
Security Fusion Based On State Machine
Compositions
Omar Al Ibrahim, Suku Nair

SMU HACNet Labs
Southern Methodist University

Dallas, TX, USA
{oalibrahim,nair}@smu.edu

Abstract—Security fusion is a new paradigm in security for
resource-constrained environments [20]. Following this paradigm,
strong system-level security is achieved by combining weak
primitives from multiple nodes. In this paper, we describe a fusion
methodology based on state machine compositions. From the
properties of compositions, we devise a challenge-response system
that composes low-entropy state machines at individual nodes
into one with higher entropy. We use built-in digital logic such as
Physical Unclonable Functions (PUFs) to efficiently mass generate
and distribute keys. In addition, we draw on the properties
of compositions to reduce the key storage complexity at the
infrastructure-level, with high coverage and early detectability
at the system-level.

I. INTRODUCTION

Resource-constrained devices including sensors and Radio-
Frequency ID (RFID) have posed severe limitations in pro-
cessing power, memory and computational resources. These
devices are subject to a multitude of attacks such as cloning
and replay attacks. Traditional cryptographic schemes [1-3]
are too expensive for these environments, naturally because
of the stringent constraints on the device, but also because
of the performance requirements on the system. In addition,
resource-constrained systems usually hold a large set of nodes,
and thus key management could be cumbersome.

A. Security fusion

Security fusion [20] is a novel framework in security for
inherently resource-limited systems. Unlike traditional crypto-
graphic schemes, the general approach here is to introduce
lightweight primitives at the individual nodes that provide
a strong aggregation to security properties at the system-
level. In other words, security fusion refers to this concept
of synthesizing security properties from weak point-to-point
properties, much like the thin strands of a thick bulk rope.

This concept is suitable for protecting applications using
a global security metric, without lending to strong crypto-
graphic schemes. One application for security fusion is sensor
networks [12-15]. Sensor networks consist of autonomous
nodes that collect sensor measurements from the environment.
These measurements are filtered and aggregated at some
central higher-capable node to obtain improved information
for system-level decisions. Due to the aggregate nature of
data in sensor networks, it is natural to approach security
through a fusion model to protect monitoring, tracking, and

controlling applications. Using security fusion, it is possible to
collate multiple sensor read-outs to reach a globally authentic
decision.

Another application for security fusion is to preserve the
component-level integrity of embedded systems. For instance,
recent generations of smart phones consist of various intercon-
nected components such as Bluetooth, WiFi, flash memory,
and Codec chip. In many cases, these components are manu-
factured by different suppliers, and then integrated into a single
platform. In the event of counterfeit, non-genuine components
can be detected using an aggregate verification check of the
platform.

Our earlier paper [20] introduces the concept of security
fusion with a detailed description on a state machine-based
architecture to realizing the framework. In this architecture, the
basic idea is to have a challenge-response system that extracts
a global security property from the response pattern of all the
nodes. In [20], we analyzed the security characteristics of the
proposed scheme and showed how it withstands a wide variety
of attacks including cloning and intrusion.

B. State machine compositions

The purpose of this paper is to provide a fusion method-
ology for improved security and reduced complexity using
state machine compositions [21,22]. For quite some time,
researchers and engineers studied the mathematical properties
of machine compositions and their applications. For instance
in [23], machine compositions were used in fault-tolerant
system design to create backups of the system state in a
distributed client-server environment. Another application of
the theory was presented in the simulation of digital logic
circuits [24]. Machine compositions consider the problem
of interconnecting an arbitrary set of state machines. These
interconnections form logical associations that construct a state
machine representation, called the composite machine. The
interconnected state machines that constitute the composite
machine are called the component machines.

Within state machine compositions, there are different types
of interconnections

• Cross product: These are interconnections that execute
machines concurrently.

• Machine chains: Machine chains are interconnections that
execute in cascade fashion based on the propagation of



state information from one component to the next.
• Feedback: Interconnections by means of feedback com-

position propagate information flow from one component
to a previous connected component.

Given these basic forms, we develop a fusion methodology
based on the two former interconnection types: cross products
and machine chains. Specifically, we use these interconnec-
tions to construct a high entropy model for system secu-
rity using low-entropy state machines from individual nodes
as building blocks. Moreover, we demonstrate a security-
overhead tradeoff by transforming the composite machine into
machine chains, which are then reduced to achieve the desired
coverage.

The remainder of the paper is organized as follows. We
briefly give an overview on security fusion in Section 2.
Section 3 presents our fusion methodology using state ma-
chine compositions. In Section 4, we describe an approach
to complexity reduction using state machine chaining. Finally,
we conclude in Section 6.

II. BACKGROUND - SECURITY FUSION

In [20], we proposed a new paradigm to security, namely
security fusion, in which security properties are synthesized
from weak point-to-point primitives. The motivation is to
present a common framework for security that is low-cost and
secure at the system-level. In order to apply these concepts,
it is necessary to establish a framework through which nodes
will communicate with the backend system. In the next sub-
sections, we present the physical architecture and a framework
for security fusion using the model of a finite state machine.

A. Physical architecture

In the security fusion framework, the physical architecture
consists of a system with large number of nodes (Figure 1).
Each node is equipped with three components: computation,
storage, and a communication component. The physical archi-
tecture also consists of a group of readers acting as cluster
heads. The communication model is limited to a challenge-
response interaction between the reader and the nodes. Thus,
minimal communication is carried out and no delegation of
messages is necessary. In the setup stage of the architecture,
every node shares a secret key with the system. In this paper,
we briefly discuss how the keys are efficiently derived and
distributed using built-in circuitry such as Physical Unclonable
Functions (PUFs) [30-35].

B. State machine model

We illustrate a simple example of security fusion using
finite state machines. A finite state machine serves as a basic
computational model and it is one of the many frameworks
that could be utilized to apply security fusion concepts.
Understanding the intrinsic properties of state machines helps
us build systems with secure global properties.

Fig. 1. Physical architecture

1) Description of the state machine: A state machine can
be described by ”transition” and ”output” rules. Transition
rules define the mappings from the current state to the next
state given the input value. Output rules define possible values
emitted by a node for a given state and transition. Let us
assume we have a state machine with n states (S1, S2, ...Sn).
Since we are considering a state machine with a single-bit
input, we have two transitions per state, one of which is ”0”
the other is ”1”. In the following, we describe the transition
and output rules using a Moore model [22].

Transition rules: (Current state, Input) → Next state
• (si, ”1”)→ sj
• (si, ”0”)→ sv,

where (0 ≤ i, j, v ≤ n)
Output rules: (Current state) → Output

• (si)→ ki
• (sj)→ kj , where ki 6= kj

To illustrate, we depicted three Moore machines M1,M2 and
M3 in the Figure 2 below. Each of these machines is associated
with a node in the system.

2) Security protocol: Each node is associated with a unique
state machine and these state machines are shared as secret
keys. The state machines are employed to model the read-
out patterns. After each interrogation from the reader, nodes
change their states according to the transition rules defined
prior to deployment. The system authenticates a node by
checking the expected current state and confirming correct
application of the rules. A basic protocol for this interaction
is depicted below.

Denote N: node, R: reader
• R→ N : Sends a read query
• N : Obtains the bit value (0 / 1)
• N → R : N moves to the next state based on the bit

value and sends a response
• R: resolves N’s response
In the backend system, the values from multiple nodes

are collated and processed by the application. During the
execution of the state machine, a number from the current
state is emitted. The numbers assigned to the states are random
and unique. No synchronization is needed in the operation of
the system, and we will simply assume that the start state is



a) Machine M1

b) Machine M2

c) Machine M3

Fig. 2. Moore machine examples

provided as an argument in the query message. In this paper,
we demonstrate how to use state machine compositions to
increase the entropy of the system.

C. PUF-based implementation for state machines

In this architecture, we propose to use PUFs (Physical Un-
clonable Functions) [30-35] to efficiently derive and distribute
state machines. PUFs are special circuits in semiconductor
devices which provide unique challenge-response repository
using device manufacturing variations. These responses have
random but reproducible characteristics. PUFs are well known
for their complex microstructure, and because of that they
provide resistance to counterfeit. One of the distinct advan-
tages of PUFs is that they are easily produced using standard
digital logic. Thus, they can be used to mass manufacture
random state machines at the individual nodes and then
efficiently read-out by the system. PUFs are also efficient
for implementation [4,6], and require much less hardware to
implement than conventional cryptographic hash or encryption
algorithms. For instance, existing designs of MD5 and SHA-
256 require 8000 to 10000 gates [1,2,12]. In contrast, a PUF-
based arbiter [32] circuit (Figure 3) is estimated to have 6 to 8
gates for each input bit, a total of about 545 gates for a 64-bit
input PUF.

In this discussion, we briefly describe how to model a state
machine using PUFs to leverage from this simple yet powerful
circuitry. A general model for PUFs is to define a function
that maps a set of challenges to a set of responses. PUF

Fig. 3. Arbiter PUF circuit

Fig. 4. State machine implementation using PUF

challenges and responses are represented as strings of bits.
To model a state machine, we interpret the challenge-response
strings as follows: In the challenge string, we define few bits
to represent the source state, and another bit to denote the state
machine transition. Since PUF has exponentially-many values
with respect to the output length, we also specify a machine
id to instantiate small state machines. In the response string,
some of the bits will be used to determine the destination state,
the rest are reserved for the machine output. In the execution
of the state machine, PUF is used to dictate the transition and
output rules. The system sends the current state and transition
bit as part of the challenge string to PUF, and then obtains
the next state and machine output from the response. Figure 4
captures the general idea.

Example: To illustrate, let us consider a state machine with
four states using a 64-bit PUF circuit. First, we need to decide
what lines will be used to represent the different fields. For
instance, let us choose the first 61 bits of the input to denote the
state machine id, and one bit to denote the transition, and the
last two bits to decide on the current state. As for the response,
we might also select the last two bits to represent the next state,
the rest are for the state machine output. As a side note, we do
not need to select the lines in consecutive order to represent the
different fields since we can choose them at arbitrary positions.
In Table I, we show a hypothetical example of challenge-
response combinations using 91:D4:4B:29:20:80:56:70 as the
machine id. The least significant hex digit in the challenge
represents the state and transition bit. A challenge string
91:D4:4B:29:20:80:56:75 represents state s1 on transition bit 1.
The corresponding response 3A:E6:CE:C1:CC:C9:C9:5B rep-
resent output 3A:E6:CE:C1:CC:C9:C9:58 with state s3 as the
next state. A complete depiction of the state and transitioning
behavior is shown in Figure 5.



TABLE I
CHALLENGE-RESPONSE MAPPINGS

Challenge Response

91:D4:4B:29:20:80:56:70 92:00:11:EB:7F:E3:73:FF

91:D4:4B:29:20:80:56:71 B4:6D:17:DC:84:45:17:C1

91:D4:4B:29:20:80:56:72 0A:23:72:D1:DE:EB:ED:BD

91:D4:4B:29:20:80:56:73 B6:B2:DE:2A:10:00:56:20

91:D4:4B:29:20:80:56:74 F4:F7:F7:F7:76:83:12:20

91:D4:4B:29:20:80:56:75 3A:E6:CE:C1:CC:C9:C9:5B

91:D4:4B:29:20:80:56:76 84:45:17:C1:65:FD:85:81

91:D4:4B:29:20:80:56:77 3A:E6:CE:C1:19:F3:20:E6

Fig. 5. State machine example for PUF mappings in Table I

III. STATE MACHINE COMPOSITIONS

In the following sections, we present the security fusion
architecture based on compositions, but first let us introduce
the notations/terminology used in this paper (Table II).

TABLE II
NOTATIONS

Symbol Description

Mi
Moore state machine, ferived from the nodes.

P
Product machine, constructed using a composi-
tion of multiple Moore machines.

Ci
Machine chain component.

sij State j in some Moore machine Mi.

xij
State j in some machine chain component Ci.

pj State j in the product machine P

(s1j1 , s2j2 , .., )

Composition state representation of the product
machine state pj . Each element of the tuple is
a state in a Moore machine. The tuple length
depends on the composition size.

k1, k2, k3, ..

Node responses which are governed by the
output rules on the Moore machines. These
responses are generated and assigned uniquely
to the Moore machines.

sij : k An assignment of a node response k to state sij

A. Cross product

A cross product machine [21,22] is a state machine that
simulates concurrent execution of multiple machines. In other
words, each state in the cross product machine represents a
configuration of states for a group of machines. Two cross
product models simulate parallel execution of state machines:

• Restricted cross product: The restricted cross product is a
machine construction that simulates execution of multiple
machines fed with the same input.

• Full cross product: The full cross product is a machine
construction that simulates execution of multiple ma-
chines for all input combinations. This is the more general
construction.

a) Restricted cross product

b) Full cross product

Fig. 6. Cross product models

A logical diagram for both models is depicted in Figure 6.
Both constructions consider the reachable product of states for
some arbitrary number of machines (M1,M2 . . .Mk). A state
pj is said to be reachable if and only if there exists a sequence
of transitions that takes the machine to pj starting from the
initial state.
Example: Consider the three Moore machines M1,M2 and
M3 shown in Figures 2(a), (b), and (c). The restricted and
full cross products for the three machines are depicted in
Figures 5(a) and (b) and denoted as P . To construct P , we
first determine the set of all reachable states in each machine.
In this example, the sets are: {s11, s12} for M1, {s21} for
M2, {s31, s32, s33} for M3 . Second, we generate the product
states by taking all different combinations from the sets:
{(s11, s21, s31), (s11, s21, s32), (s11, s21, s33), (s12, s21, s31),
(s12, s21, s32), (s12, s21, s33)}.

As illustrated in Figure 7, we represent the product states
p1 through p6 as a tuple of the original states. For instance,
state p1 of the cross product has a composite representation
(s11, s21, s31) which represents a configuration of M1 in
s11,M2 in s21, and M3 in s31. To compute the transitions for
the cross product, we evaluate the transition rules of each state
in the tuple. In the restricted cross product, the transition rule
is evaluated for a common input. For instance, if the input is



a) Restricted product P

b) Full product P

Fig. 7. Cross product examples

0, then M1 moves to s11 and outputs k1,M2 moves to s21 and
outputs k3, and M3 moves to s31 and outputs k4. Therefore,
the next state in the product machine will be (s12, s21, s31),
and corresponds to p4, and the response pattern becomes
k2k3k4(as a simple convention, we represent the pattern as
a string). As for the full cross product, the transition rules are
evaluated by taking all input combinations.

B. Authentication using the cross product

We now describe an authentication procedure using the
cross product. The cross product is used to compute a system-
wide output (e.g. using XOR) from the response pattern of
elemental state machines stored at the individual nodes. We
illustrate this with a simple example of authenticating three
nodes using M1,M2, and M3 in Figure 2.

Example: Consider a scenario in which M1is in s11,M2 is
in s21, and M3 is in s31 (Figure 8). In this example, assume
the reader input is 1, and also assume that we are going to
apply the restricted cross product, as illustrated in Figure 7(a).
The corresponding responses for this configuration are k1 for

TABLE III
CROSS PRODUCT MAPPINGS

State in product
machine P Composite representation Response

pattern

p1 (s11, s21, s31) k1k3k4

p2 (s11, s21, s32) k1k3k5

p3 (s11, s21, s33) k1k3k6

p4 (s12, s21, s31) k2k3k4

p5 (s11, s21, s31) k2k3k5

p6 (s11, s21, s31) k2k3k6

Fig. 8. Response pattern example

M1, k3 for M2, k4 for M3. Collectively, the reader obtains
k1k3k4 as a response pattern (Figure 8). Table 1 illustrates
the mappings for every response pattern to a product state
in the system. As shown from the table, the pattern k1k3k4
corresponds to state p1 in the product machine, and the initial
states (s11, s21, s31) correspond to p6. Accordingly, the system
accepts the response pattern since (p6, 1) → p1 is a valid
transition in the product machine. On the contrary, consider
a scenario in which M1 is replaced with a malicious node
that outputs k2 instead of k1. In this case, the system obtains
k2k3k4 as a response pattern instead of k1k3k4. Referring to
the table, we deduce that the new response pattern corresponds
to p4 and since the transition (p4, 1) → p1 is not a valid
transition, the response pattern is rejected by the system.

IV. COMPLEXITY REDUCTION USING MACHINE
CHAINING

In this section, we describe a transformation called machine
chaining to reduce the state space incurred from the cross
product construction. State machine chaining is a composition
that interconnects a set of state machines as components in
a chain. The chain components execute in cascade fashion
to simulate a larger composite machine. In this section, we
explain the details of the transformation and how to establish
an authentication procedure based on this new representation.



A. Machine chaining

Machine chaining [21,22] is a construction of multiple
state machines logically connected in cascade form. In this
interconnection, every state machine is treated as a component
such that the state of one component depends on the state of
the previous component in the chain. The first component,
C1, depends only on the input sequence, and thereby called
the independent component. The rest of the components,
C2 . . . Cm, determine their state based on the influence of the
previous components, and thereby referred to as dependent
components.

Fig. 9. Machine chaining

The theory of machine chaining has been around for decades
[21,22] yet the scope of applications are limited to the design
of sequential circuits. For instance, using machine chaining, a
large circuit is replaced with an interconnection of small sub-
circuits. These small sub-circuits are synthesized to reduce
costs and to provide reliability advantages including ease of
trouble-shoot and repair. In this paper, we demonstrate a new
application for machine chaining in the areas of security and
system design. Theoretically, it has been demonstrated that
any state machine has a chain realization [22] such that the
components of this chain are ”algebraically” simpler than the
original state machine.

Example: We illustrate a machine chain with two com-
ponents: an independent component (C1) and a dependent
component (C2). This chain has equivalent behavior as the
product machine P shown in Figure 7(a). Depicted above,
C1 has two states x11 and x12. Since C1 is independent,
the transitions are only triggered by the machine input. C2,
on the other hand, depends on both the input and the state
of the previous machine. As illustrated, the state delegation
from C1 to C2 is treated as part of the input (Figure 10(b)).
Referring to Figure 10(b), consider C2 being on state x21.
If the input is 1 and C1 is on x11, then C2 will transition
to x22 and outputs k1k3k5. Instead if the input was 0, then it
would have output k1k3k4 . This output behavior is equivalent
to p1 in the product machine P . Similarly, we find matching
equivalences for the rest of the states. As a general rule, if
two machines have the same behavior, then there must be a
correspondence between their states. Therefore, every state in
P has a matching configuration of the component machines,
represented as a composite vector of the component states.
Table IV shows this correspondence.

B. Chain transformation

We now describe the setup procedure for building a security
fusion architecture using state machine chaining. The system
pre-computes a machine chain to transform elemental state

TABLE IV
STATE CORRESPONDENCE MAPPINGS

State in product
machine P

State in C1 State in C2

p1
x11

x21

p2 x11
x22

p3 x11
x23

p4 x12
x21

p5 x12
x22

p6 x12
x23

a) Independent component C1

b) Dependent component C2

Fig. 10. Machine chain components

machines into a single representation. Using the properties of
machine chains, the system machine is expressed as a vector
of interconnected components. Subsequently, the coverage of
the system is determined by the number of components that
represent the system state. To obtain a coverage-overhead
tradeoff, we propose to reduce the chain length by eliminating
some of the components from the chain. The coverage of the
system is chosen to reduce the chain length while keeping the
likelihood of intrusion as low as possible.

Let us investigate how to transform the individual state
machines into a chain construction (Figure 11). This trans-
formation is computed in the setup phase of the system. We
can describe the setup procedure in the following steps:

• Step 1: Initially, the system reads-out the state machines
for all the nodes. The state machines (M1,M2 . . .Mn)
are derived from the nodes and stored in the system.

• Step 2: Next, we construct a cross product P from the
machines (M1,M2 . . .Mn) . Although the size of the
cross product could be potentially large, the cross product
is only stored temporarily.

• Step 3: P is factored out into a machine chain
(C1, C2, . . . , Cm). Various chaining algorithms perform



Fig. 11. Chain transformation and truncation

these conversions, as we will describe shortly.
• Step 4: We truncate the chain at some cutoff point. The

choice for the truncation point is chosen to achieve an
optimal coverage-overhead tradeoff.

C. Authentication through chaining

Example: To illustrate the concept, we continue on our
example from Figure 8 and the three state machines M1,M2

and M3 shown previously in Figures 2(a), (b) and (c), but
rather than authenticating with P , we transform P into a
machine chain with two components C1 and C2, as illustrated
in Figures 10(a) and (b). According to Tables 1 and 2, the
corresponding states for k1k3k4 will be x11 in C1, and x21in
C2. Further, suppose the initial system state is x11 in C1

and x23 in C2. Since the outputs satisfy the transition rules
(x11, 1) → x11 and (x23, 1) → x21, the response pattern is
accepted. On the other hand, consider a scenario in which a
malicious node masquerades as M1 and suppose it emits k2
instead of k1 . In this scenario, the response pattern k2k3k4
will correspond to states x12x21, mapping to an incorrect
transition (x12, 1)→ x11in C1. As a result, the system detects
a false response pattern.

D. Chaining approaches

Several chaining approaches were proposed to transform a
state machine into a machine chain. This transformation pro-
duces a state machine of equivalent behavior. Here we briefly
describe a few of these approaches and the structure of the
components involved in the factorization. To make discussions
easier, let us consider factoring P into two components C1 and
C2. The general case is straightforward to deduce.

1) Delayed input chaining: One approach to chaining is
to factor out a state machine by another machine that follows
the behavior of a delay line circuit [22]. In electronics, a delay
line is defined as a series of connecting delay elements, i.e.

latches, in which the output line matches the input line after
multiple time intervals. The state machine corresponding to
this circuit is used to synthesize C2.

2) Chaining with arbitrary components: Delayed-input
chaining [22] does not always lead to complete factorization.
An alternative approach is to select an arbitrary structure for
C1. In this approach, a restricted cross product of C1 and P
is constructed to determine a state cover. C2 is synthesized
by factoring out the component states from the cross product
using the state cover.

3) Chaining with PR-machines: A more systematic ap-
proach to factorization is to construct a chain of Permutation-
Reset (PR) machines [22]. PR-machines are state machines
that satisfy the following property: All transitions from a
state either permutes to all states or resets to one particular
state. Figure 10(a) is an example of a PR-machine showing
a permutation on states: x11and x12. PR-machines are useful
structures because they are guaranteed to factor out any state
machine. Formally, it can be shown that any n-state machine
is factorable into an independent component that is a PR-
machine followed by a dependent component having n-1 or
fewer states.

V. CONCLUSION

In this paper, we developed a security fusion methodology
based on state machine compositions. We demonstrated that
compositions such as cross products and machine chains pro-
vide improved authentication with reduced complexity for an
infrastructure. We also discussed how built-in primitives such
as PUF could be used to improve distribution of keys among
the nodes. Future work involves analytical study of overhead
to security tradeoff available to the proposed methodology.

REFERENCES

[1] A Bogdanov, G Leander, C Paar, A Poschmann, and Y Seurin, Hash
functions and RFID tags: mind the gap, in CHES 2008 - Cryptographic
Hardware and Embedded Systems , 2008, pp. 283-299.

[2] M. Feldhofer and C. Rechberger, A case against currently used hash
functions in RFID protocols, in OTM 2006 Workshops, 2006, pp.
372-381.

[3] D. Wheeler and R. Needham, TEA, a tiny encryption algorithm, in Fast
Software Encryption: Second International Workshop, Lecture Notes in
Computer Science , 1994, p. 363366.

[4] H. Chan, V. Gilgor, A. Perrig, and G. Muralidharan, On the distribution
and revocation of cryptographic keys in sensor networks, IEEE
Transactions on Dependable and Secure Computing , pp. 233-247 , July
2005.

[5] W. Du, J. Deng, Y. Han, and P. Varshney, A key predistribution scheme
for sensor networks using deployment knowledge, IEEE Transactions
on Dependable and Secure Computing , pp. 62-77, January 2006.

[6] N. Saxena, G. Tsudik, and J. Yi, Efficient node admission and certificate-
less secure communication in short-lived MANETs, IEEE Transactions
on Parallel and Distributed Systems , pp. 158-170, February 2009.

[7] E. Shai and A. Perrig, Designing Secure Sensor Networks, IEEE
Wireless Communication, vol. 11, no. 6, pp. 38-43, December 2004.

[8] A. Uluagac, R. Beyah, Y. Li, and J. Copeland, VEBEK: Virtual Energy-
Based Encryption and Keying for Wireless Sensor Networks, IEEE
Transactions on Mobile Computing , pp. 994-1007 , July 2010.

[9] Z. Yu and Y. Guan, A Key Management Scheme Using deployment
knowledge for wireless sensor networks, IEEE Transactions on Parallel
and Distributed Systems , pp. 1411-1425 , October 2008.

[10] C. Karlof, N. Sastry, and D. Wagner, TinySec: A link layer security
architecture for sensor networks, in Proceedings of the Second ACM
Conference on Embedded Networked Senosr Systems (SenSys), 2004.



[11] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar, SPINS:
Security protocols for sensor networks, in Proceedings of Seventh
Annual International Conference on Mobile Computing and Networkings,
2001.

[12] M. Feldhofer and J. Wolkerstorfer, Strong crypto for RFID tags - a
comparison of low per hardware implementations, in IEEE International
Symposium on Circuits and Systems, 2007, pp. 1839-1842.

[13] R.I. Praise and S. Vaudenay, Mutual authentication in RFID: security
and privacy, in ACM Symposium on Information, Computer and
Communications Security, New York, NY, USA, 2008, pp. 292-299.

[14] L. Yan, Y. Zhang, L. Yang, and H. Ning, The internet of things. Boca
Raton, FL: Auerbach, 2008.

[15] M Burmester, T van Le, and B de Medeiros, Provably secure ubiquitous
systems: universally composable RFID authentication protocols, in
Securecomm and Workshops, 2006, Baltimore, MD,USA, 2006, pp. 1-9.

[16] P. Israsena, Securing ubiquitous and low-cost RFID using Tiny Encryp-
tion Algorithm, in 1st International Symposium on Wireless Pervasive
Computing, 2006.

[17] Y. Yu, Y. Yang, and H. Min, A Novel Design of Secure RFID Tag
Baseband, in Proceedings of EU RFID Forum, 2007.

[18] K. Youngdai, S. Hong, W. Lee, S. Lee, and J. Lim, Related key
differential attacks on 26 rounds of XTEA and full rounds of GOST, in
Proceedings of Fast Software Encryption, Lecture Notes in Computer
Science, 2004, pp. 299-316.

[19] L. Blum, M. Blum, and M. Shub, A Simple unpredictable pseudo-
random number generator, SIAM Journal on Computing, vol. 15, p.
364383, May 1986.

[20] S. Nair, S. Abraham, and O. Al Ibrahim, Security fusion: security for
resource-constrained environments, in IEEE Infocom, Shanghai, China,
2011 (submitted).

[21] W. Holcombe, Algebraic automata theory, 2nd ed. New York, USA:
Cambridge University Press, 1982.

[22] F. Hennie, Finite-state models for logical machines, 4th ed. New York,
USA: John Wiley Sons, 1968.

[23] B. Balasubramanian, V. Ogale, and V. Garg, Fault tolerance in finite
state machines using fusion, in Distributed Computing and Networking,
Lecture Notes in Computer Science.: Springer, 2008, pp. 124-134.

[24] P. Maurer, Logic simulation using networks of state machines, in
Proceedings of the conference on Design, automation and test in Europe
, Paris, France, 2000, pp. 674 - 678.

[25] J. Farnendez and A. Farnedez, SCADA systems: vulnerabilities and
remediation, Journal of Computing Sciences in Colleges, vol. 20, no.
4, pp. 160-168, April 2005.

[26] Critical infrastructure protection: challenges and efforts to secure con-
trol systems, General Accounting Office (GAO), GAO-04-354, 2004.

[27] N. Ferguson and B. Schneier, Practical cryptography: Wiley publish-
ing, 2003.

[28] T. Cormen, C. Lieserson, R. Rivest, and C. Stein, Introduction to
algorithms, 2nd ed.: MIT Press and McGraw-Hill, 2001.

[29] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, Physical unclonable
function and true random number generator: a compact and scalable
implementation, in Proceedings of the 19th ACM Great Lakes
symposium on VLSI , Boston Area, MA, 2009, pp. 425-428.

[30] M. Majzoobi, F. Koushanfar, and M. Potkonjak, Techniques for design
and implementation of secure reconfigurable pufs, ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 2, no. 1, March
2009.

[31] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, Physical unclonable
function and true random number generator: a compact and scalable
implementation, in Proceedings of the 19th ACM Great Lakes
symposium on VLSI , Boston Area, MA, 2009, pp. 425-428.

[32] G. Suh and S. Devadas, Physical unclonable functions for device
authentication and secret key generation, in ACM IEEE Design
Automation Conference, San Diego, CA, 2007, pp. 9-14.

[33] L. Bolotnyy and G. Robins, Physically unclonable function-based secu-
rity and privacy in Rfid systems, in Fifth Annual IEEE International
Conference on Pervasive Computing and Communications, 2007. PerCom
’07. , White Plains, NY, 2007, pp. 211-220.

[34] L. Kulseng, Z. Yu, Y. Wei, and Y. Guan, Lightweight secure search
protocols for low-cost Rfid systems, in 29th IEEE International
Conference on Distributed Computing Systems, 2009, pp. 40-48.

[35] K. Frikken, M. Blanton, and M. Atallah, Robust authentication using
physically unclonable functions, in Lecture Notes in Computer Science.:
Springer Berlin / Heidelberg, 2009, pp. 262-277.


