
A Meta-Framework for Secure Enterprise Computing

PROJECT SUMMARY

In this project, we develop a framework for secure and reliable distributed enterprise computing. With the
advances in internetworking and communications, widely distributed systems have become the choice
computing paradigm for enterprises and individuals. Despite their advantages, security and reliability of
such systems are still suspect, at best, and is of enormous interest to the research community. In this
project we address the security and reliability issues in such systems and offer solutions that are cost-
effective, backward compatible, and highly scalable.

The key idea behind our approach is the real-time monitoring of behavior of protocols to ensure their
secure and reliable progression. The monitoring is achieved through observing various parameter values
and their temporal and spatial validity. It has been observed by the research community that security and
reliability are two competing concerns and often, solutions proposed are disjoint, addressing only either one
of the problems. In our approach, we use a common framework to monitor both security and reliability,
which enables us to detect any unexpected behavior that may be caused by intruder intervention,
communication channel errors, program compilation errors, or hardware faults.

As authentication protocols play a vital role in ensuring security of communication channels [3,4,5], our
focus in security is to protect authentication protocols from intruder attacks. Our approach to reliability is
based upon real-time monitoring of control-flow behaviors and application specific data value checking.
The approach is highly scalable as it lends well to hierarchical deployment. It can be implemented along
with any existing protocols and systems with minimal changes to the infrastructure and hence backward
compatible and cost-effective. Further, it offers extreme flexibility as the meta-channel can be
implemented at a later stage in the deployment of the network.

In the first part of the project, we develop the new framework based on meta-servers and channels.
Detailed architecture, trust and fault models, and protocols will be developed for the framework to enable
real-time monitoring and recovery. Using formal models and prototypes we conduct extensive studies on
the strengths and weaknesses of the proposed techniques against all known attacks and failure scenarios.

Scientific Merit of the Proposed Work: In this project, we propose a unified approach to security and
reliability of widely distributed enterprise computing environment. Though security and reliability are two
essential tenets of information safety, their requirements are often contradictory; security strives to
minimize accesses, whereas, reliability requires abundance of access. From the information theoretic point
of view, secure systems require high entropy, leaving no room for guessing; reliable systems need low
entropy with potential to reconstruct information in case of loss. Our contribution is in finding a common
ground to treat security and reliability in a uniform manner. The research in this project will contribute to
the body of knowledge in areas such as design of distributed protocols, authentication protocols, formal
verification of protocols, concurrent error detection, distributed error recovery, and protocol simulations.

Broader Impact: The project has wide ranging implications on the general protocol and system validation.
Further, the techniques developed here will enable developers to focus on the features of applications and
protocols rather than worrying about fool proofing them. This will result in applications that are more
imaginative. Further, the methods proposed here will positively affect the bottom lines of corporations and
other entities using enterprise computing as the option is made available to deploy security and reliability
features in a later stage of the design cycle.

PROJECT DESCRIPTION

A META-FRAMEWORK FOR SECURE ENTERPRISE COMPUTING

1. INTRODUCTION
Revolution in communication technology and advances in distributed management of
resources have made enterprise computing a viable option to industries and organizations.
Providing acceptable levels of security and reliability to such systems will determine the
penetration and longevity of this paradigm. As increasingly sensitive data is generated,
stored and exchanged, the threat of unauthorized access and malicious manipulation of
such information increases. Recent years have seen even ordinary individuals and
organizations become attractive targets for malicious activities, made easier by the
proliferation of communication networks and the availability of enormous computing
resources to support the attacks. With the model of transparent cooperation between
computers and resources, the availability of services dependent on fault-free operation all
the nodes, communication channels and the protocols that help them interact.
Unfortunately, quite often the end-user may not have full control on the operation of
various component systems. Reliable and secure co-ordination of operations are further
hampered by complex concurrency control requirements.

A basic requirement that a good security framework should meet is authentication, the
establishment of identities. Authentication essentially involves proving claims of identity
or authenticity. A weak authentication protocol can seriously jeopardize the security of an
information system, by failing to prevent illegitimate access to its resources. Over the
years, many authentication protocols that were once believed to be foolproof have been
shown to be vulnerable to a variety of attacks. Despite the advances in protocol validation
and verification, skepticism still prevails on potential vulnerabilities of these protocols.

The approach to security is borne out from the observation that most of the attacks can be
prevented by tightly controlling the state transitions and input conditions of even a
weakly verified protocol. In the proposed work, we achieve this through real-time
monitoring of the protocol footprint using a meta-framework. In the project, propose to
use the same framework for monitoring the behavior of the system to capture any run-
time violation caused by hardware faults, communication channel errors, or compilation
errors. This proposal to use a unified framework for security and reliability monitoring is
built upon the team�s extensive research experience in behavior-based concurrent error
detection techniques, network security, and distributed computing algorithms and
architectures.

2. PROBLEM DESCRIPTION AND PREVIOUS SOLUTIONS

With proliferation of robust internetworking protocols, use of widely distributed
computing connected over the Internet has become a reality. Unfortunately, with this

growth comes increasing concern about the security of transactions over the Internet.
Due to the decentralized and heterogeneous architecture of the Internet, one cannot
exclude the possibility that the messages between the legitimate parties go through a
malicious intruder. The routing mechanisms in the Internet also do not offer any
protection against malicious attacks. Various security services against known attacks
include authentication services, access control services, and data confidentiality and
integrity services. Network protocols that implement these services make use of
mechanisms such as data encryption and digital signatures. The overall security of the
service depends on both the protocol and the underlying encryption mechanism.

In the past most of the research addressing transaction security has been focused on the
encryption algorithms. However, even when the underlying encryption scheme is
foolproof, the protocol may still be vulnerable to intruder attacks. For instance, there are
well-known chosen cipher-text attacks against implementation of RSA scheme without
breaking a sweat to break the encryption. Thus, the validation of these protocols has
become central to the security of the system. Existing informal approaches to validation
have proven to be highly unreliable, while application of formal approaches has been
limited either due to their complexity or due to their over-simplification in trying to
reduce the complexity. We believe that formal or informal validation of protocols, along
with run-time checking of assumptions made during the verification or validation, will
allow us to deal with the complex implementations of real protocols.

Security and reliability of distributed systems are intertwined. A failure in one or more
components of the system could result in security compromises and vice versa. For
example if the time-stamp generator fails, the system could be exposed to a replay attack.
Similarly, denial-of-service attacks in any form will reduce the availability of the system.
There are attacks on security protocols that will be misconstrued as concurrency failures.
If replicate data to make system fault tolerant, we may risk the confidentiality of the data.
Thus, it is imperative to address the security and reliability of enterprise systems in a
unified way.

2.1 Security

In one form or another, most information systems and networks support authentication of
peer entities and data origin [1] [2]. Authentication is necessary to prevent misuse of
resources and services, to ensure data integrity, and to establish proof of origin of data.
Peer entity authentication enables an entity in a communication network to verify that a
peer in a communication session is indeed the entity that it claims to be. In this way, it is
assured that the peer is not trying to masquerade as another and that it is not trying to
bypass authentication through a replay of earlier authenticated sessions. Data origin
authentication, on the other hand, establishes the authenticity of the source of a message,
thus assuring that the message really came from the claimed source.

Three broad categories of authentication techniques are widely used in information
systems, the specific choice depending on the application domain.

• Proof by knowledge, where authentication is based on something the claiming

entity knows (e.g., passwords, identification numbers). By far, this is the simplest
and most widely used technique in current communication networks.

• Proof by possession, where authentication is based on something the claiming
entity possesses (e.g., keys, identity cards, other physical tokens). This technique
is more expensive, but is used in environments where enhanced security is
required.

• Proof by property, where authentication is based on some property of the claimer
(e.g., biometric properties such as voice patterns, fingerprints, and facial images).
This is complex and very expensive, but may be required in situations demanding
utmost security.

We limit the scope of authentication in our work to proof by knowledge, since this is the
most relevant form in communication networks. The `proof' in this case is established
through authentication protocols that comprise special handshake messages between
communicating principals. As these protocols are as vulnerable to eavesdropping as any
other, cryptographic techniques are almost invariably used to protect this knowledge
verification phase of communication sessions.

In benign environments, most authentication protocols function properly. However, they
may fail in the presence of adversaries (intruders) capable of observing and manipulating
protocols messages. The situation is complicated because, quite often, a malicious entity
may itself be a valid principal in the system. Under such circumstances, it is assumed that
an intruder may have the ability to observe, insert, modify, or delete messages exchanged
through the network. However, according to the strong cryptography assumption, the
intruder is considered incapable of extracting information from an encrypted message,
unless the corresponding key is in its possession through some means (e.g., key
compromise). Essentially, keys chosen through guesswork are considered virtually
useless because of this assumption.

An adversary may be able to attack and defeat authentication by exploiting vulnerabilities
in protocol structure, message sequences, and timing relations. Some of the well-known
attacks are:

1. Key guessing attack: In this brute force approach, an intruder tries to guess the
right key from the entire key space. The attack may succeed when the choice of
keys is not carefully made, or where the key space is small enough for an
exhaustive search.

2. Known plain text attack: Simple protocols in which parts of encrypted messages

are publicly known (or can be easily deduced) are vulnerable to this attack. Using
some known plain text (e.g., names, addresses) and the corresponding ciphertext,
an adversary may be able to break the cryptographic system and recover the key
or other secrets.

3. Chosen cipher-text attack: In this form of attack, an intruder manages to get

legitimate principals to encrypt some carefully chosen data. The resulting cipher-

text is then used to help break the cryptographic code.

4. Replay attack: An intruder accumulates tables of messages between legitimate
principals and replays them when the right opportunity arises. Essentially, an old
message (from a past valid session) is passed off as current. Unsuspecting
principals may accept such old message as fresh, potentially allowing the intruder
to establish falsely authenticated sessions. Principals may even be tricked into
using old compromised keys, enabling the intruder to eavesdrop on all further
`encrypted' communication.

5. Oracle session attack: An intruder uses a principal as an `oracle' in its malicious

actions against another. The intruder engages in authentication sessions with two
principals and tricks one of them into performing the encryption and decryption
required in the session with the second. Such attacks often succeed due to
vulnerabilities in protocol message structure or message sequences.

6. Parallel session attack: An intruder exploits a legitimate principal to act against

itself. The intruder engages in two simultaneous authentication sessions with the
same principal and manipulates one session to generate messages needed in the
other. One of the sessions may eventually pass authentication criteria.

Of these, key-guessing attacks, known plain-text attacks, and chosen plain-text attacks
are actually attacks on the underlying cryptographic mechanism and not directly on the
authentication protocol logic. Hence, based on the strong cryptography assumption, such
attacks are generally not considered while analyzing authentication protocols, but are
rather left to studies on cryptographic algorithms. Attacks that exploit weaknesses in the
freshness assumption (such as replay of old messages) are often collectively called
interleaving attack, and constitute an important class of attacks on authentication
protocols [7].

A malicious entity with sufficient resources and intelligence may potentially be able to
identify and exploit these weaknesses, thereby defeating the authentication mechanism to
masquerade as another valid entity. Though considerable research has been done in the
past on various techniques to formally verify authentication protocols, it is generally
agreed upon that proving that an authentication protocol is secure is not easy or
straightforward and that there is no substitute for good engineering practices in designing
and deploying these protocols.

Approaching the problem from this direction, we develop an architecture designed to
prevent generally known attacks on authentication protocols through a trusted third party
monitoring [13]. Attention has been paid to keep the architecture simple enough so that it
will not face the same problems that the protocols it tries to protect face, yet robust
enough to resist most forms of attack. The use of trusted entities is not new in
authentication; several authentication protocols that depend on trusted third parties have
been proposed and used in the past (a familiar example is the Kerberos authentication
system [10]). However, in almost all such protocols, the trusted third party is an integral

part of the authentication process. Any weakness of the trusted party can seriously
damage the security of numerous entities depending on its service. Moreover, in large
systems, the trusted entity can quickly become a performance bottleneck, as it needs to be
directly involved in all sessions initiated among the entities in its authentication domain.
Inter-domain authentication (between two entities belonging to two different domains) is
also a major issue in such protocols, because of the potentially limited trust that entities in
one domain may be willing to have on the trusted entity belonging to another domain.

2.2 Reliability

Computer systems that are used in high dependability and integrity applications need to
be designed with the capability to detect and recover from the errors caused by hardware
and software faults. Since the majority of errors are usually transient and not
reproducible, off-line testing will not reliably detect them. Thus, it is imperative that the
systems be designed with built-in concurrent error detection and recovery mechanisms.
Behavior based error detection (BED) is touted as an inexpensive yet effective concurrent
technique to support fault tolerance. Among the various approaches such as structural
integrity checks, memory access checks, control-flow checks, it has been shown that the
control-flow checking is most effective in its error coverage and cost.

Various control-flow checking techniques have been proposed in the past to detect
processor faults. The techniques employ a watchdog processor to compute run-time
signatures from the instructions and compare them with the pre-computed signatures.
These techniques need either additional hardware or modification of the hardware and are
invariably non-portable to various platforms. Complexity of the modern compilers is yet
another source of additional control-flow faults, which cannot be handled by these
methods, as they assume error free object output from the compilers. To circumvent these
limitations, recently we have developed a high-level control-flow checking approach
using assertions (ECCA) [13], in which branch-free intervals in a given high-level
language program are identified and the entry and exit points of the intervals fortified
through pre-inserted assertions. The ECCA approach is portable across architectures and
requires no special hardware or database lookups to implement. It can be implemented
through a pre-processor based on the syntactic structure of the language pre-processor
based on the syntactic structure of the language and does not require generation and
analysis of various paths in the program control-flow graph. ECCA will detect hardware
or compiler induced control flow faults.

All these BED schemes had been used so far in uni-processor or tightly coupled
multiprocessor environments. We observe that application of BED techniques at a
higher granularity in a distributed environment system can significantly improve the error
detection and correction capabilities such systems. In the project, we develop BED
schemes coupled with application specific data value checking for ensuring the reliable
execution of the protocols. The schemes can easily be implemented in conjunction with
the security monitoring under the unified meta-frame work that we develop.

3. Approach

The key idea behind our approach is the real time monitoring of protocol behavior to
ensure its secure and reliable progression. The monitoring is achieved through observing
various parameter values and their temporal and spatial validity. It has been observed by
the research community that security and reliability are two competing concerns and
often, disjoint solutions are proposed to address these problems. In this proposal we
introduce a framework, which enables non-intrusive monitoring with the capability to
address both security and reliability. In what follows in this section, we describe the
monitoring framework and the necessary protocols. We also present evaluation criteria
for the assessment of the proposed techniques. In Section 5, we present detailed research
and development plan for the project duration.

3.1 Meta-Authentication Framework

The term meta-authentication denotes an `encapsulating authentication' mechanism for
general authentication protocols. This is achieved through a high level mechanism for
validating the execution of underlying authentication protocols. Meta authentication
operates in the context of a framework comprising an architecture and a high level
validation protocol that together provide a distributed environment for monitoring and
validating the execution of authentication protocols. Entities involved in an
authentication session can ensure that the execution of the authentication protocol itself
has been proper and devoid of any malicious tampering or manipulation. The framework
does not make any assumptions on the underlying authentication protocol and is generic
enough to support any protocol chosen by communicating entities. It is important to note
that it is not a goal of meta-authentication to offer any assurance as to the correctness of
beliefs established by the `encapsulated' protocol; this is still the responsibility of the
encapsulated protocol. However, it does provide assurance that the encapsulated protocol
itself runs correctly, protected from extraneous interference.

3.2 The Trust Model

Meta authentication is based on the concept of trusted third parties. All communicating
entities in a domain of trust utilize the services of the trusted entity. The use of trusted
entities is not new in authentication; several authentication protocols that depend on
trusted third parties have been proposed and used in the past (a familiar example is the
Kerberos authentication system [10]). However, in almost all such protocols, the trusted
third party is an integral part of the authentication process. Any weakness of the trusted
party can seriously damage the security of numerous entities depending on its service.
Moreover, in large systems, the trusted entity can quickly become a performance
bottleneck, as it needs to be directly involved in all sessions initiated among the entities
in its authentication domain. Inter-domain authentication (between two entities belonging
to two different domains) is also a major issue in such protocols, because of the
potentially limited trust that entities in one domain may be willing to have on the trusted
entity belonging to another domain.

In the scheme proposed here, the role of trusted third parties is limited to only helping to
monitor the execution of authentication sessions. They are neither directly involved in the

execution of the protocol, nor do they play any role in establishing beliefs between
communicating parties. Their service is needed only if the communicating entities wish
to protect their authentication process through meta-authentication. Even without meta-
authentication, they will still be able to operate any authentication protocol normally. The
optional use of meta-authentication is designed to protect against security attacks, while
incurring minimal overhead.

In meta-authentication, the entire user space is divided into trust domains. Each domain
includes any number of ordinary communicating entities and a trusted meta-
authentication server (henceforth called the meta server). A meta server establishes trust
with every member in its domain, so as to function as an intermediary in intra-domain
authentication. An entity need not trust any member even in its own domain, other than
its meta server. Moreover, entities in one domain need not trust the meta server in another
domain. However, meta-servers in different domains may establish and maintain trust on
one another, so that their services can be extended to inter-domain authentication as well.
As there is only one meta server in each domain, this trust is far easier to establish and
manage as compared to maintaining trust among all entities in all domains, or between
entities in one domain and meta servers in other domains, or even between all entities in
the same domain. Essentially, meta authentication follows a hierarchical and transitive
trust model. This means that, if there is trust between entity A and its meta server SA,
between entity B (possibly in another domain) and its meta server SB, and between meta
servers SA and SB, then eventually trust may be established between A and B.

3.3. An Architecture for Meta-Authentication
The meta authentication scheme uses public key cryptography to protect the integrity of
sessions. During an authentication session, communicating members and the concerned
meta servers exchange monitoring messages signed with their private keys. These signed
messages, verifiable only with the respective public keys, deliver validating data to help
the communicating members ascertain the integrity of the `encapsulated' run of protocol.
It may however be noted that meta authentication exchanges are not confidential, i.e.,
exchanged messages are observable by anyone. This is because meta authentication relies
only on the integrity of validation messages, not on their confidentiality. When two
members of the same domain authenticate, this message exchange involves those two
members and the domain's meta server. When the authentication is between two members
belonging to different domains, the exchange involves the two members and the meta
servers of both domains. As compared to other public key based systems, the meta
authentication scheme imposes only minimal requirements, which are as follows.

1. Each member and meta server in any domain has a public/private key pair.
2. The private key of every member and meta server is kept strictly confidential,

known only to the holder of the key (this is a requirement in all public key
cryptographic systems).

3. All members in a domain know the public key of the meta server of the same
domain.

4. A meta server knows the public keys of all members in its domain.
5. A meta server either knows the public keys of the meta servers in all other

domains, or has access to a mechanism through which such keys can be obtained
(for example, based on certificates issued by a higher trusted entity).

The scheme, however, does not impose any restrictions on the members. A member need
not know the public key of any other member in its own, or another, domain. Further, a
member need not know the public keys of any meta server in other domains. Similarly, a
meta server does not need to know the public key of any member of other domains.
Thus, the scheme allows each domain to be separately administered. The only inter-
domain knowledge is limited to meta servers who need to know the public keys of one
another. This not only reduces the overhead but also reduces the chance of compromised
key pairs being used. The basic schemes as would be used in intra-domain and inter-
domain meta authentication are shown in Figure 1(a) and Figure 1(b), respectively.

Figure 1. Inter and Intra-domain Meta Authentication

In the figure, the public and private keys of any entity X are represented as Kx_pub and
Kx_prv, respectively. The authentication protocol employed by the communicating
members A and B is independent of the meta authentication scheme. Members may use
any authentication protocol they choose. It is also irrelevant whether the encapsulated
protocols are based on public key or shared key cryptography.

3.4. Protocol for Meta-Authentication

During the run of an authentication protocol, several pieces of information are exchanged
between the two communicating entities such as identities, one-time random values
(nonces), time-stamps, and shared keys. If the two entities calculate an integrity check
value (ICV) over these values using a pre-defined and mutually agreed upon function, the
results would be identical at the two ends. The function must be irreversible, so that it is
infeasible to generate a set of protocol messages that would result in that ICV and it
should be collision resistant, meaning, different runs of the protocol must not result in the
same ICV. It is also possible to calculate the ICV using weighted functions resulting in
different values at the two ends, which prevents replay type attacks on the meta

(a) (b)

authentication itself. By virtue of encryption mechanisms used in the authentication
protocol itself, many of these values may be seen only by the communicating parties and
not by any third party. Thus it will be infeasible for an external entity to deduce the ICV
for a fresh instance of the protocol run. This indicates that in the presence of an attack,
one or more pieces of information known (sent or received) to one entity in the session
may not be the same as those seen by the entity at the other end. However, there may be
cases where the external intruding entity may be able to see all the pieces of information
seen by legitimate participants. In such cases, simply demonstrating an ICV is not
sufficient because the intruder also will be able to generate this value. This is the reason
why signed messages are used in the meta authentication framework to deliver validation
data. The strong cryptography assumption ensures that an intruder will not be able to
forge the signature of another entity.

An authentication session protected through Meta authentication proceeds through the
following steps:

1. Before initiating the authentication session, the authenticating entities agree
whether to use the optional meta authentication services. If the decide not to do
so, then no further protection is available and the entities proceed to step 3.

2. If meta authentication is to be used, the entities agree upon a predefined algorithm
for weighted integrity check value calculation.

3. The entities run the real authentication protocol. If meta authentication is not
used, the entities proceed to step 14.

4. As the authentication protocol proceeds, each entity calculates a local ICV and
`deduces' the ICV that is supposedly being calculated by the other.

5. When the authentication protocol run concludes, each entity sends the 'deduced'
ICV to the Meta server of its domain in a signed (signed with the entity's private
key) message. This message includes the identity of the entity, the identity of the
other entity (the other participant in the authentication session) to whom the
information is to be delivered, and a time-stamp.

6. Each meta server verifies that the message came from an entity in its own domain,
and checks the validity of the signed message received using the public key of the
originating entity (this key is known to the meta sever, as the entity is a member
of its domain). It also checks the time-stamp to ensure that the message is timely
and not a replay.

7. Each meta server then extracts the information and determines whether the
recipient entity is a member of its own domain. If this is the case (intra-domain
authentication), it sends the information to the entity in a signed message (signed
with the server's private key) also including the identity of this meta server and its
own time-stamp. Operation then proceeds to step 9. However, if the recipient
entity is not a member of its own domain (inter-domain authentication), then the
meta server sends this newly formed message to the meta server of the recipient
entity, and operation continues in step 8.

8. The receiving meta server verifies the received message for integrity (using the
sending meta server's public key) and timeliness. It also verifies that the recipient
is a member of its domain. On verification, the server extracts the relevant

information (identities of originating and receiving entities, and the `deduced' ICV
value) and sends it to the recipient. The message is signed with this meta server's
private key and also includes the meta server's identity and a new time-stamp.

9. On receiving this validation message, each entity verifies that it was delivered by
the meta server of its own domain using the public key of the server, known to all
members in the domain), and that it is timely.

10. From the validation message delivered in step 9, each entity extracts the identity
of the originating entity and verifies that there is indeed an authentication session
proceeding between the two. It then compares the `deduced' ICV value received
in the message with the value it had computed locally, and verifes that they are
identical. If both these checks are successful, then the entity proceeds to step 13.

11. If either of the checks in step 10 fails, it indicates a possible intrusion attempt and
the entity immediately aborts the authentication session. After a timeout, the
entity at the other end will notice the absence of response and will also terminate
the session. The remaining steps are skipped in this case.

12. If an entity fails to receive the above validation message within a reasonable
amount of time after the conclusion of the authentication protocol run, it assumes
some foul play and aborts the authentication session. The other entity will also
have to terminate the session after a timeout. The remaining steps are skipped in
this case.

13. The successful checks in step 10 assure both authenticating entities that the
execution of the authentication protocol itself has been proper and secure.

14. Based on the outcome of the real authentication protocol, the entities determine
whether to accept the authenticity of the other entity or abort the session. The
procedure described above in steps 1 through 14 constitute the meta
authentication protocol

Figure 2 Intra- and Inter Domain Meta-Authentication Protocol

(a) (b)

In Figure 2 (a), the pair, m1; m2 show the path of validation message delivery from A to
B, and m10, m20 show the path from B to A. Note that there is no timing relationship
between the two sequences, timing is applicable only within the same sequence. Similarly
in Figure 2(b), m1; m2; m3 and m10; m20; m30 show the delivery path.

3.3. Security of Meta-Authentication
Consider a high level view of the transfer of validating information in the Meta
authentication model. Take x and y as the integrity check values generated locally by
nodes A and B. Also y� is the value deduced by A and x� is the value deduced by B. Now
the entity A accepts authentication protocol run if and only if x� = x, and entity B accepts
the authentication protocol run if and only if y� = y. For given x or y, it is infeasible to
generate a set of protocol messages that result in the same ICV values, because of the
properties of collision resistance and irreversibility, processed by the ICV generating
function.

Figure 3. Trusted Paths in Meta-Authentication

Under the given assumptions, a malicious entity cannot forge any of the signed messages,
because the required private key will not be known to it. This follows from the fact the
strong cryptography assumption. An intruder cannot replay any of the messages in an
authentication session, because x and y are time dependent since their calculation uses
time-stamps as one of the inputs. It cannot substitute a message in an authentication
session with a similar message from a different run of the protocol, because it is
infeasible to manipulate a protocol run such that it results in a known ICV (x or y).
Therefore, if a message is delivered in an authentication session, the receiver is assured of
the data origin authenticity and data integrity. However, a malicious entity capable of
observing and manipulating protocol sessions may be able to intercept and possibly
delete a message in an authentication session. However, the receiver will detect the
message loss through a timeout and abort the session. From these observations, it is clear
that an encapsulated (monitored) authentication protocol is secure (in terms of integrity)
if the Meta channel between the authenticating entities is safe. Thus, the Meta
authentication scheme provides a robust mechanism to ensure the integrity of
authentication protocols.

3.4 Reliability

We address the reliability issue at two levels. First, we want to enhance reliability
through the real-time monitoring of the system behavior, through the services available
through the meta-channel. Then we want to ensure that the meta-channel itself will be

protected against various failures.

For the former, we develop system level checks to detect control-flow and data value
errors, caused by transient as well as permanent faults. The progress of computation as
well as protocols will be reported to meta-servers for conformity checks. This is the first
proposal to perform such monitoring over the Internet. The expanse of the network
requires that the control-flow parameters be chosen at a higher granularity when
compared to the monitoring of a uni-processor system. We do assume that the meta-
channels are reliable and secure for which we will provide error detection and correction
mechanisms at the data level and communication protocol level. The channels will be
secured for confidentiality, authenticity, and/or integrity as the application demands.

In order to ensure the reliability of the meta-authentication system we rely upon classical
fault tolerance techniques. As described in preceding sections, in its simple
configuration, each domain will have only one meta-server. In order to avoid the
problem a single point of failure we institute an automatic selection protocol in order to
designate another met-server for the domain in case of failure of the current server. When
extreme reliability and response times are critical the meta-framework could be extended
to have multiple servers per domain where conformity decisions will be arrived at based
on Byzantine agreement among the server nodes.

4. RESEARCH PLAN

The proposed research is planned to be finished through five parallel activities that span
three years as follows.

Related Work and Impact (Year 1, Year 2, Year 3)
In this activity, an extensive review of related schemes will be conducted in Year 1.

Existing solutions will be analyzed and categorized. A comparative study between the
proposed framework and existing schemes will be conducted in Year 2. A study of the
impact of the proposed work will be conducted in Year 3.

Framework (Year 1 & Year 2)
In this activity, a framework that enables non-intrusive monitoring with the capability

to address both security and reliability will be designed. The architecture of the meta-
framework will be laid out in Year 1. Enhancement to the framework will be conducted
in Year 2.

Protocols (Year 1 & Year 2)

Protocols that address both security and reliability problems will be introduced during
Year 1. Implementation and prototyping will be conducted in Year 2.

Evaluation (Year 2 & Year 3)
These activities include holding a number of simulation as well as real experiments to

assess the proposed framework. During Year 2, an evaluation model will be developed
and experiments will be designed. In Year 3, extensive simulation studies as well as
experiments on real systems will be held.

Dissemination (Year 1, Year 2, Year 3)
Research results will be collected and documented as technical report(s) for

publication. It is expected that a number of journal and conference articles will result
from this research. In addition, we plan to distribute the protocol prototypes to a number
of researchers in the community.

The research plan is summarized in Table 1.

Table 1. Research Plan

ACTIVITY YEAR 1 YEAR 2 YEAR 3
RELATED WORK

AND IMPACT
EXTENSIVE
STUDIES OF
RELATED
SCHEMES

COMPARATIVE
STUDIES

ANALYSIS OF
IMPACT

FRAMEWORK FRAMEWORK
DEVELOPMENT

FRAMEWORK
ENHANCEMENT

PROTOCOLS PROTOCOL
DEVELOPMENT

PROTOCOL
IMPLEMENTATION

EVALUATION EVALUATION
MODELING

SIMULATION
STUDIES & REAL
SYSTEM
EXPERIMENTS

DISSEMINATION DISSEMINATION OF
RESULTS, REPORT

DISSEMINATION OF
RESULTS, REPORT

DISSEMINATION OF
RESULTS, REPORT

5. Personnel

Prof. Suku Nair

Pertinent expertise: Network Security and Fault Tolerant Computing:

Suku Nair�s current research interests are in network security, network restoration, and
fault tolerant computing and is the director of High Assurance Computing and
Networking Lab in the computer science and engineering department at SMU. His
research in network security has been most recently supported by a grant from the Texas,
Advanced Technology Program. He is an affiliate of eCenter, an independent center of
excellence focusing on interactive networking. Suku Nair has been a consultant to major
telecom companies such as Nortel, Alcatel, DSC Communications, and Wiltel.

Prof. Hesham El-Rewini

Pertinent expertise: Heterogeneous Parallel and Distributed Computing, Mobile
Computing:

El-Rewini�s current research interests are split between two main areas: mobile
computing and parallel and distributed processing. He has published many papers in the
above research areas. In 2001, he has been awarded $305,360 from DoD to work on the
design and operation of mobile environments with hybrid backbones. He has also written
several books including Introduction to Parallel Computing, Task Scheduling in Parallel
and Distributed Systems, and Distributed and Parallel Computing.

