). The AUC in all classifiers decreases as we mentioned
earlier, indicating a decay in performance, and the error rate,
false positive rate, and false negative rate increase, showing a
decay in performance as well.

We believe that the overhead associated with CBART can
be concealed if applied in a server environment. Further, other
classifiers can benefit from automatic variable selection in
CBART as demonstrated in the experiments. Moreover, the
automatic variable selection in CBART proves to be compet-
itive to at least variable selection in KW. In summary, the

proposed distributed architecture looks promising and suitable
for phishing detection in a resource constrained environments.

VI. CONCLUSIONS AND FUTURE WORK

Phishers are exploiting new attack vectors to lure mobile
users. Several ubiquitous solutions available for desktop and
wired computers are generally not as readily available across
wireless and mobile devices due to processing, power, and
storage limitations. The present study proposed a distributed
client-server architecture to detect phishing attacks in a mobile
environment. CBART was implemented at the server to detect
the majority of phishing e-mails. Thus associated clients
took advantage of automatic variable selection in CBART to
improve their predictive accuracy and eliminate the overhead
of variable selection is applied.

The results demonstrated that automatic variable selection
in CBART can be used to improve the predictive accuracy in
other classifiers. Although the AUC decreased for the majority
of classifiers (except LR), the error rate, false positive rate, and
false negative rate decreased for RF, LR, and NNet after using
variable selection via CBART. However, when using another
variable selection technique, namely Kruskal-Wallis (KW)
test, the predictive accuracy for all the compared classifiers
degraded.

The results motivate future work to compare the effec-
tiveness of automatic variable selection in CBART against
other well-known variable selection approaches to derive more
extensive conclusions.
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