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Authentication protocols help to establish trust about the identities of communicating entities. 
Along with authorization and data confidentiality, authentication forms a critical component of 
most non-trivial security frameworks. Over past several years, an alarming number of seemingly 
secure authentication protocols have been shown to be flawed. By exploiting such flaws, malicious 
entities can potentially take on identities of trusted entities.  

Attacks on authentication protocols are often too subtle to uncover by simple means, hence 
considerable research has gone into techniques for analyzing and verifying them. Though the 
problem is perhaps best studied using formal methods, techniques in that category are generally 
rather complex and specialized.  

This paper proposes a different approach - using simulation as a means of validation. Though 
unable to conclusively prove security, simulation can be very effective in uncovering hidden flaws. 
This could be particularly useful for large systems where it may be nearly impractical to apply 
formal methods. A framework is presented to model authentication protocols with state machines 
and to validate some of their security properties through simulation.  
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1. Introduction 
Protecting sensitive communications from eavesdropping has always been a challenge. Once 
considered the worry of only governments and militaries, it has come into sharp public focus in recent 
years as a result of the explosive growth in deployment and use of data networks such as the Internet. 
With massive amounts of highly sensitive and valuable data sent across these networks, ensuring data 
integrity and confidentiality now concerns everyone. The availability of cheaper yet increasingly more 
powerful computing resources has only exacerbated the problem, be- cause, in the wrong hands they 
can turn into potential weapons. Clearly, securing information during its generation, manipulation, 
dissemination, and use has become a daunting task.  
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Communication networks employ various security ser- vices to protect the confidentiality and 
integrity of data. Authentication aims to provide mutual trust regarding the identities of communicating 
entities. Principals authenticated thus are given controlled resource access rights via access control 
mechanisms. Data confidentiality protects information from unauthorized disclosure, while data 
integrity protects against malicious tampering. Finally, non- repudiation prevents denial of origination 
or receipt of in- formation - thus enforcing a level of responsibility on the involved parties. The work 
presented here focuses on validating authentication protocols against their design goals. In recent years, 
several seemingly secure authentication protocols have been shown to have vulnerabilities. 
Considering the importance of ensuring foolproof authentication, this has led to extensive research into 
systematic analysis and verification of authentication systems. This paper presents a framework to 
model, analyze, and validate authentication systems. The remainder of the paper is organized as 
follows.  

 
Section 2 brief discusses authentication in networks. The requirements, goals, basic principles, and 

types of authentication protocols are brief explained, along with common attacks against them. Section 
3 examines the need for formal techniques to verify and validate authentication systems, and outlines 
two predominant approaches using logic based and state based models. Section 4, the focus of this 
paper, presents the modeling of authentication protocols with algorithmic state machines, and studies 
the possibility of using simulation as a means to establish a high degree of assurance regarding their 
security properties. The approach is illustrated through the case study of a classic protocol - the 
Needham- Schroeder Public Key authentication Protocol (Needham and Schroeder, 1978). The paper 
concludes by outlining our plans for future work.  

 
 

2. Authentication 
Information networks perform peer entity authentication to establish trust on identities of principals. 

The aim is to prevent malicious entities from masquerading as others. Most present day networks do 
authentication through proof by knowledge (ex: via passwords, shared secrets, etc.). Since this 
knowledge verification during the authentication phase is critical in ensuring the security of subsequent 
inter- actions, it is quite often protected cryptographically. The crypto system used is generally 
assumed to be strong, implying that, without proper keys it is impossible to decrypt the messages 
exchanged. Therefore, key guessing attempts are considered ineffective.  

One of the most common ways for mutual authentication is to demonstrate verifiable secret 
knowledge. In shared key cryptography, pairs of communicating entities share secret keys that are 
verified during authentication, and used to optionally establish additional secrets for securing further 
communications. A radically different approach is taken in public key cryptography, where each 
principal has a unique pair of keys - a public key made known to everyone, and a secret private key. 
Most such systems have the property that, correct decryption by a public key implies original 
encryption with the corresponding private key - thus, a principal may demonstrate knowledge of its 
private key to prove authenticity. 

2.1. Authentication Protocols 

An authentication protocol is a sequence of messages designed specifically to establish the 
authenticity of communicating principals. If the principals are really who they claim to be, 
then, at the conclusion of the protocol, they will be convinced of each other's knowledge of 
certain secrets (and hence identity), and optionally in possession of one or more shared secrets 
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[Burrows et al., 1989]. A good authentication protocol establishes not only that each principal 
believes in a secret shared with the other, but also that each believes in the other's belief of the 
shared secret.  

Depending on the crypto system used, authentication protocols are sometimes classified [Clark 
and Jacob, 1996] as shared key systems without trusted third party, shared key systems with 
trusted third party, public key systems, etc. Further, depending on the direction of 
authentication, they may be divided into one-way (unilateral) or two-way (mutual) protocols.  

The following notation is used in the paper:  

Principals in a protocol are represented as A, B etc. Z or I denotes an intruder; an attempt by Z 
to impersonate A is indicated as Z(A).  

Key pairs for encryption/decryption are denoted by K, K-1. Encryption of message m with key 
K is represented as (m)K or{m}k.  In a shared key system, Kab denotes a key shared by 
principals A and B. In a public key system, the public and private keys of principal A are 
denoted respectively by Ka and Ka

-1.  

Protocols generally use nonces (one-time random numbers) or time-stamps to ensure message 
freshness Na and Ta indicate a nonce and timestamp generated by A.  

Sequence of messages in a protocol run are denoted as m1, m2, m3, etc. or as 1, 2, 3, etc.  

The mechanisms and reasoning of authentication are illustrated below with the Needham-
Schroeder public key authentication protocol; the protocol is later used to illustrate the 
modeling and validation technique presented.  

There is also a desire for CASE tools integration through expansible environments, driven by the 
demand for ever-faster development of software systems. Integrated CASE environments can help 
software engineers to deliver software systems on time. However, to meet these demands, an integrated 
CASE environment must be based on a flexible framework that provides a cost-effective tool 
integration mechanism, encourages portable tools, facilitates the exchange of development information, 
and adapts to future methodologies. In such an environment, software engineers can coherently mix 
and match the most suitable tools that support selected methodologies. They can then plug some tools 
into the environment and begin working with them. 

 
Design is normally an iterative process, and the ability to easily navigate between different tools 

and notations is important to permit the designer to view concurrently different facets of software 
development. The ability for a designer to navigate around is also vital, as reusability is something that 
a CASE environment must promote. A designer must be able to browse through already-captured parts 
of previous designs to try to see whether any components from prior work can be reused.  
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2.2.  Needham-Shroeder Public-Key Protocol 

Based on public key cryptography, the Needham-Schroeder protocol [Needham and 
Schroeder, 1978] is one of the most widely studied and analyzed authentication protocols. In 
this protocol, communicating principals establish mutual trust by virtue of the properties of 
public and private keys. Though a trusted certification authority (CA) is also involved to 
distributes valid public keys of principals, we may safely ignore its presence by assuming that 
the communicating entities already posses the public keys of each other. This simplified 
version of the protocol is represented below:  

 

Here, A and B want to verify each other's identity. First, A sends a nonce Na along with its 
name to B in message m1 encrypted under B's public key; Na can be read from m1 only by B 
(using its private key). B then returns Na to A along with another nonce Nb (for mutual 
authentication) in message m2, encrypting it with A's public key. After decrypting m2, A 
verifies whether Na is the same as originally sent. If it is, A concludes that it is indeed B on the 
other side as only B could have decrypted m1. A completes the protocol by returning Nb in 
message m3 to B, who performs a similar validation and concludes that it is indeed talking to 
A. Besides achieving mutual authentication, this transaction also establishes two new 
secrets(Na and Nb) between A and B which may be used optionally to secure further 
communications. It is to be noted however, that establishing new secrets in this manner is not 
generally considered a primary goal of authentication.  

2.3. Attacks on Authentication Protocols 

Authentication gets tricky when intruders are present. It is to be generally assumed that such 
an entity may itself be legitimate (thus allowed to take part in authentication), and has the 
ability to observe, insert, modify or delete data in the network. However, it will not be capable 
of extracting information from an encrypted message for which it does not have the proper key 
(strong cryptography assumption).  

The involvement of such abstract properties as belief and trust often tend to make 
authentication subtle and non-intuitive. A malicious entity may be able to defeat authentication 
by exploiting protocol vulnerabilities such as in message structure, sequencing, and timing 
constraints. The potentially numerous possibilities must be considered carefully when 
modeling and analyzing authentication systems.  

An attack may help the intruder to either learn a current secret, or to trick one or more 
legitimate participants into using a false `secret' (an old compromised secret, for example). In 
either case, subsequent communication between the original participants will be insecure.  
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A variety of attacks on authentication systems have been reported in literature [Bird et al., 
1993]. In a replay attack , intruder tries to replay old messages (from earlier authenticated 
sessions) as current. In an oracle session attack, the intruder engages in simultaneous sessions 
to two or more principals and manipulates one into doing the cryptographic operations needed 
to talk to the other. Parallel session attack occurs when an intruder engages in two 
simultaneous authentication sessions to the same principal and uses one session to generate 
messages required in the other.  

Note that other common attacks such as key guessing attack, known plain-text attack, and 
chosen cipher-text attack result from weaknesses in the underlying crypto system and are not 
directly tied to authentication protocols.  

2.3.1. An attack on Needham-Schroeder public key protocol 

Attacks on authentication protocols are almost always too subtle and non-intuitive to be 
detected through simple methods. The now well-known parallel session attack [Lowe, 1995] 
on Needham-Schroeder public key protocol as outlined below illustrates this:  

 

Here the intruder Z waits until a principal A initiates an authentication session to it (recall that 
Z could be a legitimate user). Then, disguising as A, Z starts a simultaneous session with B. By 
clever manipulation of messages, Z succeeds in falsely taking on the identity of A (from the 
perspective of B).  

The scenario involves two runs of the protocol - one between A and Z ( m1, m2, m3 ), and the 
other between Z (posing as A) and B ( m1', m2', m3' ). m1 is the initial session start message 
sent by A to Z. Z simply forwards it to B (as m1') after re-encrypting it with B's public key. 
Noticing A's name as the message initiator, B believes it is talking to A and responds with m2' 
to `A' (ie. Z) - m2' carries B's nonce Nb, and is encrypted under A's key. Unable to decrypt m2', 
Z just forwards it to A as m2. Not knowing that m2 was actually generated by B, A accepts it 
and sends the final message m3 to Z. Z extracts Nb from this message and sends it over to B in 
m3'. After verifying Nb, B concludes that it is `A' at the other end. At this point, even without 
any key compromise, Z has succeeded in masquerading as A  

The seriousness of this is evident when considering that it was discovered only 17 years after 
the original protocol was published and widely studied. Clearly, more rigorous techniques are 
required for verifying cryptographic protocols. The problem has several characteristics that 
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make the application of formal verification techniques suitable. The following section provides 
a brief overview of some of the formal techniques explored in this domain.  

 

3. Verification and Validation of Authentication Protocols 
Most current approaches to analyzing and verifying cryptographic protocols follow logic based 
[Meadows, 1995] or state based [Millen, 1995] paradigms. 
 

3.1. Logic-based verification approaches 

Pioneered by Burrows, Abadi and Needham [Burrows et al., 1990], logic based frameworks 
use specialized logics to derive beliefs in a system. Repeated application of inference rules on 
carefully chosen initial assumptions and message meanings is used to verify security 
properties such as goodness of keys. Though intuitive and comparatively easy to understand 
and apply, its high level of abstraction makes it likely to miss certain types of subtle properties 
while modeling.  

The BAN Logic (Burrows, Abadi and Needham) [Burrows et al., 1989] has been used to 
verify correctness as well as to find previously unknown flaws in many authentication 
protocols. However, because of limitations in underlying assumptions and lack of sufficiently 
complex reasoning mechanisms, it has not been very successful in handling certain classes of 
properties [Meadows, 1995]. Yet, its relative simplicity makes it more popular than several 
other more powerful logic systems.  

Other notable approaches using logic include an extension of BAN Logic by Gong, Needham 
and Yahalom (GNY Logic) [Gong et al., 1990], and the attempt to unify various logics by 
Syverson and Oorschot(SVO) [Syverson and van Oorschot, 1994].  

3.2. State-based verification approaches 

This class of approach pioneered by Dolev and Yao [Dolev and Yao, 1983], uses state-
transition models to express algebraic properties. By viewing a model as an algebraic system 
manipulated by an intruder, system state changes are studied in terms of knowledge and data 
values to capture relatively subtle properties at a fairly low degree of abstraction. However, 
compared to logic based approaches, modeling and use are harder and require considerable 
expertise.  

In the initial proposal by Dolev and Yao [Dolev and Yao, 1983], a protocol is modeled as a 
language system with a finite set of distinct symbols that are used to compose arbitrary words 
which when concatenated produce messages. Reduction rules (or, term rewriting rules ) in the 
language allow transformation between valid word sequences. An intruder's aim is to find 
words (such as encryption keys and session keys) by subjecting sequences to rewriting rules. 
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Proving security of the system thus maps to a word problem in a term-rewriting system 
manipulated by the intruder [Meadows, 1995].  

Several variants of state based modeling have been proposed. Approaches using reverse 
search assume a compromised (insecure) state and search backwards to determine if it is 
reachable from a valid initial state; the Interrogator [Millen, 1995] and NRL Protocol Analyzer 
[Meadows, 1994] follow this model. In approaches based on CSP formalism , a system is 
modeled using Communicating Sequential Processes and then analyzed with CSP methods to 
prove invariants (secure properties) [Schneider, 1996]. Another popular approach, state 
enumeration , involves searching all reachable states and checking security properties in each; 
though search space is theoretically infinite, in most practical protocols it is usually possible to 
confine the search to smaller spaces [Mitchell et al., 1997].  

Our work is based on state based modeling using finite state machines (FSM).  

4. Validation Using State Machines 

Finite state machine (FSM) representations provide a framework for conveniently modeling 
and analyzing communication protocols [Brand and Zafiropulo, 1983]. The basic idea is to 
model a given protocol as a collection of interacting state machines. Most traditional methods 
use explicit state enumeration to analyze such systems; though theoretically attractive, this 
leads to potential state explosion problems in practice.  

When modeling a protocol with state machines, state transitions are generally associated with 
message transmissions and receptions. As transmission by one component will be coupled 
with a reception in another, a system in its entirety maybe thought of as a synchronous 
machine (this view abstracts out the fact that components operate asynchronously with respect 
to each other at a finer level). Thus, it is possible to apply state-verification techniques used for 
synchronous sequential machines to model and verify protocols as well. Protocol design errors 
such as state deadlock , unspecified reception , and non-executable interaction have been 
analyzed using FSM models [Brand and Zafiropulo, 1983].  

Though intuitive and clear, FSM models often have limitations that tend to restrict their use to 
fairly simple systems. The foremost is state explosion - number of states and transitions tend to 
grow exponentially as a system grows. Another is limited expressive power when compared to 
other formalisms such as general programming languages. Newer techniques and tools have 
alleviated these problems to a large extent. This, combined with the convenience and clarity of 
representation, and the amenability to well understood analysis, makes FSM modeling still an 
attractive and powerful choice. An FSM based approach presented in [Indiradevi and Nair, 
1998] for verifying authentication protocols using algorithmic state machines and property 
verification technique is outlined in a later section.  
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4.1. Algorithmic state machines 

Algorithmic state machines (ASM) were proposed as an extension to increase the expressive 
power of FSMs [Nelson et al., 1995]. They combine FSMs' descriptive power (timing, state 
relations) with the clarity and expressiveness of flowcharts. Despite its striking similarity with 
conventional flow charts, an ASM diagram has very different semantic interpretation. Unlike a 
flowchart that merely describes procedural steps and decision paths of an algorithm, an ASM 
also codifies the sequence of transitions among states, inputs triggering transitions, and 
resulting outputs associated with states or transitions. It helps in separately describing and 
analyzing the data and control portions of a given system.  

ASM diagrams are built from three types of elements [Nelson et al., 1995]: state 
boxes(representing system states), decision boxes(determining input-based transitions), and 
conditional output boxes(associating outputs with transitions) [Nelson et al., 1995]. A state 
box with its associated decision and control boxes together constitute an ASM block which 
corresponds to a state in an equivalent state transition diagram. The resulting expressive power 
of ASM is thus comparable to that of general programming languages, for instance.  

Considering their expressiveness in representing data transformation operations in 
authentication protocols, we chose ASMs to model protocol entities.  

Having thus addressed the problem of extending FSM's expressive power, we now outline 
property verification , a powerful technique to handle the second major problem, namely, state 
explosion.  

4.2. Property verification 

In property verification [Hoskote et al., 1995] [Hoskote, 1995], a given design is modeled as a 
deterministic Mealy type finite state machine (possibly incompletely specified). But, unlike 
most approaches where properties to be verified are described in the design machine itself, the 
specification properties are described as separate state machines. These specification machines 
(property machines) are modeled as a type of non-deterministic state machines with some 
transitions having unspecified inputs; the partial specification enables efficient implicit state 
matching. The verification procedure computes all states in the design machine having input-
output behavior compatible with that of the start state of the property machine. Presence of a 
compatible state indicates that the design exhibits the behavior expressed in the property 
machine, and an absence implies absence of the behavior in the design. Property verification 
provides an intuitive specification format and gives the power to implicitly search the entire 
state space of the design [Hoskote, 1995] in an efficient manner.  

The feasibility of applying property verification to authentication protocols was demonstrated 
in [Indiradevi and Nair, 1998] by modeling false authentication as a property machine and 
verifying it against the design state machine of the Needham-Schroeder public-key 
authentication protocol.  
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Another potential approach to the problem would be to validate a given protocol through 
simulation. Unlike the rigorous formal verification methods mentioned so far, simulation does 
not guarantee correctness of the protocol; in other words, failure of a simulation to expose 
flaws can not be taken as assurance of their absence in the protocol. However, application of 
simulation to authentication protocols appears to be promising and viable. This is because 
most authentication protocols involve only a few entities and a small number of messages, so a 
well designed simulation has a fairly good chance of detecting flaws.  

4.3. Validating Needham-Shroeder protocol 

The Needham-Schroeder protocol and an attack on it were discussed in Section 2.1.1 and 
Section 2.2.1.  

In the protocol, two parties A and B attempt mutual authentication through demonstration of 
their knowledge of private keys. In the attack scenario, a malicious (though legitimate) entity 
Z tries to subvert authentication by manipulating messages to fool B into believing that Z is A.  

We model the protocol entities as state machines interacting through protocol messages. 
Because of their flexibility and expressive power, we use ASMs (Section 4.1) for modeling 
entities. This is valuable because, several data transform operation (such as encryption and 
decryption) need to be represented in the case of authentication protocols - it is neither easy 
nor convenient with simple state machines. The control flow parts of the machines are used for 
building the simulation.  

For the Needham-Schroeder protocol, following entities need to be modeled:  

• Initiators (I) - entities initiating authentication sessions by sending the first message in the 
protocol 

• Responders (R) - entities that respond to messages from an initiator 
• Intruder (Z) - a malicious entity (possibly legitimate, capable of engaging in authentication), 

assumed to have the ability to observe, delete, insert, or manipulate messages in the network; 
however, it can not decrypt messages for which it does not possess the correct key (strong 
cryptography assumption).  

4.3.1. Modelling trusted entities in the system 

Though any entity could function as an initiator or as a responder, modeling can be simplified 
by assuming (without loss of generality) that entities are divided into disjoint sets of initiators 
and responders. Initiators and responders are assumed trustworthy, who adhere to protocol 
rules and sequences.  

Algorithmic state machines of an initiator and responder derived from the protocol description 
are shown in Fig.1 and Fig.3 respectively. In these figures,  
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m1, m2, m3:  protocol messages 
 
Tx(m):  transmission of message m 
Rx(m):  reception of message m 
Ki, Kr:  public keys of initiator and responder 
Ki-1, Kr-1:  private keys  
E(m):K:  encryption of m with public key K 
D(m):K-1:  decryption with private key K-1

nonce:  generation of a fresh nonce  
Ni, Nr:  nonces from initiator or responder 
T, To:  time-out to detect lost messages 
End:  end of an authenticated session 
commit:  status of authenticated session 
 
Basic state machines defining the control sequencing of initiator and responder (derived from 
the algorithmic state machines) are shown in Fig.2 and Fig.4.  

4.3.2. Modelling the intruder 

Modeling the intruder is more complex because of the variety of potential actions it can 
perform at each step in the protocol. It may initiate a session and follow the protocol, 
performing proper authentication. Or, it may initiate a session and then resort to message 
manipulations, out of sequence messaging, and replay of old messages. It could also observe 
messages between other entities in the network and possibly replay them later.  

Further, the intruder is assumed to be capable of intercepting any message on the network. It 
may destroy the intercepted messages, forward it (modified or otherwise) to the original 
recipient, or forward it to someone else. It could also replace the message with an old valid 
message and send to the original recipient, or use the message in another protocol run. Further, 
being a legitimate entity itself, the intruder is capable of functioning as an initiator or 
responder. It may act in these roles simultaneously by engaging in multiple protocol runs, and 
potentially use messages from one run in the other.  

Though these numerous possibilities make modeling harder, it can be done systematically (and 
to a degree of accuracy required for our purpose) by making some observations about the 
intruder's behavior. The first is that the intruder acts spontaneously only when it initiates an 
authentication session. This is because, except for m1, other randomly inserted messages (m2, 
m3) will be rejected by other entities as per protocol definition. The other observation is that, 
at other times the intruder's actions are reactive - triggered by a message in the network and 
potentially resulting in one of the actions considered above. Based on these observations, an 
algorithmic state machine may be derived as shown in Fig.5, Fig.6, Fig.7, and Fig.8.  
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4.3.3. Modelling a realistic authentication scenario 

A difficult choice in modeling concerns the extent of the modeled system. The simplest 
possible scenario for the Needham-Schroeder public key protocol involves an initiator, a 
responder, and an intruder. If this system is shown to be vulnerable to false authentication, 
then clearly any larger system will also have the vulnerability. On the contrary, verifying that 
the simple system is secure does not imply that larger systems will remain secure under similar 
assumptions - in such cases, the system has to be expanded incrementally and verification 
repeated until a sufficient level of confidence has been attained or vulnerability identified.  

Theoretically it may not be possible to conclude that a system is secure even after analyzing 
numerous cases with increasing number of entities. In practice, however, it seems the analysis 
can be safely limited to a convenient number of participants and protocol runs because most 
authentication protocols have only a few number of steps, limiting the resulting possibilities. 
On the other hand, the case of a failure is strong because a weakness that exists in a simple 
case will almost certainly be present in a larger system as well. In the case of Needham-
Schroeder protocol, a weakness is found in the minimal configuration itself, allowing one to 
conclude that the protocol is vulnerable.  

The simple configuration in our model has an initiator A, a responder B (both trusted), and an 
intruder C (able to legitimately act as initiator or responder). Thus A may initiate sessions with 
B or C, and C may initiate sessions with B. The state machines for A and B correspond to 
those shown in Fig.1 and Fig.3.  

The intruder C may act as initiator (with B), or responder (with A). It may also act maliciously 
as a passive observer or active intruder between A and B. Actions of C are partly non-
deterministic, as it may not abide by protocol sequences or rules. Fig.9 shows C's state 
machine describing actions of concern to this discussion.  

In these figures, a message of the form mxPQ represents the xth message in the protocol run 
initiated from P to Q, a state of the form PYq denotes the Yth state of P in its interaction with 
Q, and P_commitQP  denotes that P is convinced of the authenticity of Q. End of an 
authenticated session between P and Q is signaled by endPQ.  

A transition labeled ~Rx(m)(ie. non-reception of a message) results from the loss of message 
m. Since we are primarily concerned with the disruptions caused by the intruder, it is implied 
that such transitions result when the intruder intercepts and destroys messages. Similarly, 
~D(m) denotes a message that cannot be decrypted by the recipient - this could be a message 
meant for someone else (maliciously forwarded by the intruder) or a valid message that was 
tampered with (by the intruder). Transitions associated with ~N (ie. non-matching nonce) 
denote failure of authentication and may result from the reception of old valid messages 
replayed by the intruder.  
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As can be seen in the diagram, most transitions in the intruder state machine are controlled by 
inputs n, d or f. These respectively denote that the intruder decided to respond normally to a 
message, to delete a message (preventing it from reaching the intended recipient), or to send a 
fake message (possibly with the intention of masquerading as another entity). States annotated 
with C_commitAC and C_commitCB result when authentication involving C (using its real 
identity) has succeeded. C may also try to masquerade as A and send fake messages such as 
m1A'B to B, and it is possible that state C_commitA’B is reached wherein C has falsely 
convinced B that it is A. If indeed this state is reached, the protocol is broken.  

In the following section, we discuss how these ideas are used in a general simulation 
environment to validate the protocol.  

4.4. Opnet simulation tool 
Opnet provides a powerful discrete event driven simulation environment for modeling and 

simulating a wide variety of communication systems and protocols. Systematic modeling is supported 
by a hierarchy of levels (layers). In the uppermost network level, communicating nodes and associated 
interconnecting links are defined. Structures of nodes are defined in detail in the next lower layer in the 
hierarchy, the node level, through components such as processors, queues, transmitters, and receivers. 
Behavior of modeled entities (nodes) is captured through state transition models defined at the lowest 
layer, the process level, and embedded within processors and queues. These abstractions, together with 
user definable message formats and powerful communication primitives for message handling provide 
a very versatile and flexible simulation environment to system designers. 

 

4.5. Simulation of Needham-Shroeder protocol 

A network of communicating entities that follow Needham-Schroeder public key 
authentication protocol is modeled using Opnet. In the studied configuration, there is one each 
of initiator and responder; there is also a malicious party (intruder). With the potential to be a 
legitimate entity in the system, the intruder has the functionality of a normal initiator and 
responder, besides its malicious behavior.  

The ability of the intruder to observe any message in the network is modeled by forcing all 
messages to go through the intruder node as if it were a transparent relay between other 
communicating parties, a reasonable assumption in most communication networks. Being 
malicious, the intruder node may try to delete, modify, or manipulate messages rather than just 
relay.  

In the model, initiator nodes invoke authentication sessions to randomly chosen respondersat 
random intervals. It is to be noted that initiators may invoke sessions to the intruder node as 
well since the latter is assumed to be a legitimate responder. Similarly, in its role as a 
legitimate initiator, the intruder may invoke sessions to other responders.  

Fig.10 shows this scenario implemented as an Opnet network level model. In the figure, i_101 
and i_102 are initiators, r_201 and r_202 are responders, and z_301 is the intruder (the 
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numbers in these names are just for convenience and have no other significance). Only i_101, 
r_201, and z_301were kept active in initial simulations, thus the studied system configuration 
was minimal.  

The internal structure of nodes is defined in lower node level models as shown in Fig.11, 
Fig.12, and Fig.13. Each node has a processor and one or more of transmitter/receiver pairs. 
Transmitters and receivers attach to communication links connecting nodes.  

The behavior of entities is defined by processes running in their processors. Processes are 
represented at the process level of Opnet as state transition diagrams and associated embedded 
code. Opnet allows executable code to be associated with states (entry/exit), transitions, or 
combinations of both. State transition models embedded within the different types of entities 
(nodes) are shown in Fig.14, Fig.15, and Fig.16. State machines of initiators and responders 
are straight translations of the protocol sequence and rules. However, the state machine of the 
intruder is considerably more complex as it embeds the behavior of initiator and responder and 
numerous malicious possibilities (deletion, modification and manipulation of messages).  

4.5.1. Simulation setup 

In the studied configuration, there are three types of possible sessions : between i_101 and 
r_201, between i_101 and z_301, and between z_301 and r_201.  

Session initiations are attempted by i_101 and z_301 at randomly chosen instants, with a mean 
interval of about 500 simulation seconds. A successfully authenticated session is assumed to 
be active for 20 simulation seconds (the values 500 and 20 were chosen to simplify simulation 
design, they do not affect the validity of simulation). Messages sent between i_101 and r_201 
pass through z_301 as explained earlier. The intruder may (in a random manner) relay, delete 
or manipulate the messages passing through it. If all messages of a particular session are 
relayed properlu, the session succeeds; if any message is deleted or modified by the intruder, 
the involved entities are expected to detect it according to protocol rules and abort the session 
if needed. However, there may be cases where manipulation by intruder produces messages 
that satisfy protocol requirements. Since the affected entities will not be able to identify such 
messages as malicious, the intruder's actions may go undetected and lead to false 
authentication - these are the cases of interest to us. In the simple configuration studied here, a 
false authentication would occur if the intruder z_301 is able to pass off as the initiator i_101 
in a session with the responder r_201.  

4.6. Simulation results 

This paper described a framework for modeling authentication protocols with state machines 
and validating them through simulation. The technique was illustrated using the Needham-
Schroeder public key authentication protocol as a case study. It is hoped that the presented 
approach may enable protocol designers to conveniently and intuitively model and validate a 
variety of protocols.  
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We plan to extend the present work by investigating its applicability to more authentication 
protocols and attack scenarios. The attack on Needham-Schroeder public key protocol as 
modeled and analyzed in this paper is among the trickier ones. Many other protocols can be 
attacked in simpler, but non-intuitive ways. Yet others fall to attacks that exploit subtleties in 
cryptographic techniques, message structure, or data formats. Such scenarios need more 
complex modeling - we hope that the use of algorithmic state machines to capture finer details 
of data manipulation and the flexibility afforded by the simulation environment will be 
valuable in this.  

Another important issue to be explored relates to the efficiency of simulation. The present 
simulation assumes that the intruder's actions are fairly random. It may be possible to 
incorporate heuristics that increases the possibility of reaching compromised states quicker, 
resulting in faster convergence of simulation. However, in doing so, one must be careful not to 
make explicit assumptions that could give ``too much guidance'' and make the simulation 
meaningless.  

5. Conclusions and Future Directions 

This paper described a framework for modeling authentication protocols with state machines 
and validating them through simulation. The technique was illustrated using the Needham-
Schroeder public key authentication protocol as a case study. It is hoped that the presented 
approach may enable protocol designers to conveniently and intuitively model and validate a 
variety of protocols.  

We plan to extend the present work by investigating its applicability to more authentication 
protocols and attack scenarios. The attack on Needham-Schroeder public key protocol as 
modeled and analyzed in this paper is among the trickier ones. Many other protocols can be 
attacked in simpler, but non-intuitive ways. Yet others fall to attacks that exploit subtleties in 
cryptographic techniques, message structure, or data formats. Such scenarios need more 
complex modeling - we hope that the use of algorithmic state machines to capture finer details 
of data manipulation and the flexibility afforded by the simulation environment will be 
valuable in this.  

Another important issue to be explored relates to the efficiency of simulation. The present 
simulation assumes that the intruder's actions are fairly random. It may be possible to 
incorporate heuristics that increases the possibility of reaching compromised states quicker, 
resulting in faster convergence of simulation. However, in doing so, one must be careful not to 
make explicit assumptions that could give ``too much guidance'' and make the simulation 
meaningless.  
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Fig.3. Algorithmic state machine for responder. 
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Fig.10. Authentication scenario- network view (Opnet) 

Fig.11. Initiator node (Opnet) 

Fig.12. Responder node (Opnet) 

Fig.13. Intruder node (Opnet) 
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Fig.14. Initiator state diagram (Opnet) 

Fig.15. Responder state diagram (Opnet) 
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Fig.16. Intruder state diagram (Opnet) 
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