
2004 Society for Design and Process Science
Printed in the United States of America

SIMULATION BASED VALIDATION OF AUTHENTICATION
PROTOCOLS

Krishnan G. Indiradevi, V. S. Suku Nair
Department of Computer Science and Engineering Southern Methodist University Dallas, TX,
USA (nair@engr.smu.edu)

Authentication protocols help to establish trust about the identities of communicating entities.
Along with authorization and data confidentiality, authentication forms a critical component of
most non-trivial security frameworks. Over past several years, an alarming number of seemingly
secure authentication protocols have been shown to be flawed. By exploiting such flaws, malicious
entities can potentially take on identities of trusted entities.

Attacks on authentication protocols are often too subtle to uncover by simple means, hence
considerable research has gone into techniques for analyzing and verifying them. Though the
problem is perhaps best studied using formal methods, techniques in that category are generally
rather complex and specialized.

This paper proposes a different approach - using simulation as a means of validation. Though
unable to conclusively prove security, simulation can be very effective in uncovering hidden flaws.
This could be particularly useful for large systems where it may be nearly impractical to apply
formal methods. A framework is presented to model authentication protocols with state machines
and to validate some of their security properties through simulation.

Keywords: Authentication Protocols, Distributed Systems, Protocol Validation, and Simulation

1. Introduction
Protecting sensitive communications from eavesdropping has always been a challenge. Once
considered the worry of only governments and militaries, it has come into sharp public focus in recent
years as a result of the explosive growth in deployment and use of data networks such as the Internet.
With massive amounts of highly sensitive and valuable data sent across these networks, ensuring data
integrity and confidentiality now concerns everyone. The availability of cheaper yet increasingly more
powerful computing resources has only exacerbated the problem, be- cause, in the wrong hands they
can turn into potential weapons. Clearly, securing information during its generation, manipulation,
dissemination, and use has become a daunting task.

Transactions of the SDPS, Vol. 8, Issue 4, pp. 79-96, December 2004

Communication networks employ various security ser- vices to protect the confidentiality and
integrity of data. Authentication aims to provide mutual trust regarding the identities of communicating
entities. Principals authenticated thus are given controlled resource access rights via access control
mechanisms. Data confidentiality protects information from unauthorized disclosure, while data
integrity protects against malicious tampering. Finally, non- repudiation prevents denial of origination
or receipt of in- formation - thus enforcing a level of responsibility on the involved parties. The work
presented here focuses on validating authentication protocols against their design goals. In recent years,
several seemingly secure authentication protocols have been shown to have vulnerabilities.
Considering the importance of ensuring foolproof authentication, this has led to extensive research into
systematic analysis and verification of authentication systems. This paper presents a framework to
model, analyze, and validate authentication systems. The remainder of the paper is organized as
follows.

Section 2 brief discusses authentication in networks. The requirements, goals, basic principles, and

types of authentication protocols are brief explained, along with common attacks against them. Section
3 examines the need for formal techniques to verify and validate authentication systems, and outlines
two predominant approaches using logic based and state based models. Section 4, the focus of this
paper, presents the modeling of authentication protocols with algorithmic state machines, and studies
the possibility of using simulation as a means to establish a high degree of assurance regarding their
security properties. The approach is illustrated through the case study of a classic protocol - the
Needham- Schroeder Public Key authentication Protocol (Needham and Schroeder, 1978). The paper
concludes by outlining our plans for future work.

2. Authentication
Information networks perform peer entity authentication to establish trust on identities of principals.

The aim is to prevent malicious entities from masquerading as others. Most present day networks do
authentication through proof by knowledge (ex: via passwords, shared secrets, etc.). Since this
knowledge verification during the authentication phase is critical in ensuring the security of subsequent
inter- actions, it is quite often protected cryptographically. The crypto system used is generally
assumed to be strong, implying that, without proper keys it is impossible to decrypt the messages
exchanged. Therefore, key guessing attempts are considered ineffective.

One of the most common ways for mutual authentication is to demonstrate verifiable secret
knowledge. In shared key cryptography, pairs of communicating entities share secret keys that are
verified during authentication, and used to optionally establish additional secrets for securing further
communications. A radically different approach is taken in public key cryptography, where each
principal has a unique pair of keys - a public key made known to everyone, and a secret private key.
Most such systems have the property that, correct decryption by a public key implies original
encryption with the corresponding private key - thus, a principal may demonstrate knowledge of its
private key to prove authenticity.

2.1. Authentication Protocols

An authentication protocol is a sequence of messages designed specifically to establish the
authenticity of communicating principals. If the principals are really who they claim to be,
then, at the conclusion of the protocol, they will be convinced of each other's knowledge of
certain secrets (and hence identity), and optionally in possession of one or more shared secrets

Journal of Integrated Design and Process Science

Transactions of the SDPS

[Burrows et al., 1989]. A good authentication protocol establishes not only that each principal
believes in a secret shared with the other, but also that each believes in the other's belief of the
shared secret.

Depending on the crypto system used, authentication protocols are sometimes classified [Clark
and Jacob, 1996] as shared key systems without trusted third party, shared key systems with
trusted third party, public key systems, etc. Further, depending on the direction of
authentication, they may be divided into one-way (unilateral) or two-way (mutual) protocols.

The following notation is used in the paper:

Principals in a protocol are represented as A, B etc. Z or I denotes an intruder; an attempt by Z
to impersonate A is indicated as Z(A).

Key pairs for encryption/decryption are denoted by K, K-1. Encryption of message m with key
K is represented as (m)K or{m}k. In a shared key system, Kab denotes a key shared by
principals A and B. In a public key system, the public and private keys of principal A are
denoted respectively by Ka and Ka

-1.

Protocols generally use nonces (one-time random numbers) or time-stamps to ensure message
freshness Na and Ta indicate a nonce and timestamp generated by A.

Sequence of messages in a protocol run are denoted as m1, m2, m3, etc. or as 1, 2, 3, etc.

The mechanisms and reasoning of authentication are illustrated below with the Needham-
Schroeder public key authentication protocol; the protocol is later used to illustrate the
modeling and validation technique presented.

There is also a desire for CASE tools integration through expansible environments, driven by the
demand for ever-faster development of software systems. Integrated CASE environments can help
software engineers to deliver software systems on time. However, to meet these demands, an integrated
CASE environment must be based on a flexible framework that provides a cost-effective tool
integration mechanism, encourages portable tools, facilitates the exchange of development information,
and adapts to future methodologies. In such an environment, software engineers can coherently mix
and match the most suitable tools that support selected methodologies. They can then plug some tools
into the environment and begin working with them.

Design is normally an iterative process, and the ability to easily navigate between different tools

and notations is important to permit the designer to view concurrently different facets of software
development. The ability for a designer to navigate around is also vital, as reusability is something that
a CASE environment must promote. A designer must be able to browse through already-captured parts
of previous designs to try to see whether any components from prior work can be reused.

Journal of Integrated Design and Process Science

2.2. Needham-Shroeder Public-Key Protocol

Based on public key cryptography, the Needham-Schroeder protocol [Needham and
Schroeder, 1978] is one of the most widely studied and analyzed authentication protocols. In
this protocol, communicating principals establish mutual trust by virtue of the properties of
public and private keys. Though a trusted certification authority (CA) is also involved to
distributes valid public keys of principals, we may safely ignore its presence by assuming that
the communicating entities already posses the public keys of each other. This simplified
version of the protocol is represented below:

Here, A and B want to verify each other's identity. First, A sends a nonce Na along with its
name to B in message m1 encrypted under B's public key; Na can be read from m1 only by B
(using its private key). B then returns Na to A along with another nonce Nb (for mutual
authentication) in message m2, encrypting it with A's public key. After decrypting m2, A
verifies whether Na is the same as originally sent. If it is, A concludes that it is indeed B on the
other side as only B could have decrypted m1. A completes the protocol by returning Nb in
message m3 to B, who performs a similar validation and concludes that it is indeed talking to
A. Besides achieving mutual authentication, this transaction also establishes two new
secrets(Na and Nb) between A and B which may be used optionally to secure further
communications. It is to be noted however, that establishing new secrets in this manner is not
generally considered a primary goal of authentication.

2.3. Attacks on Authentication Protocols

Authentication gets tricky when intruders are present. It is to be generally assumed that such
an entity may itself be legitimate (thus allowed to take part in authentication), and has the
ability to observe, insert, modify or delete data in the network. However, it will not be capable
of extracting information from an encrypted message for which it does not have the proper key
(strong cryptography assumption).

The involvement of such abstract properties as belief and trust often tend to make
authentication subtle and non-intuitive. A malicious entity may be able to defeat authentication
by exploiting protocol vulnerabilities such as in message structure, sequencing, and timing
constraints. The potentially numerous possibilities must be considered carefully when
modeling and analyzing authentication systems.

An attack may help the intruder to either learn a current secret, or to trick one or more
legitimate participants into using a false `secret' (an old compromised secret, for example). In
either case, subsequent communication between the original participants will be insecure.

Transactions of the SDPS

A variety of attacks on authentication systems have been reported in literature [Bird et al.,
1993]. In a replay attack , intruder tries to replay old messages (from earlier authenticated
sessions) as current. In an oracle session attack, the intruder engages in simultaneous sessions
to two or more principals and manipulates one into doing the cryptographic operations needed
to talk to the other. Parallel session attack occurs when an intruder engages in two
simultaneous authentication sessions to the same principal and uses one session to generate
messages required in the other.

Note that other common attacks such as key guessing attack, known plain-text attack, and
chosen cipher-text attack result from weaknesses in the underlying crypto system and are not
directly tied to authentication protocols.

2.3.1. An attack on Needham-Schroeder public key protocol

Attacks on authentication protocols are almost always too subtle and non-intuitive to be
detected through simple methods. The now well-known parallel session attack [Lowe, 1995]
on Needham-Schroeder public key protocol as outlined below illustrates this:

Here the intruder Z waits until a principal A initiates an authentication session to it (recall that
Z could be a legitimate user). Then, disguising as A, Z starts a simultaneous session with B. By
clever manipulation of messages, Z succeeds in falsely taking on the identity of A (from the
perspective of B).

The scenario involves two runs of the protocol - one between A and Z (m1, m2, m3), and the
other between Z (posing as A) and B (m1', m2', m3'). m1 is the initial session start message
sent by A to Z. Z simply forwards it to B (as m1') after re-encrypting it with B's public key.
Noticing A's name as the message initiator, B believes it is talking to A and responds with m2'
to `A' (ie. Z) - m2' carries B's nonce Nb, and is encrypted under A's key. Unable to decrypt m2',
Z just forwards it to A as m2. Not knowing that m2 was actually generated by B, A accepts it
and sends the final message m3 to Z. Z extracts Nb from this message and sends it over to B in
m3'. After verifying Nb, B concludes that it is `A' at the other end. At this point, even without
any key compromise, Z has succeeded in masquerading as A

The seriousness of this is evident when considering that it was discovered only 17 years after
the original protocol was published and widely studied. Clearly, more rigorous techniques are
required for verifying cryptographic protocols. The problem has several characteristics that

Journal of Integrated Design and Process Science

make the application of formal verification techniques suitable. The following section provides
a brief overview of some of the formal techniques explored in this domain.

3. Verification and Validation of Authentication Protocols
Most current approaches to analyzing and verifying cryptographic protocols follow logic based
[Meadows, 1995] or state based [Millen, 1995] paradigms.

3.1. Logic-based verification approaches

Pioneered by Burrows, Abadi and Needham [Burrows et al., 1990], logic based frameworks
use specialized logics to derive beliefs in a system. Repeated application of inference rules on
carefully chosen initial assumptions and message meanings is used to verify security
properties such as goodness of keys. Though intuitive and comparatively easy to understand
and apply, its high level of abstraction makes it likely to miss certain types of subtle properties
while modeling.

The BAN Logic (Burrows, Abadi and Needham) [Burrows et al., 1989] has been used to
verify correctness as well as to find previously unknown flaws in many authentication
protocols. However, because of limitations in underlying assumptions and lack of sufficiently
complex reasoning mechanisms, it has not been very successful in handling certain classes of
properties [Meadows, 1995]. Yet, its relative simplicity makes it more popular than several
other more powerful logic systems.

Other notable approaches using logic include an extension of BAN Logic by Gong, Needham
and Yahalom (GNY Logic) [Gong et al., 1990], and the attempt to unify various logics by
Syverson and Oorschot(SVO) [Syverson and van Oorschot, 1994].

3.2. State-based verification approaches

This class of approach pioneered by Dolev and Yao [Dolev and Yao, 1983], uses state-
transition models to express algebraic properties. By viewing a model as an algebraic system
manipulated by an intruder, system state changes are studied in terms of knowledge and data
values to capture relatively subtle properties at a fairly low degree of abstraction. However,
compared to logic based approaches, modeling and use are harder and require considerable
expertise.

In the initial proposal by Dolev and Yao [Dolev and Yao, 1983], a protocol is modeled as a
language system with a finite set of distinct symbols that are used to compose arbitrary words
which when concatenated produce messages. Reduction rules (or, term rewriting rules) in the
language allow transformation between valid word sequences. An intruder's aim is to find
words (such as encryption keys and session keys) by subjecting sequences to rewriting rules.

Transactions of the SDPS

Proving security of the system thus maps to a word problem in a term-rewriting system
manipulated by the intruder [Meadows, 1995].

Several variants of state based modeling have been proposed. Approaches using reverse
search assume a compromised (insecure) state and search backwards to determine if it is
reachable from a valid initial state; the Interrogator [Millen, 1995] and NRL Protocol Analyzer
[Meadows, 1994] follow this model. In approaches based on CSP formalism , a system is
modeled using Communicating Sequential Processes and then analyzed with CSP methods to
prove invariants (secure properties) [Schneider, 1996]. Another popular approach, state
enumeration , involves searching all reachable states and checking security properties in each;
though search space is theoretically infinite, in most practical protocols it is usually possible to
confine the search to smaller spaces [Mitchell et al., 1997].

Our work is based on state based modeling using finite state machines (FSM).

4. Validation Using State Machines

Finite state machine (FSM) representations provide a framework for conveniently modeling
and analyzing communication protocols [Brand and Zafiropulo, 1983]. The basic idea is to
model a given protocol as a collection of interacting state machines. Most traditional methods
use explicit state enumeration to analyze such systems; though theoretically attractive, this
leads to potential state explosion problems in practice.

When modeling a protocol with state machines, state transitions are generally associated with
message transmissions and receptions. As transmission by one component will be coupled
with a reception in another, a system in its entirety maybe thought of as a synchronous
machine (this view abstracts out the fact that components operate asynchronously with respect
to each other at a finer level). Thus, it is possible to apply state-verification techniques used for
synchronous sequential machines to model and verify protocols as well. Protocol design errors
such as state deadlock , unspecified reception , and non-executable interaction have been
analyzed using FSM models [Brand and Zafiropulo, 1983].

Though intuitive and clear, FSM models often have limitations that tend to restrict their use to
fairly simple systems. The foremost is state explosion - number of states and transitions tend to
grow exponentially as a system grows. Another is limited expressive power when compared to
other formalisms such as general programming languages. Newer techniques and tools have
alleviated these problems to a large extent. This, combined with the convenience and clarity of
representation, and the amenability to well understood analysis, makes FSM modeling still an
attractive and powerful choice. An FSM based approach presented in [Indiradevi and Nair,
1998] for verifying authentication protocols using algorithmic state machines and property
verification technique is outlined in a later section.

Journal of Integrated Design and Process Science

4.1. Algorithmic state machines

Algorithmic state machines (ASM) were proposed as an extension to increase the expressive
power of FSMs [Nelson et al., 1995]. They combine FSMs' descriptive power (timing, state
relations) with the clarity and expressiveness of flowcharts. Despite its striking similarity with
conventional flow charts, an ASM diagram has very different semantic interpretation. Unlike a
flowchart that merely describes procedural steps and decision paths of an algorithm, an ASM
also codifies the sequence of transitions among states, inputs triggering transitions, and
resulting outputs associated with states or transitions. It helps in separately describing and
analyzing the data and control portions of a given system.

ASM diagrams are built from three types of elements [Nelson et al., 1995]: state
boxes(representing system states), decision boxes(determining input-based transitions), and
conditional output boxes(associating outputs with transitions) [Nelson et al., 1995]. A state
box with its associated decision and control boxes together constitute an ASM block which
corresponds to a state in an equivalent state transition diagram. The resulting expressive power
of ASM is thus comparable to that of general programming languages, for instance.

Considering their expressiveness in representing data transformation operations in
authentication protocols, we chose ASMs to model protocol entities.

Having thus addressed the problem of extending FSM's expressive power, we now outline
property verification , a powerful technique to handle the second major problem, namely, state
explosion.

4.2. Property verification

In property verification [Hoskote et al., 1995] [Hoskote, 1995], a given design is modeled as a
deterministic Mealy type finite state machine (possibly incompletely specified). But, unlike
most approaches where properties to be verified are described in the design machine itself, the
specification properties are described as separate state machines. These specification machines
(property machines) are modeled as a type of non-deterministic state machines with some
transitions having unspecified inputs; the partial specification enables efficient implicit state
matching. The verification procedure computes all states in the design machine having input-
output behavior compatible with that of the start state of the property machine. Presence of a
compatible state indicates that the design exhibits the behavior expressed in the property
machine, and an absence implies absence of the behavior in the design. Property verification
provides an intuitive specification format and gives the power to implicitly search the entire
state space of the design [Hoskote, 1995] in an efficient manner.

The feasibility of applying property verification to authentication protocols was demonstrated
in [Indiradevi and Nair, 1998] by modeling false authentication as a property machine and
verifying it against the design state machine of the Needham-Schroeder public-key
authentication protocol.

Transactions of the SDPS

Another potential approach to the problem would be to validate a given protocol through
simulation. Unlike the rigorous formal verification methods mentioned so far, simulation does
not guarantee correctness of the protocol; in other words, failure of a simulation to expose
flaws can not be taken as assurance of their absence in the protocol. However, application of
simulation to authentication protocols appears to be promising and viable. This is because
most authentication protocols involve only a few entities and a small number of messages, so a
well designed simulation has a fairly good chance of detecting flaws.

4.3. Validating Needham-Shroeder protocol

The Needham-Schroeder protocol and an attack on it were discussed in Section 2.1.1 and
Section 2.2.1.

In the protocol, two parties A and B attempt mutual authentication through demonstration of
their knowledge of private keys. In the attack scenario, a malicious (though legitimate) entity
Z tries to subvert authentication by manipulating messages to fool B into believing that Z is A.

We model the protocol entities as state machines interacting through protocol messages.
Because of their flexibility and expressive power, we use ASMs (Section 4.1) for modeling
entities. This is valuable because, several data transform operation (such as encryption and
decryption) need to be represented in the case of authentication protocols - it is neither easy
nor convenient with simple state machines. The control flow parts of the machines are used for
building the simulation.

For the Needham-Schroeder protocol, following entities need to be modeled:

• Initiators (I) - entities initiating authentication sessions by sending the first message in the
protocol

• Responders (R) - entities that respond to messages from an initiator
• Intruder (Z) - a malicious entity (possibly legitimate, capable of engaging in authentication),

assumed to have the ability to observe, delete, insert, or manipulate messages in the network;
however, it can not decrypt messages for which it does not possess the correct key (strong
cryptography assumption).

4.3.1. Modelling trusted entities in the system

Though any entity could function as an initiator or as a responder, modeling can be simplified
by assuming (without loss of generality) that entities are divided into disjoint sets of initiators
and responders. Initiators and responders are assumed trustworthy, who adhere to protocol
rules and sequences.

Algorithmic state machines of an initiator and responder derived from the protocol description
are shown in Fig.1 and Fig.3 respectively. In these figures,

Journal of Integrated Design and Process Science

m1, m2, m3: protocol messages

Tx(m): transmission of message m
Rx(m): reception of message m
Ki, Kr: public keys of initiator and responder
Ki-1, Kr-1: private keys
E(m):K: encryption of m with public key K
D(m):K-1: decryption with private key K-1

nonce: generation of a fresh nonce
Ni, Nr: nonces from initiator or responder
T, To: time-out to detect lost messages
End: end of an authenticated session
commit: status of authenticated session

Basic state machines defining the control sequencing of initiator and responder (derived from
the algorithmic state machines) are shown in Fig.2 and Fig.4.

4.3.2. Modelling the intruder

Modeling the intruder is more complex because of the variety of potential actions it can
perform at each step in the protocol. It may initiate a session and follow the protocol,
performing proper authentication. Or, it may initiate a session and then resort to message
manipulations, out of sequence messaging, and replay of old messages. It could also observe
messages between other entities in the network and possibly replay them later.

Further, the intruder is assumed to be capable of intercepting any message on the network. It
may destroy the intercepted messages, forward it (modified or otherwise) to the original
recipient, or forward it to someone else. It could also replace the message with an old valid
message and send to the original recipient, or use the message in another protocol run. Further,
being a legitimate entity itself, the intruder is capable of functioning as an initiator or
responder. It may act in these roles simultaneously by engaging in multiple protocol runs, and
potentially use messages from one run in the other.

Though these numerous possibilities make modeling harder, it can be done systematically (and
to a degree of accuracy required for our purpose) by making some observations about the
intruder's behavior. The first is that the intruder acts spontaneously only when it initiates an
authentication session. This is because, except for m1, other randomly inserted messages (m2,
m3) will be rejected by other entities as per protocol definition. The other observation is that,
at other times the intruder's actions are reactive - triggered by a message in the network and
potentially resulting in one of the actions considered above. Based on these observations, an
algorithmic state machine may be derived as shown in Fig.5, Fig.6, Fig.7, and Fig.8.

Transactions of the SDPS

4.3.3. Modelling a realistic authentication scenario

A difficult choice in modeling concerns the extent of the modeled system. The simplest
possible scenario for the Needham-Schroeder public key protocol involves an initiator, a
responder, and an intruder. If this system is shown to be vulnerable to false authentication,
then clearly any larger system will also have the vulnerability. On the contrary, verifying that
the simple system is secure does not imply that larger systems will remain secure under similar
assumptions - in such cases, the system has to be expanded incrementally and verification
repeated until a sufficient level of confidence has been attained or vulnerability identified.

Theoretically it may not be possible to conclude that a system is secure even after analyzing
numerous cases with increasing number of entities. In practice, however, it seems the analysis
can be safely limited to a convenient number of participants and protocol runs because most
authentication protocols have only a few number of steps, limiting the resulting possibilities.
On the other hand, the case of a failure is strong because a weakness that exists in a simple
case will almost certainly be present in a larger system as well. In the case of Needham-
Schroeder protocol, a weakness is found in the minimal configuration itself, allowing one to
conclude that the protocol is vulnerable.

The simple configuration in our model has an initiator A, a responder B (both trusted), and an
intruder C (able to legitimately act as initiator or responder). Thus A may initiate sessions with
B or C, and C may initiate sessions with B. The state machines for A and B correspond to
those shown in Fig.1 and Fig.3.

The intruder C may act as initiator (with B), or responder (with A). It may also act maliciously
as a passive observer or active intruder between A and B. Actions of C are partly non-
deterministic, as it may not abide by protocol sequences or rules. Fig.9 shows C's state
machine describing actions of concern to this discussion.

In these figures, a message of the form mxPQ represents the xth message in the protocol run
initiated from P to Q, a state of the form PYq denotes the Yth state of P in its interaction with
Q, and P_commitQP denotes that P is convinced of the authenticity of Q. End of an
authenticated session between P and Q is signaled by endPQ.

A transition labeled ~Rx(m)(ie. non-reception of a message) results from the loss of message
m. Since we are primarily concerned with the disruptions caused by the intruder, it is implied
that such transitions result when the intruder intercepts and destroys messages. Similarly,
~D(m) denotes a message that cannot be decrypted by the recipient - this could be a message
meant for someone else (maliciously forwarded by the intruder) or a valid message that was
tampered with (by the intruder). Transitions associated with ~N (ie. non-matching nonce)
denote failure of authentication and may result from the reception of old valid messages
replayed by the intruder.

Journal of Integrated Design and Process Science

As can be seen in the diagram, most transitions in the intruder state machine are controlled by
inputs n, d or f. These respectively denote that the intruder decided to respond normally to a
message, to delete a message (preventing it from reaching the intended recipient), or to send a
fake message (possibly with the intention of masquerading as another entity). States annotated
with C_commitAC and C_commitCB result when authentication involving C (using its real
identity) has succeeded. C may also try to masquerade as A and send fake messages such as
m1A'B to B, and it is possible that state C_commitA’B is reached wherein C has falsely
convinced B that it is A. If indeed this state is reached, the protocol is broken.

In the following section, we discuss how these ideas are used in a general simulation
environment to validate the protocol.

4.4. Opnet simulation tool
Opnet provides a powerful discrete event driven simulation environment for modeling and

simulating a wide variety of communication systems and protocols. Systematic modeling is supported
by a hierarchy of levels (layers). In the uppermost network level, communicating nodes and associated
interconnecting links are defined. Structures of nodes are defined in detail in the next lower layer in the
hierarchy, the node level, through components such as processors, queues, transmitters, and receivers.
Behavior of modeled entities (nodes) is captured through state transition models defined at the lowest
layer, the process level, and embedded within processors and queues. These abstractions, together with
user definable message formats and powerful communication primitives for message handling provide
a very versatile and flexible simulation environment to system designers.

4.5. Simulation of Needham-Shroeder protocol

A network of communicating entities that follow Needham-Schroeder public key
authentication protocol is modeled using Opnet. In the studied configuration, there is one each
of initiator and responder; there is also a malicious party (intruder). With the potential to be a
legitimate entity in the system, the intruder has the functionality of a normal initiator and
responder, besides its malicious behavior.

The ability of the intruder to observe any message in the network is modeled by forcing all
messages to go through the intruder node as if it were a transparent relay between other
communicating parties, a reasonable assumption in most communication networks. Being
malicious, the intruder node may try to delete, modify, or manipulate messages rather than just
relay.

In the model, initiator nodes invoke authentication sessions to randomly chosen respondersat
random intervals. It is to be noted that initiators may invoke sessions to the intruder node as
well since the latter is assumed to be a legitimate responder. Similarly, in its role as a
legitimate initiator, the intruder may invoke sessions to other responders.

Fig.10 shows this scenario implemented as an Opnet network level model. In the figure, i_101
and i_102 are initiators, r_201 and r_202 are responders, and z_301 is the intruder (the

Transactions of the SDPS

numbers in these names are just for convenience and have no other significance). Only i_101,
r_201, and z_301were kept active in initial simulations, thus the studied system configuration
was minimal.

The internal structure of nodes is defined in lower node level models as shown in Fig.11,
Fig.12, and Fig.13. Each node has a processor and one or more of transmitter/receiver pairs.
Transmitters and receivers attach to communication links connecting nodes.

The behavior of entities is defined by processes running in their processors. Processes are
represented at the process level of Opnet as state transition diagrams and associated embedded
code. Opnet allows executable code to be associated with states (entry/exit), transitions, or
combinations of both. State transition models embedded within the different types of entities
(nodes) are shown in Fig.14, Fig.15, and Fig.16. State machines of initiators and responders
are straight translations of the protocol sequence and rules. However, the state machine of the
intruder is considerably more complex as it embeds the behavior of initiator and responder and
numerous malicious possibilities (deletion, modification and manipulation of messages).

4.5.1. Simulation setup

In the studied configuration, there are three types of possible sessions : between i_101 and
r_201, between i_101 and z_301, and between z_301 and r_201.

Session initiations are attempted by i_101 and z_301 at randomly chosen instants, with a mean
interval of about 500 simulation seconds. A successfully authenticated session is assumed to
be active for 20 simulation seconds (the values 500 and 20 were chosen to simplify simulation
design, they do not affect the validity of simulation). Messages sent between i_101 and r_201
pass through z_301 as explained earlier. The intruder may (in a random manner) relay, delete
or manipulate the messages passing through it. If all messages of a particular session are
relayed properlu, the session succeeds; if any message is deleted or modified by the intruder,
the involved entities are expected to detect it according to protocol rules and abort the session
if needed. However, there may be cases where manipulation by intruder produces messages
that satisfy protocol requirements. Since the affected entities will not be able to identify such
messages as malicious, the intruder's actions may go undetected and lead to false
authentication - these are the cases of interest to us. In the simple configuration studied here, a
false authentication would occur if the intruder z_301 is able to pass off as the initiator i_101
in a session with the responder r_201.

4.6. Simulation results

This paper described a framework for modeling authentication protocols with state machines
and validating them through simulation. The technique was illustrated using the Needham-
Schroeder public key authentication protocol as a case study. It is hoped that the presented
approach may enable protocol designers to conveniently and intuitively model and validate a
variety of protocols.

Journal of Integrated Design and Process Science

We plan to extend the present work by investigating its applicability to more authentication
protocols and attack scenarios. The attack on Needham-Schroeder public key protocol as
modeled and analyzed in this paper is among the trickier ones. Many other protocols can be
attacked in simpler, but non-intuitive ways. Yet others fall to attacks that exploit subtleties in
cryptographic techniques, message structure, or data formats. Such scenarios need more
complex modeling - we hope that the use of algorithmic state machines to capture finer details
of data manipulation and the flexibility afforded by the simulation environment will be
valuable in this.

Another important issue to be explored relates to the efficiency of simulation. The present
simulation assumes that the intruder's actions are fairly random. It may be possible to
incorporate heuristics that increases the possibility of reaching compromised states quicker,
resulting in faster convergence of simulation. However, in doing so, one must be careful not to
make explicit assumptions that could give ``too much guidance'' and make the simulation
meaningless.

5. Conclusions and Future Directions

This paper described a framework for modeling authentication protocols with state machines
and validating them through simulation. The technique was illustrated using the Needham-
Schroeder public key authentication protocol as a case study. It is hoped that the presented
approach may enable protocol designers to conveniently and intuitively model and validate a
variety of protocols.

We plan to extend the present work by investigating its applicability to more authentication
protocols and attack scenarios. The attack on Needham-Schroeder public key protocol as
modeled and analyzed in this paper is among the trickier ones. Many other protocols can be
attacked in simpler, but non-intuitive ways. Yet others fall to attacks that exploit subtleties in
cryptographic techniques, message structure, or data formats. Such scenarios need more
complex modeling - we hope that the use of algorithmic state machines to capture finer details
of data manipulation and the flexibility afforded by the simulation environment will be
valuable in this.

Another important issue to be explored relates to the efficiency of simulation. The present
simulation assumes that the intruder's actions are fairly random. It may be possible to
incorporate heuristics that increases the possibility of reaching compromised states quicker,
resulting in faster convergence of simulation. However, in doing so, one must be careful not to
make explicit assumptions that could give ``too much guidance'' and make the simulation
meaningless.

6. References
[Bird et al., 1993] Bird, R., Gopal, I., Herzberg, A., Janson, P. A., Kutten, S., Molva, R., and Young, M. (1993).

Systematic design of a family of attack-resistant authentication protocols. IEEE Journal on Selected Areas in
Communications, 11(5):679-693.

Transactions of the SDPS

[Brand and Zaropulo, 1983] Brand, D. and Zaropulo, P. (1983). On communicating finite-state machines. Journal
of the ACM, 30(2):323-342.

[Burrows et al., 1989] Burrows, M., Abadi, M., and Needham, R. (1989). A logic of authentication. Research
Report SRC-39, DEC Systems Research Center.

[Burrows et al., 1990] Burrows, M., Abadi, M., and Needham, R. (1990). A logic of authentication. ACM
Transactions on Com- puter Systems, 8(1):18{36.
[Clark and Jacob, 1996] Clark, J. and Jacob, J. (1996). A survey of authentication protocol literature. Survey

report, University of York, UK. (http://www.cs.york.ac.uk/ jac/).
[Dolev and Yao, 1983] Dolev, D. and Yao, A. C. (1983). On the security of public key protocols. IEEE

Transactions on Information Theory, IT-29(2):198-208.
[Gong et al., 1990] Gong, L., Needham, R., and Yahalom, R. (1990). Reasoning about belief in cryptographic

protocols. In Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy,
pages 234{248. IEEE Computer Society Press.

[Hoskote, 1995] Hoskote, Y. V. (1995). Formal Techniques for Verification of Synchronous Sequential Circuits.
PhD thesis, University of Texas, Austin.

[Hoskote et al., 1995] Hoskote, Y. V., Abraham, J. A., and Fussell, D. S. (1995). Automated verification of
temporal properties specified as state machines in vhdl. In Proceedings Fifth Great Lakes Symposium on VLSI,
Bualo, NY, pages 100 -105.

[Indiradevi and Nair, 1998] Indiradevi, K. and Nair, V. S. S. (1998). Formal verification of authentication
protocols. Technical Report 98-CSE-09, Southern Methodist University, Dallas, TX, USA.

[Lowe, 1995] Lowe, G. (1995). An attack on the needham-schroeder public key authentication protocol.
Information Processing Letters, pages 131 -136.

[Meadows, 1994] Meadows, C. A. (1994). The nrl protocol analyzer: An overview. In Proceedings of the 2nd
Conference on the Practical Applications of Prolog. Association for Logic Programming.

[Meadows, 1995] Meadows, C. A. (1995). Formal verification of cryptographic protocols: A survey. In Advances
in Cryptology - Asi- acrypt '94, LNCS 917, pages 133-150. Springer-Verlag.

[Mil3, 1997] Mil3 (1997). Opnet Documentation. MIL 3, Inc., Washington DC, USA. (http://www.mil3.com).
[Millen, 1995] Millen, J. K. (1995). The interrogator model. In Proceedings of the IEEE Symposium on Security

and Privacy, pages 251-260. IEEE Computer Society Press.
[Mitchell et al., 1997] Mitchell, J. C., Mitchell, M., and Stern, U. (1997). Automated analysis of cryptographic

protocols using murphi. In Proceedings of the IEEE Symposium on Security and Privacy, pages 141-151. IEEE
Computer Society Press.

[Needham and Schroeder, 1978] Needham, R. M. and Schroeder, M. D. (1978). Using encryption for
authentication in large networks of computers. Communications of the ACM, 21(12):993-999.

[Nelson et al., 1995] Nelson, V. P., Nagle, H. T., Carroll, B. D., and Irwin, J. D. (1995). Digital Logic Circuit
Analysis & Design. Prentice Hall, Englewood Cliffs, New Jersey.

[Schneider, 1996] Schneider, S. (1996). Security properties and csp. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 174-187. IEEE Computer Society Press.

[Syverson and van Oorschot, 1994] Syverson, P. F. and van Oorschot, P. C. (1994). On unifying some
cryptographic protocol logics. In Proceedings of the IEEE Computer Society Symposium on Research in
Security and Privacy, pages 14-28. IEEE Computer Society Press.

Science

Journal of Integrated Design and Process

I3

initiate ?

Ni <-- nonce()
m1 <-- E(Ni,I):Kr
Tx(m1)
T <-- 0

commit <-- 0

Rx(m2)?

T > T0 ?

T = T+1

D(m2) ?

-1(N, Nr) <-- D(m2):Ki

N==Ni ?

m3 <-- E(Nr):Kr
Tx(m3)

commit <-- 1

end ?

0 1

0 1

0 1

0 1

0 1

0 1

I0

I1

I2

Fig.1. Algorithmic state machine for initiator.

Ni/
Tx(m3)

I0

I1

end/-

I2

I3

check

commit

wait

initiate

~Ni/-
Rx(m2)/-

~D(m2)/-

~Rx(m2)/-

initiate/
Tx(m1)

Fig. 2. State machine for initiator.

Transactions of the SDPS

Fig.3. Algorithmic state machine for responder.

R4

commit <-- 0

Rx(m1)?

D(m1)?

(Ni, I) <-- D(m1):Kr-1

Nr <-- nonce()
m2 <-- E(Ni, Nr):Ki

T <-- 0

Rx(m3)?

Tx(m2)

T>To ?

T <-- T+1

D(m3)?

N <-- D(m3):Kr
-1

N==Nr?

commit <-- 1

end ?

0 1

0 1

0 1

0 1

0 1

0 1

0 1

R0

R1

R2

R3

R0

R1

R2

Nr/-

R3

R4

respond

commit

check

wait

ready

~Rx(m3)/-

end/-

~D(m1)/- Rx(m1)/-

-/Tx(m2)

Rx(m3)/-
~Nr/-~D(m3)/-

Fig.4. State machine for responder.

Journal of Integrated Design and Process Science

initiateR?

Rx(m2ZR)?

Rx(m1IZ)?

Rx(m3IZ)?

Rx(m1IR)?

Rx(m2IR)?

Rx(m3(IR)?

Z0

from

0 0 0

0 0

0

to to to to to to toZ1 Z4 Z2 Z3 Z5 Z6 Z7

Z1 from Z2 from Z3 Z3.1 from Z3.2 from Z4 from Z4.1 from Z5 from Z6 from Z7from

Fig.5. Part 1 of Algorithmic state machine for intruder.

Nz <-- nonce()

m1 <-- E(Nz,Z):Kr

Tx(m1ZR)

Z1

from Z0
initiateR

(N,Nr) <-- D(m2):Kz
-1

m3 <-- E(Nr):Kr
Tx(m3ZR)Tx(m2I’R)

back to Z0

Z0from

back to back to back toZ0 Z0 Z0

Z4

Z4.1

 D(m2)?
0 1

 fake ?
0 1

commitZR <--1

endZR?
0 1

on on Rx(m2ZR)

Fig.6. Part 2 of Algorithmic state machine for intruder.

Transactions of the SDPS

(Ni,I) <-- D(m1):Kz
-1

D(m2)?

fake ?

Nz <-- nonce()

m2 <-- E(Ni,Nz):Ki

Tx(m2IZ)

m1 <-- E(Ni,I):Kr

on

Tx(m1I’R)

0 1

0 1

Z0from

Z2 Z3

D(m3)?

N <-- D(m3):Kz -1

 fake ?

N == Nz?

Z0from

Tx(m3I’R)
m3 <-- E(N):Kr

Z3.2

endI’R?endIZ?

Z3.1

back to back toZ0 Z0back to Z0 Z0back to

0

0 1

0 1 0 1

1

back to Z0 back to Z0 back to Z0

commitIZ <--1 commitI’R <--1
commitIZ <--1

Rx(m1IZ)on Rx(m3IZ)

Fig.7. Part 3 of Algorithmic state machine for intruder.

Rx(m1IR)on
Z0from

Z5

delete ?

Z0

del(m1IR)Tx(m1IR)

0 1 fake ?

delete ? Tx(m2IZ)

Tx(m2IR) del(M2IR)

Z0from
Rx(m2IR)on

0 1

0 1

Z6

 fake ?

delete ? Tx(m3ZR)

Tx(m3IR) del(M3IR)

Z0from
Rx(m3IR)on

0 1

0 1

Z7

back to back to back to back to back to back to back toZ0 Z0 Z0 Z0 Z0 Z0 Z0back to

Fig.8. Part 4 of Algorithmic state machine for intruder.

Journal of Integrated Design and Process Science

C7

n/

Rx(m3AC)/-

C4 C5

C6

C1

C4.1

C0

n/-

C2

C3

C3.2 endA’B/-

n/

del(m1AB)

f/

d/
del(m2AB)

d/
del(m3AB)

-/Tx(m1CB)

initiateB/-

Tx(m1AB)

Tx(m2AC)

Tx(m3AB)

Tx(m2A’B)
f/

n/
Tx(m2AC)

Tx(m1A’B)
f/

Tx(m2AB)
n/

Tx(m3CB)
f/

d/

Rx(m1AC)/-

Rx(m2CB)/-

Rx(m3AB)/-

Rx(m2AB)/-

Rx(m1AB)/-

endCB/-

C3.1

endAB/-

C_commitAC

f/
Tx(m3A’B)

(C_commitAC)
C_commitA’B

C_commitCB

Tx(m3CB)
n/

Fig.9. State machine for intruder C

Fig.10. Authentication scenario- network view (Opnet)

Fig.11. Initiator node (Opnet)

Fig.12. Responder node (Opnet)

Fig.13. Intruder node (Opnet)

Transactions of the SDPS

Fig.14. Initiator state diagram (Opnet)

Fig.15. Responder state diagram (Opnet)

Journal of Integrated Design and Process Science

Fig.16. Intruder state diagram (Opnet)

	1. Introduction
	2. Authentication
	2.1. Authentication Protocols
	2.2. Needham-Shroeder Public-Key Protocol
	2.3. Attacks on Authentication Protocols
	2.3.1. An attack on Needham-Schroeder public key protocol

	
	3. Verification and Validation of Authentication Protocols
	3.1. Logic-based verification approaches
	3.2. State-based verification approaches

	4. Validation Using State Machines
	4.1. Algorithmic state machines
	4.2. Property verification
	4.3. Validating Needham-Shroeder protocol
	4.3.1. Modelling trusted entities in the system
	4.3.2. Modelling the intruder
	4.3.3. Modelling a realistic authentication scenario

	4.4. Opnet simulation tool
	4.5. Simulation of Needham-Shroeder protocol
	4.5.1. Simulation setup

	4.6. Simulation results

	5. Conclusions and Future Directions

