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PROJECT SUMMARY 

In this project, we develop a framework for secure and reliable distributed enterprise computing. With the 
advances in internetworking and communications, widely distributed systems have become the choice 
computing paradigm for enterprises and individuals.  Despite their advantages, security and reliability of 
such systems are still suspect, at best, and is of enormous interest to the research community.  In this 
project we address the security and reliability issues in such systems and offer solutions that are cost-
effective, backward compatible, and highly scalable.   
 
The key idea behind our approach is the real-time monitoring of behavior of protocols to ensure their 
secure and reliable progression.  The monitoring is achieved through observing various parameter values 
and their temporal and spatial validity.  It has been observed by the research community that security and 
reliability are two competing concerns and often, solutions proposed are disjoint, addressing only either one 
of the problems.  In our approach, we use a common framework to monitor both security and reliability, 
which enables us to detect any unexpected behavior that may be caused by intruder intervention, 
communication channel errors, program compilation errors, or hardware faults. 
 
As authentication protocols play a vital role in ensuring security of communication channels [3,4,5], our 
focus in security is to protect authentication protocols from intruder attacks.  Our approach to reliability is 
based upon real-time monitoring of control-flow behaviors and application specific data value checking. 
The approach is highly scalable as it lends well to hierarchical deployment. It can be implemented along 
with any existing protocols and systems with minimal changes to the infrastructure and hence backward 
compatible and cost-effective.  Further, it offers extreme flexibility as the meta-channel can be 
implemented at a later stage in the deployment of the network.  
 
In the first part of the project, we develop the new framework based on meta-servers and channels.  
Detailed architecture, trust and fault models, and protocols will be developed for the framework to enable 
real-time monitoring and recovery. Using formal models and prototypes we conduct extensive studies on 
the strengths and weaknesses of the proposed techniques against all known attacks and failure scenarios. 
 
Scientific Merit of the Proposed Work:  In this project, we propose a unified approach to security and 
reliability of widely distributed enterprise computing environment.  Though security and reliability are two 
essential tenets of information safety, their requirements are often contradictory; security strives to 
minimize accesses, whereas, reliability requires abundance of access.  From the information theoretic point 
of view, secure systems require high entropy, leaving no room for guessing; reliable systems need low 
entropy with potential to reconstruct information in case of loss. Our contribution is in finding a common 
ground to treat security and reliability in a uniform manner. The research in this project will contribute to 
the body of knowledge in areas such as design of distributed protocols, authentication protocols, formal 
verification of protocols, concurrent error detection, distributed error recovery, and protocol simulations. 
 
Broader Impact: The project has wide ranging implications on the general protocol and system validation.  
Further, the techniques developed here will enable developers to focus on the features of applications and 
protocols rather than worrying about fool proofing them.  This will result in applications that are more 
imaginative.  Further, the methods proposed here will positively affect the bottom lines of corporations and 
other entities using enterprise computing as the option is made available to deploy security and reliability 
features in a later stage of the design cycle.



 
PROJECT DESCRIPTION 

A META-FRAMEWORK FOR SECURE ENTERPRISE COMPUTING 
 
 

1. INTRODUCTION 
Revolution in communication technology and advances in distributed management of 
resources have made enterprise computing a viable option to industries and organizations. 
Providing acceptable levels of security and reliability to such systems will determine the 
penetration and longevity of this paradigm. As increasingly sensitive data is generated, 
stored and exchanged, the threat of unauthorized access and malicious manipulation of 
such information increases. Recent years have seen even ordinary individuals and 
organizations become attractive targets for malicious activities, made easier by the 
proliferation of communication networks and the availability of enormous computing 
resources to support the attacks.  With the model of transparent cooperation between 
computers and resources, the availability of services dependent on fault-free operation all 
the nodes, communication channels and the protocols that help them interact.  
Unfortunately, quite often the end-user may not have full control on the operation of 
various component systems.  Reliable and secure co-ordination of operations are further 
hampered by complex concurrency control requirements. 
 
A basic requirement that a good security framework should meet is authentication, the 
establishment of identities. Authentication essentially involves proving claims of identity 
or authenticity. A weak authentication protocol can seriously jeopardize the security of an 
information system, by failing to prevent illegitimate access to its resources. Over the 
years, many authentication protocols that were once believed to be foolproof have been 
shown to be vulnerable to a variety of attacks. Despite the advances in protocol validation 
and verification, skepticism still prevails on potential vulnerabilities of these protocols.    
 
The approach to security is borne out from the observation that most of the attacks can be 
prevented by tightly controlling the state transitions and input conditions of even a 
weakly verified protocol.  In the proposed work, we achieve this through real-time 
monitoring of the protocol footprint using a meta-framework.  In the project, propose to 
use the same framework for monitoring the behavior of the system to capture any run-
time violation caused by hardware faults, communication channel errors, or compilation 
errors.  This proposal to use a unified framework for security and reliability monitoring is 
built upon the team�s extensive research experience in behavior-based concurrent error 
detection techniques, network security, and distributed computing algorithms and 
architectures. 
 
 

2. PROBLEM DESCRIPTION AND PREVIOUS SOLUTIONS 
 
With proliferation of robust internetworking protocols, use of widely distributed 
computing connected over the Internet has become a reality. Unfortunately, with this 



growth comes increasing concern about the security of transactions over the Internet.  
Due to the decentralized and heterogeneous architecture of the Internet, one cannot 
exclude the possibility that the messages between the legitimate parties go through a 
malicious intruder.  The routing mechanisms in the Internet also do not offer any 
protection against malicious attacks.  Various security services against known attacks 
include authentication services, access control services, and data confidentiality and 
integrity services.  Network protocols that implement these services make use of 
mechanisms such as data encryption and digital signatures.  The overall security of the 
service depends on both the protocol and the underlying encryption mechanism.  
 
In the past most of the research addressing transaction security has been focused on the 
encryption algorithms.  However, even when the underlying encryption scheme is 
foolproof, the protocol may still be vulnerable to intruder attacks. For instance, there are 
well-known chosen cipher-text attacks against implementation of RSA scheme without 
breaking a sweat to break the encryption. Thus, the validation of these protocols has 
become central to the security of the system.  Existing informal approaches to validation 
have proven to be highly unreliable, while application of formal approaches has been 
limited either due to their complexity or due to their over-simplification in trying to 
reduce the complexity.  We believe that formal or informal validation of protocols, along 
with run-time checking of assumptions made during the verification or validation, will 
allow us to deal with the complex implementations of real protocols. 
 
Security and reliability of distributed systems are intertwined.  A failure in one or more 
components of the system could result in security compromises and vice versa.  For 
example if the time-stamp generator fails, the system could be exposed to a replay attack.  
Similarly, denial-of-service attacks in any form will reduce the availability of the system.  
There are attacks on security protocols that will be misconstrued as concurrency failures.  
If replicate data to make system fault tolerant, we may risk the confidentiality of the data. 
Thus, it is imperative to address the security and reliability of enterprise systems in a 
unified way. 
 
2.1 Security 
 
In one form or another, most information systems and networks support authentication of 
peer entities and data origin [1] [2]. Authentication is necessary to prevent misuse of 
resources and services, to ensure data integrity, and to establish proof of origin of data. 
Peer entity authentication enables an entity in a communication network to verify that a 
peer in a communication session is indeed the entity that it claims to be. In this way, it is 
assured that the peer is not trying to masquerade as another and that it is not trying to 
bypass authentication through a replay of earlier authenticated sessions. Data origin 
authentication, on the other hand, establishes the authenticity of the source of a message, 
thus assuring that the message really came from the claimed source.  
 
Three broad categories of authentication techniques are widely used in information 
systems, the specific choice depending on the application domain.  

• Proof by knowledge, where authentication is based on something the claiming 



entity knows (e.g., passwords, identification numbers). By far, this is the simplest 
and most widely used technique in current communication networks.  

• Proof by possession, where authentication is based on something the claiming 
entity possesses (e.g., keys, identity cards, other physical tokens). This technique 
is more expensive, but is used in environments where enhanced security is 
required.  

• Proof by property, where authentication is based on some property of the claimer 
(e.g., biometric properties such as voice patterns, fingerprints, and facial images). 
This is complex and very expensive, but may be required in situations demanding 
utmost security.  

 
We limit the scope of authentication in our work to proof by knowledge, since this is the 
most relevant form in communication networks. The `proof' in this case is established 
through authentication protocols that comprise special handshake messages between 
communicating principals. As these protocols are as vulnerable to eavesdropping as any 
other, cryptographic techniques are almost invariably used to protect this knowledge 
verification phase of communication sessions.  
 
In benign environments, most authentication protocols function properly. However, they 
may fail in the presence of adversaries (intruders) capable of observing and manipulating 
protocols messages. The situation is complicated because, quite often, a malicious entity 
may itself be a valid principal in the system. Under such circumstances, it is assumed that 
an intruder may have the ability to observe, insert, modify, or delete messages exchanged 
through the network. However, according to the strong cryptography assumption, the 
intruder is considered incapable of extracting information from an encrypted message, 
unless the corresponding key is in its possession through some means (e.g., key 
compromise). Essentially, keys chosen through guesswork are considered virtually 
useless because of this assumption.  
 
An adversary may be able to attack and defeat authentication by exploiting vulnerabilities 
in protocol structure, message sequences, and timing relations. Some of the well-known 
attacks are: 
  

1. Key guessing attack: In this brute force approach, an intruder tries to guess the 
right key from the entire key space. The attack may succeed when the choice of 
keys is not carefully made, or where the key space is small enough for an 
exhaustive search. 

 
2. Known plain text attack: Simple protocols in which parts of encrypted messages 

are publicly known (or can be easily deduced) are vulnerable to this attack. Using 
some known plain text (e.g., names, addresses) and the corresponding ciphertext, 
an adversary may be able to break the cryptographic system and recover the key 
or other secrets.  

 
3. Chosen cipher-text attack: In this form of attack, an intruder manages to get 

legitimate principals to encrypt some carefully chosen data. The resulting cipher-



text is then used to help break the cryptographic code.  
 

4. Replay attack: An intruder accumulates tables of messages between legitimate 
principals and replays them when the right opportunity arises. Essentially, an old 
message (from a past valid session) is passed off as current. Unsuspecting 
principals may accept such old message as fresh, potentially allowing the intruder 
to establish falsely authenticated sessions. Principals may even be tricked into 
using old compromised keys, enabling the intruder to eavesdrop on all further 
`encrypted' communication.  

 
5. Oracle session attack: An intruder uses a principal as an `oracle' in its malicious 

actions against another. The intruder engages in authentication sessions with two 
principals and tricks one of them into performing the encryption and decryption 
required in the session with the second. Such attacks often succeed due to 
vulnerabilities in protocol message structure or message sequences.  

 
6. Parallel session attack: An intruder exploits a legitimate principal to act against 

itself. The intruder engages in two simultaneous authentication sessions with the 
same principal and manipulates one session to generate messages needed in the 
other. One of the sessions may eventually pass authentication criteria.  

 
Of these, key-guessing attacks, known plain-text attacks, and chosen plain-text attacks 
are actually attacks on the underlying cryptographic mechanism and not directly on the 
authentication protocol logic. Hence, based on the strong cryptography assumption, such 
attacks are generally not considered while analyzing authentication protocols, but are 
rather left to studies on cryptographic algorithms. Attacks that exploit weaknesses in the 
freshness assumption (such as replay of old messages) are often collectively called 
interleaving attack, and constitute an important class of attacks on authentication 
protocols [7].  
 
A malicious entity with sufficient resources and intelligence may potentially be able to 
identify and exploit these weaknesses, thereby defeating the authentication mechanism to 
masquerade as another valid entity. Though considerable research has been done in the 
past on various techniques to formally verify authentication protocols, it is generally 
agreed upon that proving that an authentication protocol is secure is not easy or 
straightforward and that there is no substitute for good engineering practices in designing 
and deploying these protocols.  
 
Approaching the problem from this direction, we develop an architecture designed to 
prevent generally known attacks on authentication protocols through a trusted third party 
monitoring [13]. Attention has been paid to keep the architecture simple enough so that it 
will not face the same problems that the protocols it tries to protect face, yet robust 
enough to resist most forms of attack.  The use of trusted entities is not new in 
authentication; several authentication protocols that depend on trusted third parties have 
been proposed and used in the past (a familiar example is the Kerberos authentication 
system [10]). However, in almost all such protocols, the trusted third party is an integral 



part of the authentication process. Any weakness of the trusted party can seriously 
damage the security of numerous entities depending on its service. Moreover, in large 
systems, the trusted entity can quickly become a performance bottleneck, as it needs to be 
directly involved in all sessions initiated among the entities in its authentication domain. 
Inter-domain authentication (between two entities belonging to two different domains) is 
also a major issue in such protocols, because of the potentially limited trust that entities in 
one domain may be willing to have on the trusted entity belonging to another domain. 
 
2.2 Reliability 
 
Computer systems that are used in high dependability and integrity applications need to 
be designed with the capability to detect and recover from the errors caused by hardware 
and software faults. Since the majority of errors are usually transient and not 
reproducible, off-line testing will not reliably detect them. Thus, it is imperative that the 
systems be designed with built-in concurrent error detection and recovery mechanisms.  
Behavior based error detection (BED) is touted as an inexpensive yet effective concurrent 
technique to support fault tolerance.  Among the various approaches such as structural 
integrity checks, memory access checks, control-flow checks, it has been shown that the 
control-flow checking is most effective in its error coverage and cost.  
 
Various control-flow checking techniques have been proposed in the past to detect 
processor faults. The techniques employ a watchdog processor to compute run-time 
signatures from the instructions and compare them with the pre-computed signatures. 
These techniques need either additional hardware or modification of the hardware and are 
invariably non-portable to various platforms. Complexity of the modern compilers is yet 
another source of additional control-flow faults, which cannot be handled by these 
methods, as they assume error free object output from the compilers. To circumvent these 
limitations, recently we have developed a high-level control-flow checking approach 
using assertions (ECCA) [13], in which branch-free intervals in a given high-level 
language program are identified and the entry and exit points of the intervals fortified 
through pre-inserted assertions. The ECCA approach is portable across architectures and 
requires no special hardware or database lookups to implement.  It can be implemented 
through a pre-processor based on the syntactic structure of the language pre-processor 
based on the syntactic structure of the language and does not require generation and 
analysis of various paths in the program control-flow graph. ECCA will detect hardware 
or compiler induced control flow faults. 
 
All these BED schemes had been used so far in uni-processor or tightly coupled 
multiprocessor environments.   We observe that application of BED techniques at a 
higher granularity in a distributed environment system can significantly improve the error 
detection and correction capabilities such systems. In the project, we develop BED 
schemes coupled with application specific data value checking for ensuring the reliable 
execution of the protocols.  The schemes can easily be implemented in conjunction with 
the security monitoring under the unified meta-frame work that we develop. 

 
3. Approach 



The key idea behind our approach is the real time monitoring of protocol behavior to 
ensure its secure and reliable progression.  The monitoring is achieved through observing 
various parameter values and their temporal and spatial validity.  It has been observed by 
the research community that security and reliability are two competing concerns and 
often, disjoint solutions are proposed to address these problems.  In this proposal we 
introduce a framework, which enables non-intrusive monitoring with the capability to 
address both security and reliability.  In what follows in this section, we describe the 
monitoring framework and the necessary protocols.  We also present evaluation criteria 
for the assessment of the proposed techniques.  In Section 5, we present detailed research 
and development plan for the project duration. 
 
3.1 Meta-Authentication Framework 
 
The term meta-authentication denotes an `encapsulating authentication' mechanism for 
general authentication protocols. This is achieved through a high level mechanism for 
validating the execution of underlying authentication protocols. Meta authentication 
operates in the context of a framework comprising an architecture and a high level 
validation protocol that together provide a distributed environment for monitoring and 
validating the execution of authentication protocols. Entities involved in an 
authentication session can ensure that the execution of the authentication protocol itself 
has been proper and devoid of any malicious tampering or manipulation. The framework 
does not make any assumptions on the underlying authentication protocol and is generic 
enough to support any protocol chosen by communicating entities. It is important to note 
that it is not a goal of meta-authentication to offer any assurance as to the correctness of 
beliefs established by the `encapsulated' protocol; this is still the responsibility of the 
encapsulated protocol. However, it does provide assurance that the encapsulated protocol 
itself runs correctly, protected from extraneous interference. 
 
3.2 The Trust Model 
 
Meta authentication is based on the concept of trusted third parties. All communicating 
entities in a domain of trust utilize the services of the trusted entity. The use of trusted 
entities is not new in authentication; several authentication protocols that depend on 
trusted third parties have been proposed and used in the past (a familiar example is the 
Kerberos authentication system [10]). However, in almost all such protocols, the trusted 
third party is an integral part of the authentication process. Any weakness of the trusted 
party can seriously damage the security of numerous entities depending on its service. 
Moreover, in large systems, the trusted entity can quickly become a performance 
bottleneck, as it needs to be directly involved in all sessions initiated among the entities 
in its authentication domain. Inter-domain authentication (between two entities belonging 
to two different domains) is also a major issue in such protocols, because of the 
potentially limited trust that entities in one domain may be willing to have on the trusted 
entity belonging to another domain.  
 
In the scheme proposed here, the role of trusted third parties is limited to only helping to 
monitor the execution of authentication sessions. They are neither directly involved in the 



execution of the protocol, nor do they play any role in establishing beliefs between 
communicating parties. Their service is needed only if the communicating entities wish 
to protect their authentication process through meta-authentication. Even without meta-
authentication, they will still be able to operate any authentication protocol normally. The 
optional use of meta-authentication is designed to protect against security attacks, while 
incurring minimal overhead.  
 
In meta-authentication, the entire user space is divided into trust domains. Each domain 
includes any number of ordinary communicating entities and a trusted meta-
authentication server (henceforth called the meta server). A meta server establishes trust 
with every member in its domain, so as to function as an intermediary in intra-domain 
authentication. An entity need not trust any member even in its own domain, other than 
its meta server. Moreover, entities in one domain need not trust the meta server in another 
domain. However, meta-servers in different domains may establish and maintain trust on 
one another, so that their services can be extended to inter-domain authentication as well. 
As there is only one meta server in each domain, this trust is far easier to establish and 
manage as compared to maintaining trust among all entities in all domains, or between 
entities in one domain and meta servers in other domains, or even between all entities in 
the same domain. Essentially, meta authentication follows a hierarchical and transitive 
trust model. This means that, if there is trust between entity A and its meta server SA, 
between entity B (possibly in another domain) and its meta server SB, and between meta 
servers SA and SB, then eventually trust may be established between A and B.  
 
 
3.3. An Architecture for Meta-Authentication 
The meta authentication scheme uses public key cryptography to protect the integrity of 
sessions. During an authentication session, communicating members and the concerned 
meta servers exchange monitoring messages signed with their private keys. These signed 
messages, verifiable only with the respective public keys, deliver validating data to help 
the communicating members ascertain the integrity of the `encapsulated' run of protocol. 
It may however be noted that meta authentication exchanges are not confidential, i.e., 
exchanged messages are observable by anyone. This is because meta authentication relies 
only on the integrity of validation messages, not on their confidentiality. When two 
members of the same domain authenticate, this message exchange involves those two 
members and the domain's meta server. When the authentication is between two members 
belonging to different domains, the exchange involves the two members and the meta 
servers of both domains. As compared to other public key based systems, the meta 
authentication scheme imposes only minimal requirements, which are as follows.  

1. Each member and meta server in any domain has a public/private key pair.  
2. The private key of every member and meta server is kept strictly confidential, 

known only to the holder of the key (this is a requirement in all public key 
cryptographic systems).  

3. All members in a domain know the public key of the meta server of the same 
domain.  

4. A meta server knows the public keys of all members in its domain.  
5. A meta server either knows the public keys of the meta servers in all other 



domains, or has access to a mechanism through which such keys can be obtained 
(for example, based on certificates issued by a higher trusted entity).  

The scheme, however, does not impose any restrictions on the members. A member need 
not know the public key of any other member in its own, or another, domain. Further, a 
member need not know the public keys of any meta server in other domains. Similarly, a 
meta server does not need to know the public key of any member of other domains. 
Thus, the scheme allows each domain to be separately administered. The only inter-
domain knowledge is limited to meta servers who need to know the public keys of one 
another.  This not only reduces the overhead but also reduces the chance of compromised 
key pairs being used. The basic schemes as would be used in intra-domain and inter-
domain meta authentication are shown in Figure 1(a) and Figure 1(b), respectively. 
 
 
 

         
 

Figure 1.  Inter and Intra-domain Meta Authentication 
 
 
In the figure, the public and private keys of any entity X are represented as Kx_pub and 
Kx_prv, respectively. The authentication protocol employed by the communicating 
members A and B is independent of the meta authentication scheme. Members may use 
any authentication protocol they choose. It is also irrelevant whether the encapsulated 
protocols are based on public key or shared key cryptography.  
 
3.4. Protocol for Meta-Authentication  
 
During the run of an authentication protocol, several pieces of information are exchanged 
between the two communicating entities such as identities, one-time random values 
(nonces), time-stamps, and shared keys. If the two entities calculate an integrity check 
value (ICV) over these values using a pre-defined and mutually agreed upon function, the 
results would be identical at the two ends. The function must be irreversible, so that it is 
infeasible to generate a set of protocol messages that would result in that ICV and it 
should be collision resistant, meaning, different runs of the protocol must not result in the 
same ICV. It is also possible to calculate the ICV using weighted functions resulting in 
different values at the two ends, which prevents replay type attacks on the meta 

(a) (b)



authentication itself. By virtue of encryption mechanisms used in the authentication 
protocol itself, many of these values may be seen only by the communicating parties and 
not by any third party. Thus it will be infeasible for an external entity to deduce the ICV 
for a fresh instance of the protocol run. This indicates that in the presence of an attack, 
one or more pieces of information known (sent or received) to one entity in the session 
may not be the same as those seen by the entity at the other end. However, there may be 
cases where the external intruding entity may be able to see all the pieces of information 
seen by legitimate participants. In such cases, simply demonstrating an ICV is not 
sufficient because the intruder also will be able to generate this value. This is the reason 
why signed messages are used in the meta authentication framework to deliver validation 
data. The strong cryptography assumption ensures that an intruder will not be able to 
forge the signature of another entity.  
 
An authentication session protected through Meta authentication proceeds through the 
following steps:  
 

1. Before initiating the authentication session, the authenticating entities agree 
whether to use the optional meta authentication services. If the decide not to do 
so, then no further protection is available and the entities proceed to step 3.  

2. If meta authentication is to be used, the entities agree upon a predefined algorithm 
for weighted integrity check value calculation.  

3. The entities run the real authentication protocol. If meta authentication is not 
used, the entities proceed to step 14.  

4. As the authentication protocol proceeds, each entity calculates a local ICV and 
`deduces' the ICV that is supposedly being calculated by the other. 

5. When the authentication protocol run concludes, each entity sends the 'deduced' 
ICV to the Meta server of its domain in a signed (signed with the entity's private 
key) message.  This message includes the identity of the entity, the identity of the 
other entity (the other participant in the authentication session) to whom the 
information is to be delivered, and a time-stamp.  

6. Each meta server verifies that the message came from an entity in its own domain, 
and checks the validity of the signed message received using the public key of the 
originating entity (this key is known to the meta sever, as the entity is a member 
of its domain). It also checks the time-stamp to ensure that the message is timely 
and not a replay.  

7. Each meta server then extracts the information and determines whether the 
recipient entity is a member of its own domain. If this is the case (intra-domain 
authentication), it sends the information to the entity in a signed message (signed 
with the server's private key) also including the identity of this meta server and its 
own time-stamp. Operation then proceeds to step 9. However, if the recipient 
entity is not a member of its own domain (inter-domain authentication), then the 
meta server sends this newly formed message to the meta server of the recipient 
entity, and operation continues in step 8.  

8. The receiving meta server verifies the received message for integrity (using the 
sending meta server's public key) and timeliness. It also verifies that the recipient 
is a member of its domain. On verification, the server extracts the relevant 



information (identities of originating and receiving entities, and the `deduced' ICV 
value) and sends it to the recipient. The message is signed with this meta server's 
private key and also includes the meta server's identity and a new time-stamp.  

9. On receiving this validation message, each entity verifies that it was delivered by 
the meta server of its own domain using the public key of the server, known to all 
members in the domain), and that it is timely.  

10. From the validation message delivered in step 9, each entity extracts the identity 
of the originating entity and verifies that there is indeed an authentication session 
proceeding between the two. It then compares the `deduced' ICV value received 
in the message with the value it had computed locally, and verifes that they are 
identical. If both these checks are successful, then the entity proceeds to step 13.  

11. If either of the checks in step 10 fails, it indicates a possible intrusion attempt and 
the entity immediately aborts the authentication session. After a timeout, the 
entity at the other end will notice the absence of response and will also terminate 
the session. The remaining steps are skipped in this case.  

12. If an entity fails to receive the above validation message within a reasonable 
amount of time after the conclusion of the authentication protocol run, it assumes 
some foul play and aborts the authentication session. The other entity will also 
have to terminate the session after a timeout. The remaining steps are skipped in 
this case.  

13. The successful checks in step 10 assure both authenticating entities that the 
execution of the authentication protocol itself has been proper and secure.  

14. Based on the outcome of the real authentication protocol, the entities determine 
whether to accept the authenticity of the other entity or abort the session. The 
procedure described above in steps 1 through 14 constitute the meta 
authentication protocol 

 
 

 
 
 

Figure 2 Intra- and Inter Domain Meta-Authentication Protocol 
 

(a) (b) 



In Figure 2 (a), the pair, m1; m2 show the path of validation message delivery from A to 
B, and m10, m20 show the path from B to A. Note that there is no timing relationship 
between the two sequences, timing is applicable only within the same sequence. Similarly 
in Figure 2(b), m1; m2; m3 and m10; m20; m30 show the delivery path. 
 
 
 
3.3. Security of Meta-Authentication 
Consider a high level view of the transfer of validating information in the Meta 
authentication model. Take x and y as the integrity check values generated locally by 
nodes A and B. Also y� is the value deduced by A and x� is the value deduced by B. Now 
the entity A accepts authentication protocol run if and only if x� = x, and entity B accepts 
the authentication protocol run if and only if y� = y. For given x or y, it is infeasible to 
generate a set of protocol messages that result in the same ICV values, because of the 
properties of collision resistance and irreversibility, processed by the ICV generating 
function.       
 

    
Figure 3.  Trusted Paths in Meta-Authentication 

 
Under the given assumptions, a malicious entity cannot forge any of the signed messages, 
because the required private key will not be known to it. This follows from the fact the 
strong cryptography assumption. An intruder cannot replay any of the messages in an 
authentication session, because x and y are time dependent since their calculation uses 
time-stamps as one of the inputs. It cannot substitute a message in an authentication 
session with a similar message from a different run of the protocol, because it is 
infeasible to manipulate a protocol run such that it results in a known ICV (x or y). 
Therefore, if a message is delivered in an authentication session, the receiver is assured of 
the data origin authenticity and data integrity. However, a malicious entity capable of 
observing and manipulating protocol sessions may be able to intercept and possibly 
delete a message in an authentication session. However, the receiver will detect the 
message loss through a timeout and abort the session. From these observations, it is clear 
that an encapsulated (monitored) authentication protocol is secure (in terms of integrity) 
if the Meta channel between the authenticating entities is safe. Thus, the Meta 
authentication scheme provides a robust mechanism to ensure the integrity of 
authentication protocols. 
 
3.4 Reliability 
 
We address the reliability issue at two levels.  First, we want to enhance reliability 
through the real-time monitoring of the system behavior, through the services available 
through the meta-channel.  Then we want to ensure that the meta-channel itself will be 



protected against various failures. 
 
 
For the former, we develop system level checks to detect control-flow and data value 
errors, caused by transient as well as permanent faults.  The progress of computation as 
well as protocols will be reported to meta-servers for conformity checks.  This is the first 
proposal to perform such monitoring over the Internet.  The expanse of the network 
requires that the control-flow parameters be chosen at a higher granularity when 
compared to the monitoring of a uni-processor system.  We do assume that the meta-
channels are reliable and secure for which we will provide error detection and correction 
mechanisms at the data level and communication protocol level.  The channels will be 
secured for confidentiality, authenticity, and/or integrity as the application demands. 
 
In order to ensure the reliability of the meta-authentication system we rely upon classical 
fault tolerance techniques.  As described in preceding sections, in its simple 
configuration, each domain will have only one meta-server.  In order to avoid the 
problem a single point of failure we institute an automatic selection protocol in order to 
designate another met-server for the domain in case of failure of the current server. When 
extreme reliability and response times are critical the meta-framework could be extended 
to have multiple servers per domain where conformity decisions will be arrived at based 
on Byzantine agreement among the server nodes. 
 
 
4. RESEARCH PLAN 

The proposed research is planned to be finished through five parallel activities that span 
three years as follows. 

Related Work and Impact (Year 1, Year 2, Year 3) 
In this activity, an extensive review of related schemes will be conducted in Year 1. 

Existing solutions will be analyzed and categorized. A comparative study between the 
proposed framework and existing schemes will be conducted in Year 2. A study of the 
impact of the proposed work will be conducted in Year 3. 

Framework (Year 1 & Year 2) 
In this activity, a framework that enables non-intrusive monitoring with the capability 

to address both security and reliability will be designed.  The architecture of the meta-
framework will be laid out in Year 1.  Enhancement to the framework will be conducted 
in Year 2. 

Protocols (Year 1 & Year 2) 



Protocols that address both security and reliability problems will be introduced during 
Year 1. Implementation and prototyping will be conducted in Year 2. 

Evaluation (Year 2 & Year 3) 
These activities include holding a number of simulation as well as real experiments to 

assess the proposed framework. During Year 2, an evaluation model will be developed 
and experiments will be designed. In Year 3, extensive simulation studies as well as 
experiments on real systems will be held. 

Dissemination (Year 1, Year 2, Year 3) 
Research results will be collected and documented as technical report(s) for 

publication. It is expected that a number of journal and conference articles will result 
from this research. In addition, we plan to distribute the protocol prototypes to a number 
of researchers in the community.  

The research plan is summarized in Table 1. 

 

Table 1. Research Plan 

ACTIVITY YEAR 1 YEAR 2 YEAR 3 
RELATED WORK 

AND IMPACT  
EXTENSIVE 
STUDIES OF 
RELATED 
SCHEMES 

COMPARATIVE 
STUDIES 

ANALYSIS OF 
IMPACT 

FRAMEWORK FRAMEWORK 
DEVELOPMENT 

FRAMEWORK 
ENHANCEMENT 

 

PROTOCOLS PROTOCOL 
DEVELOPMENT 

PROTOCOL 
IMPLEMENTATION 

 

EVALUATION  EVALUATION 
MODELING 

SIMULATION 
STUDIES & REAL 
SYSTEM 
EXPERIMENTS 

DISSEMINATION DISSEMINATION OF 
RESULTS, REPORT 

DISSEMINATION OF 
RESULTS, REPORT 

DISSEMINATION OF 
RESULTS, REPORT 
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Prof. Suku Nair  

Pertinent expertise: Network Security and Fault Tolerant Computing: 



Suku Nair�s current research interests are in network security, network restoration, and 
fault tolerant computing and is the director of High Assurance Computing and 
Networking Lab in the computer science and engineering department at SMU.  His 
research in network security has been most recently supported by a grant from the Texas, 
Advanced Technology Program.  He is an affiliate of eCenter, an independent center of 
excellence focusing on interactive networking.  Suku Nair has been a consultant to major 
telecom companies such as Nortel, Alcatel, DSC Communications, and Wiltel.   

 

Prof. Hesham El-Rewini  

Pertinent expertise: Heterogeneous Parallel and Distributed Computing, Mobile 
Computing: 

El-Rewini�s current research interests are split between two main areas: mobile 
computing and parallel and distributed processing. He has published many papers in the 
above research areas. In 2001, he has been awarded $305,360 from DoD to work on the 
design and operation of mobile environments with hybrid backbones. He has also written 
several books including Introduction to Parallel Computing, Task Scheduling in Parallel 
and Distributed Systems, and Distributed and Parallel Computing.   
 


