DESIGN AND VALIDATION OF AUTHENTICATION SYSTEMS

Approved by:

Dr. V. S. Sukumaran Nair

Dr. Jacob Abraham

Dr. James G. Dunham

Dr. Richard V. Helgason

Dr. Jeff Tian

DESIGN AND VALIDATION OF AUTHENTICATION SYSTEMS

A Dissertation Presented to the Graduate Faculty of the
School of Engineering and Applied Science
Southern Methodist University
in
Partial Fulfillment of the Requirements
for the degree of
Doctor of Philosophy
with a
Major in Computer Engineering

by

Krishnan G. Indiradevi

(B.Tech., University of Kerala, 1988)
(M.S., Southern Methodist University, 1996)

August 04, 2000

ACKNOWLEDGMENTS

[wish to express my sincere gratitude and appreciation to my advisor Dr.
Suku Nair for arousing my interest and curiosity in network security, for guiding me
through the trying path of research, and for the numerous insightful and stimulating
discussions. I am also very thankful to the other committee members, particularly
Dr. Jacob Abraham, for the valuable suggestions and comments on my research work.

I also take this opportunity to thank my dear friend Dr. Sanda Harabagiu for
her invaluable support and encouragement. My sincere thanks also to my friends Dr.
Krish Pillai, Mr. Ravi Gupta, Mr. Hyun Cheul Kim, Dr. Hakki Candan Cankaya,
and Dr. George Deprez.

The support and encouragement given by my superiors and colleagues at IP
Mobile, Inc. (Richardson, TX), especially Mr. Balaji Holur and Mr. Alexander
Garbuz, are also sincerely acknowledged.

Finally, I thank my loving parents for giving me a good education and instilling
in me an interest in science and technology, and my beloved grand mother from whom
I learned the value of patience and perseverance.

Without the care and support of all these people, this work would not have

reached the form in which it is now. I am indebted to all of them.

il

Indiradevi, Krishnan G. B.Tech., University of Kerala, 1988
M.S., Southern Methodist University, 1996

Design and Validation of Authentication Systems

Advisor: Professor V. S. Sukumaran Nair

Doctor of Philosophy conferred August 04, 2000

Dissertation completed July 07, 2000

Protecting the confidentiality and integrity of communications has always been
an important problem confronting individuals and organizations. Authentication is a
crucial step in ensuring information security - in simple terms, authentication strives
to provide proof that an entity is indeed who it claims to be, and that a given piece
of information indeed originated from a claimed source. Along with mechanisms
for access authorization and data confidentiality, authentication forms an important
building block in virtually all security frameworks.

Authentication is performed through the execution of an authentication protocol
comprising a predefined sequence of cryptographic handshake messages, and associ-
ated rules and criteria to verify claims of identity. A wide variety of authentication
protocols have been proposed and used in the past. However, a disturbing number of
these seemingly secure protocols have later been found to be flawed, in many cases,
years after their wide use.

Attacks against authentication protocols often succeed even without any com-

promise occurring in the underlying cryptographic system. Instead, attackers resort

v

to manipulation of protocol messages, and replay of messages from old authenticated
sessions. Such attacks tend to be very subtle, and are unlikely to be detected by
simple procedures such as manual inspection of protocols. This challenge has trig-
gered considerable interest in the research community to develop formal, rigorous
techniques for the analysis and verification of these protocols.

This thesis presents the results of an investigation into potential vulnerabilities
in authentication protocols, formulation of methods to detect such weaknesses, and
development of techniques to defend against the exploitation of those weaknesses that
might still escape careful design and thorough analysis.

To address the problem of modeling authentication protocols and detecting their
weaknesses, two alternative approaches are developed. The first is a rigorous formal
approach based on finite state machine modeling, but tends to be somewhat complex.
The second approach is based on event simulationwhich is not as rigorous as formal
verification, but is simpler, more flexible, and often gives close enough results. An
important criterion in developing both these approaches has been to make them useful
and usable to both researchers and practicing protocol designers alike.

Finally, meta authentication is proposed as a powerful framework to protect
authentication protocols from attacks. With minimal overhead, the meta authentica-
tion scheme provides a safe execution environment for authentication protocols. Being
highly scalable and distributed, it is attractive in large networks. Both an architecture
and a protocol, to support a robust environment for the execution of authentication

protocols are developed and the effectiveness of the scheme demonstrated.

The problems in network security continue to grow with the deployment of
large complex networks and the development of sophisticated protocols. Problems
are more subtle and harder to detect. It is evident that the need for reliable and
efficient validation techniques is more relevant than ever. Network and information
security remains a fairly open problem, and appears likely to remain so well into the

future.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. e iii

LIST OF FIGURES e xi
Chapter

1. INTRODUCTION .. e 1

1.1. Information Securityoiiiiiii 3

1.2. Compromise of Security 4

1.3, SeCurity ServiCesot e 5

1.4. Security Mechanisms 7

1.5, Outhline ... 9

2. AUTHENTICATION PROTOCOLSo 11

2.1, Principles 11

2.2. Cryptographic Techniques i . 14

2.2.1. Shared Key Cryptography 15

2.2.2. Public Key Cryptography i 16

2.2.3. One-Way Hash Algorithms o .. 18

224, Notabions 18

2.3. Authentication Protocols 20

2.3.1. Types of Authentication Protocols.......................... 21

2.3.2. Example Authentication Protocols.......................... 22

2.3.2.1. A Simple Challenge-Response Protocol 23

2.3.2.2. Needham-Schroeder Shared Key Protocol.......... 23

2.3.2.3. Needham-Schroeder Public Key Protocol 25

vil

2.3.3. Threats to Authenticationu .. 27

2.4. Attacks on Authentication Protocols............., 28
2.4.1. Types of Attacks on Authentication Protocols 29

2.4.2. Example Attacks on Authentication Protocols 31

2.4.2.1. A Replay Attack......... ..o 31

2.4.2.2. A Parallel Session Attack 32

3. FORMAL VERIFICATION TECHNIQUES 35
3.1. Logic Based Verification i 37
311, BAN LOGIC. ottt 38

3.1.2. Evolution of Beliefs 41

3.2. State Based Verification i 42
3.2.1. Dolev-Yao Model..... i 43

3.2.2. NRL Protocol Analyzer i 46

3.2.3. Petri-net Based Models............. ... i 48

3.2.4. State Enumeration Models 49

4. A VERIFICATION FRAMEWORK USING STATE MACHINES 52
4.1, Terminology 53
4.2. Modeling Communication Protocols Using FSMs................... 54
4.3. Algorithmic State Machines i il 58
4.4. Design Verification i 61
4.4.1. Verification Using Property State Machines 63

4.4.2. Compatible States and Property Verification................ 66

4.4.3. Verification Procedure. 68

5. MODELING AND VERIFICATIONo 74

viil

5.1. Verifying Needham-Schroeder Public Key Protocol 74

5.1.1. Modeling the Authentication System 76

5.1.2. Modeling Trusted Entities.......... 77

5.1.3. Modeling an Intruder i 82

5.1.4. Modeling a Realistic Scenario 86

5.1.5. Verifying Authentication i 90

6. SIMULATION BASED VALIDATIONo 96
6.1. Protocol Validation Using Simulation 96
6.2. Opnet Simulation Tool 97
6.3. Simulation Model for Needham-Schroeder Public Key Protocol 98
6.4. Simulation Setup 101
6.5. Simulation Results 103

7. META AUTHENTICATION ... e 109
7.1. Meta Authentication i 110
7.1.1. Trust Model in Meta Authentication 111

7.2. An Architecture for Meta Authentication 113
7.3. A Protocol for Meta Authentication 117
7.3.1. Security of Meta Authentication Protocol 123

7.4. Protecting Authentication Protocols Against Attacks............... 127
7.4.1. Preventing Parallel Session Attacks......................... 127

7.4.2. Preventing Replay Attacks i 131

7.4.3. Preventing Oracle Session Attacks 134

7.4.4. Preventing Binding Attackso i 136

8. CONCLUSION AND FUTURE DIRECTION.......... 140

X

8.1. Thesis SUMMATYt e s 140

8.2. Future Directionsc.oo i 141
8.2.1. Verification Techniques............ i ... 141

8.2.2. Simulation Based Validation................................ 142

8.2.3. Meta Authentication i 143

8.3. Conclusion 144
REFERENCES .. 145

Figure
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
4.1.
4.2.
4.3.
4.4.
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

5.8.

LIST OF FIGURES

Page
A basic cryptographic system 15
Simple challenge-response protocol 23
Needham-Schroeder shared key protocol 24
Needham-Schroeder public key protocol 25
Needham-Schroeder public key protocol - simplified version 26
Replay attack on Needham-Schroeder shared key protocol 32
Parallel session attack on Needham-Schroeder public key protocol 33
FSMs of ‘sender’ and ‘receiver’ in alternating bit protocol 25
FSM of the overall system in alternating bit protocol 56
ASM and equivalent state diagram of a simple system 61
Example of state machine verification 66
Needham-Schroeder public key protocol 75
Attack on Needham-Schroeder public key protocol 75
ASM of initiator in NSPK protocolc.coiiiiiiiieeiann.. 79
ASM of responder in NSPK protocolccccviiiiiiinn.. 80
Control state machine of initiator in NSPK protocol 81
Control state machine of responder in NSPK protocol 81
Part 1 of ASM of intruder in NSPk protocol 84
Part 2 of ASM of intruder in NSPK protocol 84

xi

5.9.

5.10.

5.11.

0.12.

5.13.

0.14.

5.15.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

Part 3 of ASM of intruder in NSPK protocol 85

Part 4 of ASM of intruder in NSPK protocol —......................... 85
State machine for initiator A in NSPK protocol 87
State machine for responder B in NSPK protocol 88
State machine for intruder C in NSPK protocol 90
A property state machine for verifying the NSPK protocol 93
Flaw in NSPK protocol, uncovered in verification 94
Opnet network level model of NSPK protocol authentication scenario .. 100
Opnet node level model of initiator in NSPK protocol 100
Opnet node level model of responder in NSPK protocol 101
Opnet node level model of intruder in NSPK protocol 102
Opnet process level model of initiator in NSPK protocol 106
Opnet process level model of responder in NSPK protocol 107
Opnet process level model of intruder in NSPK protocol 108
Intra-domain meta authentication L. 115
Inter-domain meta authentication 116
Intra-domain meta authentication protocol 122
Inter-domain meta authentication protocol 123
Validation data transfer in meta authentication 124
Trusted paths in meta authentication 124
Simple one-way authentication protocol 128
Parallel session attack on simple one-way protocol 128
Preventing parallel session attack using meta authentication 129
Needham-Schroeder shared key protocol 132
Freshness attack on Needham-Schroeder shared key protocol 133

xii

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

Preventing replay (freshness) attack using meta authentication 133

Needham-Schroeder public key protocol 134
Oracle attack on Needham-Schroeder public key protocol 135
Preventing oracle session attack using meta authentication 136
Public key distribution protocol i 137
Binding attack on public key distribution protocol 138
Preventing binding attack using meta authentication 139

xiil

This thesis is dedicated to the exceptional men and women, of past and present, who

have dedicated their lives into creating a secure information society for us all.

Chapter 1

INTRODUCTION

Information technology is the art and science of the generation, processing,
storage, distribution, and use of information. It has proved vital to modern society,
and continues to shape the existence and operation of social institutions and our day
to day lives in unimaginable ways. Computer networks, being a very efficient means of
information exchange, have emerged as the single most important resource depended
on heavily by governments, corporations, and individuals to gather and disseminate
increasing amounts of information. Regrettably, as more and more sensitive data
is generated, stored and exchanged, there has also arisen the threat of unauthorized
access and malicious manipulation of such information. Historically these illegitimate
and destructive activities were a cause of worry only to governments and military
establishments, unfortunately this is not true any more.

Recent years have seen even ordinary individuals and organizations become at-
tractive targets for malicious activities, mostly owing to the increasing dependence on
information systems and the proliferation of communication networks. The situation
is more serious now than ever because of the potential availability of enormous com-

puting resources to subversive entities as well who can launch very effective attacks

against security mechanisms. A bewildering variety of unlawful activities are being
reported regularly. These range from fraudulent use of wireless phones and illegal
access of personal information, to phony electronic fund transactions and subversion
of automated control systems. This has raised the serious, and to a large extent
still open, question of information and network security. There is wide agreement
that systematic and accountable policies and techniques to enforce selective access
are needed to have control over the generation, manipulation, and dissemination of
data. Though there is not as much agreement regarding the exact nature of solutions
to be employed, it is not very difficult to identify some basic requirements that a
good security framework should meet. One such requirement is authentication, the
establishment of identities.

Authentication essentially involves proving claims of identity or authenticity.
In a general network security framework, it serves as the first point of contact. An
entity that desires access to the network or the information therein, is first required
to pass authentication. Similarly, a piece of information, before being accepted into
the information pool, is subjected to authentication. This process is carried out
through special authentication protocols. A weak authentication protocol can seriously
jeopardize the security of an information system, by failing to prevent illegitimate
access to its resources.

Over the years, many authentication protocols that were once believed to be
fool proof have been shown to be vulnerable to a variety of attacks. This has led to

considerable research into their formal analysis and design. However, despite their

relatively simple structure, these authentication protocols have proved to be very
hard to formally validate. This, combined with the fact that many of the known
formal validation techniques are very cumbersome and demand considerable expertise,
have made the level acceptance of formal techniques by real world protocol designers
somewhat disappointing.

In this thesis, we attempt to develop techniques for designing, modeling, and
validating these protocols using paradigms that are more likely to be familiar to
network and protocol designers.

The remainder of this chapter is devoted to clarifying relevant concepts and

introducing the terminology used throughout the thesis.

1.1. Information Security

An information system is a collection of entities that generate, process, consume,
and exchange data containing information. In its current interpretation, an informa-
tion system is generally thought to consist of computing nodes and data repositories
interconnected through a communications network. Thus, while considering the se-
curity of an information system, two broad aspects can be identified:

o Computer security, concerning the protection of computing resources against
unauthorized use, and safeguarding of data from intentional damage, disclosure,
or modification [2] [5] [42]. This is a research area in itself and is not dealt with

further in this thesis.

e Network (communication) security, concerning the protection of data, and the
information carried therein, during its transmission through computer networks
and distributed systems [14] [16] [42]. Note that this also includes informational
exchanges performed as part of ensuring computer security.

Security mechanisms are designed to control the ability of entities to access and
manipulate data or other resources in the computing and communication environ-
ment. These entities, commonly referred to as principals, include users for whom,
and on whose behalf, information processing is performed, hosts which are address-
able nodes where the processing is done, and processes which are instances of software
programs running on hosts and performing the actual processing [42]. Security mech-
anisms must be incorporated at each of these levels in order to ensure confidentiality

and integrity of various services provided.

1.2. Compromise of Security

When a security mechanism fails, a security compromise is said to have oc-
curred. Such failures may result from unintentional actions of trusted entities or from
deliberate actions of malicious entities, often known as intruders. The subversion of
individual hosts within the information network (host compromise), or communica-
tion channels within the network (communication compromise), may lead to security
breaches. A security breach resulting from the planned actions of an adversary trying

to subvert a system qualifies as an attack. A successful attack may lead to disclosure,

corruption, or destruction of data, misuse of system resources, and denial of services
normally available to trusted entities. Communication networks are vulnerable to

two general forms of attack:

e Passive attacks that may result in the breach of confidentiality of communication
between legitimate entities. Through wire-tapping or traffic analysis, intruders
try to extract useful information by observing the data in transit or by analyzing
communication patterns.

e Active attacks targeting the integrity or availability of information being ex-
changed. In these more malicious forms of attack, apart from mere observation,
intruders try to control information by modifying, deleting, inserting, or replay-

ing data. Active attacks often force denial of service to legitimates entities.

To defend against the increasing threat of intrusion, all non-trivial information

systems employ security services in one form or another.

1.3. Security Services

An information system should support a variety of services to ensure security
at different levels [42] [48].

Authentication services perform authentication of communicating entities or
sources of data. Authentication ensures a principal in a communication session, that
another principal in the session, or the source of some received data, is what it is
claimed to be. Often used as a precondition for further security services, authentica-

tion has a crucial role and is the main subject of the work presented in this thesis.

Access control services help safeguard system resources against unauthorized
use. These services depend on authentication as a precondition. Based on security
policies implemented in the environment, each authenticated principal (user, host, or
program) is granted a set of access rights to different resources.

Data confidentiality services prevent unauthorized disclosure of information to
observers or unintended recipients of data. Connection confidentiality services, or se-
lective field confidentiality services may be used to protect an entire message carrying
data, or parts thereof, respectively. Indirect gathering of information through traffic
flow analysis may be prevented through traffic flow confidentiality services .

Data integrity services ensure that data received by an entity has not been
tampered with during transit. Connection integrity guarantees the integrity of all
data exchanged in a communication session, whereas selected field connection integrity
limits such protection to only specific portions of transmitted data. It is to be noted
that integrity does not imply confidentiality.

Non-repudiation services protect messages against possible denial of origination
by senders, or denial of receipt by recipients. This is achieved through services that
guarantee proof of origin, or proof of delivery.

The aforementioned security services are implemented using various security

mechanisms in appropriate combinations.

1.4. Security Mechanisms

Common building blocks used in setting up security services include encryption,
digital signatures, notarization, access control mechanisms, traffic padding techniques,
and routing control [42].

Encryption (encipherment) involves using cryptographic techniques to encipher
all or parts of exchanged data, to provide confidentiality and sometimes, to provide
other security properties [48]. Shared key cryptography and public key cryptography
which are the most important variants of cryptography form the basis of most security
services. They are examined later in more detail.

Digital signatures are mechanisms by which a sender includes a non-forgeable
signature in a transmitted message. Signatures enable recipients to verify the au-
thenticity of data origin, and prevent senders from repudiating the message at a later
point in time. Signature mechanisms are closely related to properties of cryptographic
transforms, and will be discussed together later.

Notarization is a mechanism wherein a trusted third party gives testifiable as-
surance to communicating principals regarding certain properties of the data being
exchanged. Assurances may be regarding message integrity, message origination time,
or identities of origin and destination.

Access control mechanisms restrict and control access to various system re-
sources by principals. Control is enforced using authenticated identities of princi-

pals and predefined access control lists. Security audit trails are often generated for

later analysis to detect suspicious activities including access right violation attempts.
Based on access policies, different principals may be given varying levels of access to
resources.

Traffic padding mechanisms aim to foil attempts to indirectly collect information
through traffic flow analyses. They use spurious communication sessions, or data
units to defeat statistical and other analysis techniques likely to be employed by
eavesdroppers.

Routing control mechanisms allow dynamic rerouting of communication chan-
nels that may be under intrusion threat. They also include policies to allow only data
meeting certain security criteria to pass through the network.

The focus of this thesis is on authentication protocols, protocols designed to
establish identities of principals. Specifically, it addresses techniques to verify that
authentication protocols achieve their design goals. Over the past several decades,
a variety of authentication protocols have been proposed and used. However, many
of them have been found to be flawed, often years after they were first published.
Due to the crucial role authentication has in network security, there is considerable
interest in research community in developing techniques for systematically analyzing
and verifying protocols designed to perform authentication.

The main aim of this thesis is to develop a framework for formally modeling,
analyzing, and validating authentication systems and protocols. Though various ap-
proaches have been proposed in the past (each with its own merits and weaknesses),

a major concern has been that, due to the difficulty in applying these (often complex)

techniques, and the high level of expertise demanded, many real world protocol design
initiatives tend to shy away from them. Therefore, one criterion in the work presented
herein has been to follow paradigms which are likely to be more familiar to network
and protocol designers. The other important aim of the thesis is to investigate and
develop techniques for defending authentication protocols against various forms of
attack.

The remainder of the thesis is organized as follows.

1.5. Outline

This chapter introduced the scope of network security, various network secu-
rity services and mechanisms, the role of authentication in security frameworks, and
potential challenges.

Chapter 2 investigates the process of authentication as applied to communica-
tion networks, including the goals and basic principles of operation. It also discusses
several types of authentication protocols and examines potential attacks against them.

Chapter 3 introduces the application of formal methods for verifying the func-
tionality of authentication protocols. Two important approaches, namely, logic based
and state based, are discussed and their relative strengths and weaknesses identified.
The chapter also serves as a brief survey of the application of formal methods in

security protocols.

Chapter 4 discusses state machine approaches to modeling and analyzing proto-
cols, algorithmic state machines (ASM) that offer an expressive medium for modeling
authentication protocols, and a powerful verification technique (property verification)
based on state machine principles.

Chapter 5 develops a framework (based on the concepts developed in Chapter
4) to verify authentication protocols, and illustrates its application through detailed
modeling and analysis of a classic protocol - the Needham-Schroeder Public Key Au-
thentication Protocol. The technique developed is demonstrated to be generic enough
to be applicable to a wide variety of authentication protocols.

Chapter 6 investigates discrete event simulation as a potentially useful tool
for validating authentication protocols, and illustrates its application on a classic
protocol.

Chapter 7 introduces the concept of meta authentication, and develops a frame-
work that provides a fail safe communication environment for executing general au-
thentication protocols. The effectiveness of meta authentication is demonstrated by
showing how it defends against various attacks.

Chapter 8 presents a road-map for future work and then concludes the thesis.

10

Chapter 2

AUTHENTICATION PROTOCOLS

Authentication forms the basis of most security services set up to provide au-
thenticity, confidentiality, and integrity to information exchange among principals in
a communications network. Authentication mechanisms function as ‘gate keepers’ to
information systems.

Weak authentication can seriously endanger the security of entire networks.
Therefore, it is invaluable to identify potential problems in authentication through
investigations into relevant requirements, fundamental assumptions, and operational
principles. To address this issue, this chapter provides a brief discussion on the
principles, goals, implementation mechanisms, and potential vulnerabilities of general

authentication systems and protocols.

2.1. Principles

In one form of another, most information systems and networks support au-
thentication of peer entities and data origin [42] [48]. Authentication is necessary to
prevent misuse of resources and services, to ensure data integrity, and to establish

proof of origin of data.

11

Peer entity authentication enables an entity in a communication network to
verify that a peer in a communication session is indeed the entity that it claims to be.
Through this, it is assured that the peer is not trying to masquerade as another and
that it is not trying to bypass authentication through a replay of earlier authenticated
sessions. Data origin authenticationon the other hand establishes the authenticity of
the source of a message, assuring that the message really came from the claimed
source.

Generally, authentication is a pre-requisite for further security mechanisms in-
cluding:

o Authorization, the process of granting permissions to principals, including access
rights for services and resources
e Accountability, to trace actions uniquely to involved principals.

e Confidentiality services, to prevent unauthorized disclosure of information or

identities.

o Integrity services, to protect against unauthorized modification of messages dur-
ing transit.

e Non-repudiation services, to provide proof-of-origin or proof-of-delivery of mes-
sages.
Three broad categories of authentication techniques are widely used in infor-

mation systems, the specific choice depending on the application domain. They are:

12

e Proof by knowledge, where authentication is based on something the claiming
entity knows (eg: pass words, identification numbers). By far, this is the sim-
plest and most widely used technique in communication networks of present.

e Proof by possession, where authentication is based on something the claiming
entity possesses (eg: keys, identity cards, other physical tokens). This tech-
nique is more expensive, but is used in environments where enhanced security
is required.

e Proof by property, where authentication is based on some property of the claimer
(eg: biometric properties such as voice patterns, fingerprints, and facial images).
This is complex and very expensive, but may be required in situations demand-
ing utmost security.

In this thesis, the scope of authentication is mostly limited to proof by knowl-
edge, since it is the form most relevant in communication networks. The ‘proof” in this
case is established through authentication protocols that comprise special handshake
messages between communicating principals. As these protocols are as vulnerable to
eavesdropping as any other, cryptographic techniques are almost invariably used to
protect this knowledge verification phase of communication sessions. Some crypto-
graphic principles and terminology essential for further discussions on authentication

mechanisms are discussed briefly in the following section.

13

2.2. Cryptographic Techniques

Cryptology, comprising cryptography and cryptanalysis, is the science of secure
communications [48]. Cryptology is based on the principle that a sensitive plain-text
message may be conveyed securely by transforming it using cryptographic algorithms
into a cipher-tert form, thereby hiding the carried information from unintended re-
cipients. Only recipients possessing certain knowledge of the algorithm and transfor-
mation parameters will be able to recover the original message.

Cryptography involves the design of strong and efficient cryptographic algo-
rithms resistant to eavesdropping; cryptanalysis, on the other hand, is the study into
‘breaking’ crypto-systems by analyzing and exploiting potential weaknesses in the
algorithms.

Generally, the algorithms are publicly known and the cryptographic transforma-
tions between plain-text and cipher-text are determined by transformation parameters
known as keys input into the algorithm. Thus, one fundamental assumption is that it
is computationally infeasible for an adversary to deduce or guess the correct transfor-
mation parameters needed for recovering the plain-text message. Transformation of
plain-text into cipher-text is performed through encryption, and the reverse transfor-
mation, through decryption. The transformation parameters (keys) are drawn from
a potentially infinite set, and are usually denoted by K for encryption and K ! for

decryption. This basic principle is illustrated in Figure 2.1.

14

-1
Encryption Key, K Decryption Key, K

Plaintext, P Ciphertext, C Plaintext, P

. Sender > Receiver [——*

Encryption Decryption

Figure 2.1. A basic cryptographic system

Authentication generally makes a strong cryptography assumption, meaning, it
is impossible to decrypt an cipher-text message without the right key, and it is com-
putationally infeasible for an adversary to deduce the right key. Following sections
briefly discuss cryptographic techniques relevant in authentication systems and pro-

tocols.

2.2.1. Shared Key Cryptography

In shared key (secret key) cryptography, shared (secret) keys are established be-
tween communicating entities and used for message encryption and decryption. The
security of the approach depends on the total secrecy of the keys. Its relevance to au-
thentication is that, the use of the secret key is a demonstration of shared knowledge
and hence identity. If the same key is used for both encryption and decryption, it is
referred to as symmetric key cryptography. Though shared key systems can theoreti-
cally be operated solely by two principals through mutual consent and trust, in many

cases the service of a trusted third party (authentication server, AS) is used to gener-

15

ate and distribute the keys. Though computationally efficient, the requirement that
distinct shared keys be associated with every pair of communicating principals, makes
this scheme hard to administer in large systems. Many widely used encryption stan-
dards such as Data Encryption Standard (DES), Triple DES, and the International

Data Encryption Algorithm (IDEA) are shared key systems.

2.2.2. Public Key Cryptography

Systems based on public key cryptography use different but mathematically re-
lated keys for encryption and decryption. Thus, they are asymmetric key systems.
Each principal possesses a unique pair of keys, a public key which is made publicly
known, and a private key known only to the principal.

Messages are sent securely by encrypting with the public key of the recipient.
Only the intended recipient possessing the corresponding private key can decrypt and
recover the original message. Conversely, in many of these schemes, data encrypted
with a private key can be decrypted only with the corresponding public key. A message
recovered in this manner could come only from the concerned principal who did the
original encryption using the private key. This forms the basis of digital signature
mechanisms. Its relevance to authentication is that, a principal may use the knowledge
of its private key to prove its identity.

A trusted third party, known as Certification Authority (CA), is generally used

as a repository and distribution center of the public keys of all principals. Anyone

16

needing the public key of another may obtain it from the CA. The CA has a well
known public key that enables it to send trusted signed replies to the requesting
principals.

RSA (due to Rivest, Shamir, and Adleman) [44] is one of the most widely used
public key cryptographic algorithms.

Public key systems are easier to administer as there is no requirement for every
possible pair of principals to have distinct shared keys. However, the computational
overhead of these systems is an order of magnitude higher than that of shared key
systems.

Because of their comparative simplicity and efficiency, shared key systems are
in wider use compared to public key systems in situations requiring only data con-
fidentiality. However, their unique properties (eg: through digital signatures) make
public key systems much more attractive in cases where authenticity is important.

In practice, most security systems use some combination of both public and
shared key systems. In such systems, public key techniques are used initially to
set up session keys which are subsequently used with shared key techniques to secure
further communications. One good example is the emerging IP Sec (Internet Protocol

Security) standard [3] [21].

17

2.2.3. One-Way Hash Algorithms

Hash functions are used to prove integrity by generating evidence that no mod-
ification has been done on a message during transit [12] [48]. Application of a hash
function H on a message M produces a small hash value H (M) of the message, called
a message digest. Essentially a hash function maps a very large input space into a
much smaller output space. Two important properties of a good hash function are
its one-way nature and collision resistance. Thus, given M and H (M), it is compu-
tationally infeasible to find a message M’ such that H(M') = H(M). In practice,
hash functions are modified to accept a secret key as one of its inputs and generate
keyed hashes. A message digest so produced is a convincing proof of integrity. The
message digest is sent along with the original message, the recipient recalculates the
hash value from the original message and compares it with the received value to verify
that they match.

Cryptographic literature uses a variety of notations. The next section summa-

rizes of the notations used in subsequent discussions and analyses in the thesis.

2.2.4. Notations

Trusted Principals (parties) in a protocol are denoted as A, B. A server (pos-
sibly a trusted third party), is indicated as S. A malicious user (or intruder) is
represented as C', Z or I. Z(A) denotes an attempt by intruder Z to impersonate

trusted entity A.

18

Encryption/decryption key pairs are denoted by K, K~'. In a shared key system,
the key shared between principals A and B is denoted by K, (or simply as K when
there is no confusion). In a public key system, the public and private keys of principal
A are denoted by K, and K ', respectively; an alternative notation is Ka_pub and
Ka_prv.

Encryption of message M using key K is denoted in various ways as F(K : M),
E(M): K, (M)g, {M}k , or [M]g. Similarly, decryption of an encrypted message
M’ using K ' is represented as D(K': M'), D(M'): K ', (M")g-1, {M'}g-1,
or [M']k-1.

Protocols use nonces or time-stamps to ensure freshness of messages. A nonce
is a random number freshly generated by a principal and intended for use only once
and only for the current run of the protocol. N, and T, indicate, respectively, a nonce
and a time-stamp generated by principal A.

Sequences of messages in a protocols are denoted as m1, m2, m3, etc (or simply
as 1,2, 3, etc., when there is no confusion).

Two ways of representing a message from A to B in a public key system are

indicated below. The message includes the sender’s name and an encrypted portion

containing a nonce and some data.

ml A— B : A {N,data}g,
OR

(1) A— B : A E(K,: N, data)

19

Correspondingly, the recipient B, who possesses K, ! decrypts the encrypted

portion of the message and retrieves Na and data as indicated below:

{{Na,data}Kb }K* = Na,data
b
OR

D(K,;I:E(Kb:Na,data)) = Na,data

2.3. Authentication Protocols

An authentication protocol is a sequence of messages designed to establish the
authenticity of the principals involved in a communication session. The most common
way to achieve authentication is by proof of knowledge based on secrets such as en-
cryption keys. An authentication protocol guarantees that if the principals are really
who they claim to be, then at the conclusion of the protocol, they will be convinced
of the use of other principals’ identities (due to the use of secrets) [10]. Also in many
protocols, as a side effect, one or more shared secrets would have been established at
the end of the authentication [10].

Despite some controversy existing in the literature over the precise meaning of
authentication [18], it is generally agreed that one of the goals of an authentication

protocol is to establish that [27]:

e Each principal believes in a secret shared with its peer (first-level belief).
e Each principal also believes in its peer’s belief in the shared secret (secondary-

level belief).

20

2.3.1. Types of Authentication Protocols

Authentication protocols have been classified in various ways [12]. One of the

most widely used classifications is based on the cryptographic systems used:

o Shared key authentication systems without trusted third party , where the prin-
cipals in the protocol initially share a secret key which is used for securing
communication or for setting up further secrets. This necessitates each possible
pair of communicating entities to share a secret key.

o Shared key authentication systems with trusted third party , wherein the need to
share a secret with every possible recipient is obviated by employing a trusted
third party called an authentication server (AS). The server shares secret keys
with each principal in the system, and functions as an intermediary in authen-
tication and key setup for any pair of principals in the system. The server often
takes the responsibility for generating fresh session keys as part of authentica-
tion procedure and distributes them to the requesting principals, who then use
it to secure subsequent communications.

e Public key authentication systems, based on the properties of public key cryp-
tography. Public key encryption enables anyone knowing the public key of a
principal to send secure messages to the principal. Only the intended principal
possessing the corresponding private key will be able to recover the original
messages. The public keys used must be current (as old keys could be possibly

compromised), and genuine (fake keys could be distributed by some malicious

21

entity). Public key systems achieve this through a Certification Authority (CA)
that is trusted to distribute public keys of all principals in the system, and also
maintains a list of invalidated public keys. CA will have a well known public

key to enable anyone to securely communicate with it.
Another popular classification is based on the ‘direction’ of authentication:

e One-way (unilateral) authentication, where only one party is assured of the au-
thenticity of the other. No guarantee is available to the second entity regarding
the identity of the first.

e Two-way (mutual) authentication, where the aim is to assure both parties
of each other’s identity through an interleaving of two one-way protocols or
through more complex handshakes.

Some typical authentication protocols are described in the following section
to illustrate their general operation. This discussion will be referred to later while

analyzing their potential vulnerabilities.

2.3.2. Example Authentication Protocols

A wide variety of authentication protocols have been proposed, used, and stud-
ied over the past [12] [48]. The discussion in this section covers a few representative
protocols since an understanding of their operation is essential in studying their po-

tential vulnerabilities.

22

2.3.2.1. A Simple Challenge-Response Protocol

A simple ‘friend or foe’ protocol employing challenges and responses [12] to

verify identity is shown in Figure 2.2.

(ml) A — B : N,
(m2) B — A : {N.Jx,

Figure 2.2. Simple challenge-response protocol

Two principals A and B sharing the key K,, perform authentication without
any trusted third party mediation. A (the initiator) sends to B, an initial challenge
message containing a nonce N,. B returns as the response to A, N, encrypted with
K, (presumably known only to A and B). A decrypts the response with K, and
verifies that the nonce is the same as it sent. On the assumption that K, is known
only to A and B, A concludes that it is indeed B at the other end.

This simple protocol provides only one-way authentication, it does not give B
any assurance about A’s identity. However, the protocol may be easily extended to

provide mutual authentication.

2.3.2.2. Needham-Schroeder Shared Key Protocol

The Needham-Schroeder shared key protocol [39] is a widely studied shared key
protocol with a trusted third party. It is the basis of many real-life protocols including

the Kerberos Authentication System [41]. The protocol as shown in Figure 2.3 involves

23

two communicating principals, A and B, and a trusted third party, S (authentication

server, AS).
(ml) A — S : ABN,
(m2) S — A { Nu, B, Kop, {Kap, A} c,, }Kas
(m3) A — B : {KuAlx,
(m4) B — A {Nb} k.,
(mb) A — B : {N,—1}g,

Figure 2.3. Needham-Schroeder shared key protocol

The trusted third party S shares the keys K, and K, with principals A and B,
respectively. A requests S for an authenticated session with B by sending nonce N,,.
S then generates and returns a session key K, to A along with N,, and an encrypted
message (encrypted with Kj,) to be forwarded to B. The entire message is encrypted
with K, so that only A can read it. A extracts the new session key K, from the
message and then forwards the portion encrypted with K to B. On decrypting this
part, B is also in possession of the session key K,;,, which is assured to be shared
only with A (whose identity is also included in the received message). B then verifies
the presence of A by sending a nonce Nj, upon which A responds with (N, — 1) as
confirmation.

As shown later, this protocol is vulnerable to an attack that exploits a weakness

in its freshness assumption.

24

2.3.2.3. Needham-Schroeder Public Key Protocol

The Needham-Schroeder public key protocol [39] is one of the most widely stud-
ied and analyzed authentication protocols. It is based on public key cryptography ,
and utilizes a trusted certification authority (CA) that supplies the valid public key
of any principal to any requesting principal who wishes to use the key to perform

authentication. Figure 2.4 shows the protocol messages.

(m1) A — S A B
(m2) S — A ¢ {Kp B}y
m3) A —s B : [N, A}
(md) B — S : B,A
(m5) S — B i {K, A}
(m6) B — A : {N.,Ny)x,
(m7) A — B : {N}x,

Figure 2.4. Needham-Schroeder public key protocol

In the protocol as shown, A wishes to have an authenticated session with B and
contacts the certification authority S, which supplies A with the public key K, of B
(signed with its own private key K;'). Assuming that the public key K of S is well
known, A verifies that the public key of B indeed came from S. It is instructive to
note that this encryption/decryption with the keys of S is not intended for secrecy,

but is rather used as a signature mechanism to establish data origin authentication.

25

A then sends to B a nonce N, encrypted with B’s public key, meant to be
read only by B who has the corresponding private key. B decrypts the message and
recovers N,. In order to communicate back to A, B then contacts S and obtains A’s
public key in the same way that A obtained B’s.

To ensure mutual authentication, B also generates a nonce N, and sends it along
with N, to A. This message encrypted under A’s public key is decrypted by A, who
verifies that IV, is the same as it had sent to B. If the verification succeeds, A assumes
that it is indeed B at the other end of the channel. A then completes the protocol
by sending back N, to B, who also does a similar verification and concludes that it
is indeed communicating with A. Thus mutual authentication is achieved. It may
be noted that, as part of the process, two secrets (N, and N;) have been exchanged
between A and B. These secrets may optionally be used by A and B to secure further
communication between them.

For the purposes of analysis, it is convenient to assume that A and B have prior
knowledge of each other’s public key, thereby allowing the server S to be removed
from the picture. Without loss of accuracy, this results in a simplified version the

protocol as shown in Figure 2.5.

(m1) A — B : {N,A}lx
(m2) B — A : {Nu. N}k,
(mS) A — B {Nb}Kb

Figure 2.5. Needham-Schroeder public key protocol - simplified version

26

2.3.3. Threats to Authentication

In benign environments, most authentication protocols function properly. How-
ever, they may fail in the presence of adversaries (intruders) capable of observing and
manipulating protocols messages. The situation is complicated because, quite often,
a malicious entity may itself be a valid principal in the system. Under such circum-
stances, it is assumed that an intruder may have the ability to observe, insert, modify,
or delete messages exchanged through the network. However, according to the strong
cryptography assumption, the intruder is considered incapable of extracting informa-
tion from an encrypted message, unless the corresponding key is in its possession
through some means (eg: key compromise). Essentially, keys chosen through guess
work are considered virtually useless because of this assumption.

In a malicious environment, one of the most important requirements is to en-
sure that a possibly intentional replay of old valid messages will not result in false
authentication leading to the use of old and potentially compromised secrets. Hence,
the timeliness (freshness) of information on which the protocol acts is very important.
This raises the questions of belief, trust, and delegation [10]. When this condition is
not met, an intruder may be able to subvert authentication even when there is no
key compromise. A large number of known vulnerabilities in authentication protocols
arise from weaknesses of this type.

The following section describes how intruders may be able to mount attacks

against authentication mechanisms by exploiting potential weaknesses. This is very

27

important since it points to various scenarios to be considered in modeling and ana-

lyzing authentication protocols.

2.4. Attacks on Authentication Protocols

The process of authentication is often subtle and non-intuitive, involving such
abstract concepts as belief, trust, and delegation. Because of this, it is often very hard
to identify logical flaws and other weaknesses in authentication systems. As a result,
an adversary may be able to attack and defeat authentication by exploiting vulner-
abilities in protocol structure, message sequences, and timing relations. Considering
also the possibility that an intruder may be a legitimate principal having unlimited
access to the communication channel (thereby allowing observation, interception, re-
movwal, modification, and insertion of messages), it is difficult to clearly foresee the
occurrence of an attack or its implications.

A successful attack on an authentication protocol could lead to several undesir-
able results. The intruder might manage to pass off as another principal by falsely
convincing others of its assumed identity. Intruder could learn a current and valid
shared secret (thought to be known only to the legitimate principals participating in
the protocol). It is also possible that legitimate principals might be tricked into using
old ‘secrets’ that are in the possession of the intruder (eg: an old secret that had been

compromised).

28

2.4.1. Types of Attacks on Authentication Protocols

A large number of attacks that operate by exploiting various weaknesses in

authentication protocols is known [7]. They include:

1. Key guessing attack
In this brute force approach, an intruder tries to guess the right key from the
entire key space. The attack may succeed when the choice of keys is not carefully
made, or where the key space is small enough for an exhaustive search.

2. Known plain text attack
Simple protocols in which parts of encrypted messages are publicly known (or
can be easily deduced) are vulnerable to this attack. Using some known plain
text (eg: names, addresses) and the corresponding ciphertext, an adversary may
be able to break the cryptographic system and recover the key or other secrets.

3. Chosen cipher-text attack
In this form of attack, an intruder manages to get legitimate principals to en-
crypt some carefully chosen data. The resulting cipher-text is then used to help
break the cryptographic code.

4. Replay attack
An intruder accumulates tables of messages between legitimate principals and
replays them when the right opportunity arises. Essentially, an old message
(from a past valid session) is passed off as current. Unsuspecting principals may

accept such old message as fresh, potentially allowing the intruder to establish

29

falsely authenticated sessions. Principals may even be tricked into using old
compromised keys, enabling the intruder to eavesdrop on all further ‘encrypted’
communication.

. Oracle session attack

An intruder uses a principal as an ‘oracle’ in its malicious actions against an-
other. The intruder engages in authentication sessions with two principals and
tricks one of them into performing the encryption and decryption required in
the session with the second. Such attacks often succeed due to vulnerabilities
in protocol message structure or message sequences.

. Parallel session attack

Intruder exploits a legitimate principal to act against itself. Intruder engages in
two simultaneous authentication sessions with the same principal and manipu-
lates one session to generate messages needed in the other. One of the sessions

may eventually pass authentication criteria.

Of these, key guessing attacks, known plain-text attacks, and chosen plain-

text attacks are actually attacks on the underlying cryptographic mechanism and not

directly on the authentication protocol logic. Hence, based on the strong cryptography

assumption, such attacks are generally not considered while analyzing authentication

protocols, but are rather left to studies on cryptographic algorithms.

Attacks that exploit weaknesses in the freshness assumption (such as replay

of old messages) are often collectively called interleaving attacks and constitute an

important class of attacks on authentication protocols [7].

30

The following section describes some representative examples of attacks to ex-
pose the non-intuitive logic behind them, and thus serves to demonstrate the demand
for developing effective techniques to verify authentication protocols and identify their

weaknesses.

2.4.2. Example Attacks on Authentication Protocols

The following attacks on well known protocols illustrate how subtleties in the
logics of authentication makes detection of flaws through simple methods difficult and

quite improbable.

2.4.2.1. A Replay Attack

As discussed in Section 2.4.1, a replay (or freshness) attack occurs when an
intruder replays messages from a previous valid session with the intension of tricking
a principal in the original run of the protocol into entering a bogus authenticated
session.

Section 2.3.2.2 discussed the Needham-Schroeder shared key protocol [39] that
uses a trusted third party (authentication server) to establish a fresh session key
between two parties. This protocol was found by Denning and Sacco [15] to be
vulnerable to a replay attack. The attack exploits the weakness in the original protocol
as shown in Figure 2.3, that the 3rd message (m3) delivering the new session key from

the server does not carry any information regarding its freshness (timeliness). This

31

enables an intruder to pass off an old instance of m3 (from a previous run of the
protocol) as fresh. The danger is that the session key distributed via the old protocol

could have been broken and might be known to the intruder [12].

(m3) Z(4) — B p A{Kw Ak,
(md) B — Z(A) : {N}w,
(m5) Z(A) — B i {Ny—1}u,

Figure 2.6. Replay attack on Needham-Schroeder shared key protocol

Figure 2.6 illustrates the attack. Intruder Z, pretending as principal A, tries
to establish a falsely authenticated session with B. Z replays an old message m3
from an earlier run of the protocol between A and B. It is conceivable that the old
session key, K, might have been recovered by Z through cryptanalysis. The first
two messages (ml and m2) are not even generated because Z is not interested in
involving the trusted server S. Since principal B has no way of knowing this, at the
conclusion of the 5th message (mb5), Z has succeeded in passing off as A. This is a

failure of the authentication mechanism.

Denning and Sacco suggest time-stamps to ensure freshness of messages [15].

2.4.2.2. A Parallel Session Attack

By engaging in two or more concurrent sessions of a protocol, an intruder may
be able to manipulate one session to generate messages required in another, thereby

potentially leading to a false authentication [12].

32

The Needham-Schroeder public key protocol discussed in Section 2.3.2.3 was
found by Lowe to be vulnerable to an attack of this form [12] [29]. The fact that
the flaw was discovered only after 17 years since the publication of the original pro-
tocol, serves as enough justification for research into comprehensive and systematic
verification techniques.

The attack, as illustrated in Figure 2.7, is based on the simplified version of the
protocol shown in Figure 2.5. The malicious principal Z waits for an unsuspecting
principal A to initiate an authentication session to it. Then, in the guise of A, Z
starts a concurrent authentication session to another unsuspecting principal B. As
the protocol flow shows, Z succeeds in passing off as A. Interestingly, the initial run

of the protocol started by A to Z proceeds normally.

(m1) A — 7 i {Na, A}k,
(ml) Z(A) — B t N, A}g,
(m2) B — Z(A) ¢ {Ne, Mo},
(m2) Z — A : ANu, N}k,
(m3) A — Z b { N}k,
(m3) Z(A) — B : AN}k,

Figure 2.7. Parallel session attack on Needham-Schroeder public key protocol

As the figure shows, two runs of the protocol are involved - one between A and
Z (messages m1,m2,m3), and another between Z (posing as A) and B (messages

ml1’,m2',m3').

33

In ml’, Z simply forwards to B, the message it received from A, after re-
encrypting with B’s public key. B, seeing that the initiator field of the message is
A, assumes it is talking to A and sends its response in m2’ (including the nonce NN,)
encrypted under A’s public key. Z, unable to decrypt this message, merely forwards
it to A in m2. A, not knowing that the message is actually generated by B, accepts
it and sends the final message m3 to Z with whom it is engaged in authentication.
Z recovers Ny from this message and then sends it to B in m3'. B verifies N, and is
convinced that it is talking to ‘A’, where in fact it is Z at the other end. Z has thus
successfully subverted authentication even without any key compromise.

It is clear from these examples that, simple verification based merely on inspec-
tion may not reveal subtle problems in authentication protocols. Evidently, more
rigorous techniques are needed for verifying such protocols. The problem domain has
several characteristics that make it suitable for the application of formal verification
techniques. As one of the goals of this thesis is to develop techniques to validate
authentication protocols, formal approaches that have been proposed and used in the
past for the verification of these protocols are discussed in the next chapter.

In passing, it is also worth noting that many attacks may be prevented by
prudent engineering practices as pointed out by Abadi and Needham [1], and through

more cautious approaches as noted by Gong and Syverson [20)].

34

Chapter 3

FORMAL VERIFICATION TECHNIQUES

As discussed in Chapter 2, the vulnerabilities encountered in authentication
are often too complex and counter-intuitive for informal analysis. The severity of
the problem is evident considering that weaknesses in several protocols were not
uncovered until several years after the protocols were originally published. In the
case of Needham-Schroeder public key protocol, it took 17 years to discover a serious
flaw, despite the fact that the protocol had been very widely studied and analyzed.
Evidently, more comprehensive and rigorous techniques are required for the analysis
and verification of this class of protocols.

Formal verification is a powerful approach applicable to a wide variety of sys-
tems for the verification of correctness and functionality. Despite their power and
rigor, formal techniques are not often considered very attractive (or even feasible) in
many cases, because such techniques generally tend to be cumbersome, computation-
ally very expensive, and demand considerable expertise.

There are certain characteristics of a problem domain to be examined in deciding
whether formal verification would be effective. The following [32] are some helpful

guidelines in determining if a problem domain is amenable to formal verification:

35

e the problem is not trivial

e the problem is not too large

e the problem search space is huge

e the problem is fairly well understood

e the problem is more or less clearly expressible

e flaws are too non-intuitive for simplistic approaches

e errors from flaws are severe enough to justify expensive analysis

By their very nature, cryptographic protocols, especially authentication proto-
cols, are good candidates for formal verification. The flaws encountered are complex
and counter intuitive, but are generally well contained enough for modeling and anal-
ysis to be tractable [32]. Through rigorous modeling and analysis, a protocol may
be verified to provide reliable authentication under realistic assumptions (one such
assumption being strong cryptography discussed in Section 2.2).

Over years, researchers have applied various techniques for formally analyzing
and verifying cryptographic protocols. As indicated in Meadows [32] and Millen
[35], most current approaches are either derived from or influenced by two classic
formalisms:

e Logic based approaches, pioneered by Burrows, Abadi and Needham [11]. These
are based on specialized logics, usually modal logics of beliefs in systems.
e State based approaches, pioneered by Dolev and Yao [17]. These use state tran-

sition models to express algebraic properties of systems.

36

The above two are briefly discussed in the following sections in order to under-
stand their relative merits and weaknesses, and hence to help formulate an effective

approach to verification and validation.

3.1. Logic Based Verification

Methods based on logic and belief form an important class of verification tech-
niques that have been applied widely to authentication protocols. These use logics
similar to those developed for the evolution of knowledge and belief in distributed
systems [32].

Through repeated application of inference rules on carefully chosen assump-
tions about the system, and deduction of the ‘meanings’ of protocol messages, logics
can help verify security properties. As applied to authentication, one of the main
properties of interest relates to beliefs in the ‘goodness’ of keys.

The major advantages of this approach are intuitiveness and the comparative
ease with which it can be understood and applied. However, it has the serious dis-
advantage that subtle properties are likely to be missed in modeling, because of the
high level of abstractions involved.

Application of logics to authentication protocols was pioneered by by Burrows,
Abadi, and Needham who proposed a ‘Logic of Authentication’ (known after them
as the BAN logic) [10] that became the basis for considerable further research in the

area.

37

3.1.1. BAN Logic

BAN logic is perhaps the best known and most influential among logic verifi-
cation schemes for authentication protocols. The logic bases its inferences on basic
assumptions regarding system properties and statements about messages involved in

protocol runs. Application of BAN Logic involves:

e Assumptions about the initial beliefs or knowledge possessed by principals in-
volved.

e Assumptions regarding the knowledge embedded in the messages of the protocol.

e [nference rules for deriving further beliefs or knowledge from existing beliefs,

knowledge, and messages.

Analysis of a protocol starts with certain initial assumptions about the system
(eg: beliefs about the secrecy of keys, trust in an authentication server’s ability to
provide fresh session keys, etc.). Subsequently, in a procedure known as idealization,
each message in the protocol is rewritten in a form that makes explicit the beliefs or
conveyed knowledge (eg: an acknowledgment may be transformed into a form that
makes explicit the fact that the sender has seen the previous message). Based on
the assumptions and the transformed messages, further beliefs evolving in the system
can be derived by applying relevant inference rules (eg: ‘knowledge about freshness
of part of a message implies freshness of the entire message’).

Following are some of the constructs used in BAN Logic to express beliefs and

actions [11]:

38

P believes X : principal P believes in the truth of the statement or assertion

X and may act on it.

P sees X : principal P has seen a message containing X (possibly after decryp-

tion).

P said X : principal P once originated a message containing X.

fresh(X) : the formula or expression X is fresh (eg: a nonce).
o P&y @ : K may be used as a shared key between P and Q).

e 5P Kisa public key for P.

{X}k : X encrypted under key K.
Some of the inference rules (postulates) used in the logic are :

o Message meaning rules, used in interpreting messages to derive beliefs about

their origin. For instance, in the case of shared keys, the postulate is:

P believes P <~ Q, P sees {X}k
P believes Q said X

meaning, if P believes K is a key it shares with () and subsequently sees a mes-
sage X encrypted under K, then P concludes that X must have been originated
by () at some point in the past.

e Nonce verification rule, stating that, if a message is fresh then its sender still

believes in its truth. This is expressed as the postulate:

P believes fresh(X), P believes Q said X
P believes Q believes X

39

meaning, if P believes X is a fresh (recent) message and that it was originated

from (), then P also believes that () still believes in the truth of X.

Protocol idealization transforms actual messages into a form suitable for the

application of the logic. This may be illustrated by the transformation:

A— B : {AaKab}Kbs

into: A— B : {A Lary B}k,

indicating that the message conveys the fact that K, may be used as a shared
key between A and B.

Through repeated application of inference rules on beliefs and message mean-
ings, if some predefined goal beliefs (adequate to prove authenticity) can be derived,
then the protocol is considered verified. Assuming that the ability to demonstrate
the knowledge of a secret key K is sufficient for authentication, a minimal set of goal

beliefs to be established for mutual authentication are:

A believes A<Es B

and, B believes A <25 B

Some protocols achieve only these beliefs, resulting in a weaker form of authen-

tication. Others provide stronger authentication by establishing additional beliefs:

A believes B believes A<“s B

and, B believes A believes A<+2s B

40

Failure to attain adequate beliefs points to potential security flaws that may be
isolated by closer examination of the inference steps.

The BAN Logic has been used to verify correctness and to find previously
unknown flaws in many authentication protocols. However, because of some inherent
limitations imposed by its underlying assumptions, and due to the lack of sufficiently
complex reasoning mechanisms, the BAN logic has not been very effective in handling
certain classes of properties [32]. Yet, its relative simplicity has made it far more
popular than many other comparatively more powerful logic systems.

Several modifications and variations to the approach followed by BAN logic have
been proposed. Among these are, an extension (GNY Logic) by Gong, Needham and
Yahalom [19], and the work by Syverson and Oorschot [49] to unify a number of logic
based approaches (SVO).

A slightly different approach to the problem is suggested by Kailar and Gligor

[27], using evolution of beliefs.

3.1.2. Evolution of Beliefs

Despite its apparent similarity to BAN Logic, the technique based on evolution
of beliefs described in [27] is more extensive and is able to handle additional cases
including inter-domain authentication and establishment of beliefs in environments

that lack sufficient jurisdiction.

41

It makes use of the concept of knowledge sets, sets that refer to principals who
share the contents of a message or knowledge in a session. In a manner resembling
a state machine, every pair of belief and action leads to another belief, essentially
representing an evolution of beliefs. Like BAN logic, this method also employs in-
ference rules that drive belief evolution. Using inference rules and evolving beliefs,
the membership of knowledge sets is updated. Beliefs of principals about the shared
secrets (first level beliefs) and their beliefs about the beliefs of other principals (second
level beliefs) are dealt with explicitly and separately for added trust.

Through repeated application of the rules, if it can be shown that the involved
principals indeed belong to knowledge sets adequate for authentication, the protocol
is considered correct. On the other hand, if an intruder can be shown to eventually

acquire membership in the same knowledge sets, then it points to a security flaw.

3.2. State Based Verification

This important category encompasses a large class of approaches, ranging from
language theoretic methods with implicit state assumptions, to techniques that use
explicit state representations (Petri nets, for instance). They study state changes in
the properties of a system in terms of knowledge and data values. The system under
investigation is modeled and viewed as an algebraic system operated by an intruder

trying to find some valid words in the system (eg: keys).

42

A strong advantage of state based approaches is the ability to capture properties
more realistically, a direct result of the fairly low degrees of abstraction used. There
is however the disadvantage that, it is much harder to model and use as compared
to logic based approaches and demands considerable expertise. Another problem is
potential state explosion.

The foundation of most approaches in this class lies in the pioneering work by

Dolev and Yao [17] and a model they proposed.

3.2.1. Dolev-Yao Model

Dolev and Yao proposed a mathematical model using language formalisms to
describe and analyze cryptographic systems. The model assumes a network where
intruders are capable of performing all legal operations allowed for normal users, and
in addition may be able to read all traffic, alter and destroy messages, and create or
insert new messages. The only limitation imposed is that any secret information (eg:
keys of other users) is assumed to be initially unknown to intruders.

Protocol is modeled as a language system with a finite set of distinct symbols
that may be used to compose arbitrary words. Messages are formed by concatenation
of words. Using reduction rules (term rewriting rules) definable in the language,
sequences of words may be manipulated so as to transform them into other valid
sequences accepted in the language. These rules determining the behavior of the

system could be built-in or specified by the protocol designer. An example of a built-

43

in rule would be: ‘an encryption followed by the corresponding decryption cancel
out’.

An intruder’s goal is to find out words of interest in the system, such as session
keys and encryption keys. Through manipulation of messages, the intruder tries
to extract such words. Thus, the intruder may be viewed as manipulating a term-
rewriting system [32], subjecting sequences to rewriting rules performed by legitimate
principals. Proving security of the protocol is then essentially a word problem in a
term-rewriting system, ie., determining whether a desired word could be produced by
starting from known word sequences and applying reduction rules of the language.

Dolev and Yao [17] used these observations to develop restricted classes of secure
public key protocols, and also algorithms to analyze them in terms of their properties
as term-rewriting systems. In these protocols, messages of the following form are

exchanged between principals [36]:

A—B : z, (-~-x2(x1(data))-~-)

Here, z;’s are operators that encrypt, decrypt, append, or remove a ‘name-
stamp field’. The encrypted part of each message forms the data part for the next
one, with the limitation that secure data may be introduced only in the first message.
Protocols of this form are referred to as name-stamp protocols. A simple name-stamp
protocol with only encryption and decryption operators is sometimes called a cascade

protocol.

44

If an intruder is able to obtain the data part of the first message, the protocol
is insecure. Dolev and Yao proved two conditions for a cascade protocol to be secure.
The first condition is that the first message should contain an encryption. The second
condition is that, any decryption if present in a message, should be matched with the
corresponding encryption.

In addition, they provided a polynomial time algorithm for testing the security
of name-stamp protocols.

Several systems have been developed that combine the theoretical basis of the
Dolev-Yao model with the state information handling capabilities and descriptive
power of more conventional protocol verification frameworks (eg: formal specifica-
tion languages). The following are some of the most notable state based modeling

approaches used in authentication protocol verification:

e Reverse search, wherein a compromised (insecure) state is assumed and a back-
ward search is performed to determine if such a state could be reached from a
valid initial state. Several research systems follow this paradigm, many of them
using Prolog based inference and proof frameworks. The Interrogator [36] and
the NRL Protocol Analyzer [31] follow this model.

o CSP based formalism, wherein the system is modeled using Communicating
Sequential Processes (CSP) and then analyzed to prove security properties ex-
pressed as invariants [47]. A major flaw in the classic Needham-Schroeder public

key protocol was uncovered using CSP based techniques [29].

45

e State enumeration, which is a brute force technique of searching all reachable
states starting from an initial state. Though the search space may be theoreti-
cally infinite, the search itself can usually be confined to smaller spaces in most

practical protocols [37].

The following sections briefly discuss a few verification systems that are repre-

sentative of state based approaches.

3.2.2. NRL Protocol Analyzer

This tool developed at the Naval Research Laboratory by Meadows et al. [31]
[32] is loosely based on the Dolev-Yao model. The tool models a protocol as an
interaction between a set of state machines. An attempt is then made to locate
security flaws by working backwards from a specified insecure state.

Unlike the Dolev-Yao model which does not support local states (eg: description
of data values), the NRL analyzer extends the model to include local state variables
of principals. This enables modeling of additional failures such as those occurring in
a case where an intruder falsely convinces a principal that a word possesses certain
properties (eg: intruder tricking a principal into using an old or compromised session
key).

The tool is designed as an interactive Prolog program. Protocol is specified as
a set of transitions of state machines. Each transition rule specifies the words to be

input by the intruder, the required values of state variables, words output by the

46

principal as a result of transitions (and subsequently learned by the intruder), and
the new values of state variables. Transition rules may also specify such events as
the generation of new messages from old ones performed by the intruder through
application of operations such as encryption and decryption. As in the Dolev-Yao
model, words involved in transition rules follow a set of reduction rules that transform
them into other words acceptable in the system.

To find a flaw, description of a compromised state is input to the tool in terms
of the variables and words potentially known to the intruder. Using transition rules,
subsets of words and variables are taken and an attempt is made to find all states
that may precede the specified state. For each such state, the procedure may be
repeated to find states further back in the sequence. During this back traversal, if
an allowed initial state in the protocol is reached, the compromised state is indeed
reachable during the operation of the protocol. This indicates the presence of a flaw.

The backward search may generate potentially an infinite number of states.
Interactive Mechanisms to narrow down the search space are provided, including
querying of only portions of the state to reduce the matching required. The results
may then be generalized using the property that, if a portion of a state is not reach-
able, then the whole state is not reachable. The system also supports automatic
search using heuristics to narrow down search space. Search is further streamlined

by exploiting properties of formal languages.

47

3.2.3. Petri-net Based Models

High level Petri nets have been used to model authentication protocols and to
perform reachability analysis for verifying security. This is appealing since Petri nets
offer a convenient framework for representing and analyzing communicating entities.

Entities in the system including trusted principals, intruders, and channels, are
modeled as communicating machines interacting through messages and represented
in the form of a Petri net [4]. Models of the communicating entities are essentially
functional descriptions of the protocol, with places holding state variables or messages,
and transitions representing various actions based on place values. Entities source and
sink messages during the protocol run, causing place values to change and transitions
to fire.

Behavior of intruders could include a learning mechanism, capturing the fact
that an intruder can keep as part of its state all the messages and message components
it has seen. Using such acquired knowledge, the intruder might try to compose and
send new messages or replay old messages, resulting in a series of markings (snapshots
of the global state of the net).

A security breach is considered to have occurred under one of the following

conditions :

e A value in a secret place of a legitimate principal’s machine ends up in a place

in the intruder’s machine, meaning that the intruder has learned a secret.

48

e A value in a place in the intruder’s machine ends up in a secret place in a legit-
imate principal’s machine, meaning that the intruder has tricked the principal

into accepting a possibly fake ‘secret’.

Through reachability analysis, it can be determined if the system will reach a
marking (global state view) that matches one of the aforementioned conditions. A
match indicates the presence of a security flaw.

The use of predicate/transition nets (using a tool called PROD) to verify the
security properties of Needham-Schroeder authentication protocol is outlined in [4].

Colored Petri (CP) nets have also been used in verifying authentication protocols.

3.2.4. State Enumeration Models

One obvious way to approach verification is to use brute force state enumeration
wherein all states reachable from an initial state of the protocol are enumerated and
checked for security properties. The major difficulty with this approach is potential
state explosion, because an intruder’s actions could theoretically depend on an in-
finite number of past protocol runs (through use of old messages or parts thereof).
However, in general, many practical authentication protocols are small compared to
general communication protocols. Hence, protocol flaws become evident even when
considering only a limited number of protocol runs, though the number of states to
be considered may still be quite large. Recent advances in verification techniques and

better tools have made searching these large state spaces fairly manageable.

49

A recent work in this direction uses the Mury (pronounced, ‘Mur-phi’) speci-
fication and verification system [37]. Mury is a general purpose state enumeration
tool used in the verification of several general protocols. The protocol to be verified
is modeled in the Mury language and the model is attributed with a specification of
properties. Through explicit enumeration, the tool checks if all reachable states of the
model satisfy given specifications. In the model, a start state is specified with initial
values of global variables, and transitions are specified using rules that are boolean
conditions with associated actions. A non-deterministic model is followed, since for
example, in the case of authentication protocols, an intruder may have the choice of
replaying any of a number of old messages. Desired properties of the modeled proto-
col are specified as invariants which must be true in every reachable state. Violation
of an invariant points to a flaw in the protocol.

Verification through state enumeration can be made much more powerful and
efficient by developing techniques that gracefully handle the state explosion problem
and employ implicit enumeration rather than explicit enumeration. Also, in previous
approaches, the designer needs to know precisely how to describe a compromised
state. This needs considerable knowledge of the workings of the protocol, not only of
the message sequences, but of the cryptographic aspects as well.

In the following chapter we present a technique that makes verification con-
siderably more versatile and efficient. For this, we decouple the actual design and
the properties of interest. The design is modeled using state machines as in other

techniques. But unlike other approaches that express properties to be verified also

20

as part of the design state machine, our technique expresses the properties as sepa-
rate state machines distinct from the design state machine. Such decoupling allows
enhanced flexibility and efficiency in modeling and analysis. Flexibility results from
the fact that it enables the use of one exhaustive design model which may be checked
against various property machines, each expressing a different property of interest.
This obviates the need for generating a new model every time a new property needs
to be verified. Further, as will be shown, the decoupling allows the use of powerful
implicit state enumeration techniques for state matching, resulting in a very efficient

verification process.

ol

Chapter 4

A VERIFICATION FRAMEWORK USING STATE MACHINES

Formal verification of a system such as an authentication system requires a
‘medium’ in which to model it with sufficient accuracy and flexibility, and analyze rig-
orously. Several formalisms have evolved over the past several decades and found ex-
tensive use in systems modeling and verification. These include finite state machines,
Petri nets, CSPs (communicating sequential processes), and programming language
models.

In this chapter, we explore the application of finite state machine concepts
in studying authentication protocols, and develop a framework for modeling and
verifying their properties. After an overview of the terminology used in state machine
techniques, their use in protocol modeling and verification is briefly discussed, noting
the advantages and disadvantages. We then propose the algorithmic state machine
concept as a powerful paradigm to model authentication protocols. A new technique
is developed to perform verification using property state machines. The theory behind
the technique and a detailed case study demonstrating its applicability are discussed

in detail.

52

4.1. Terminology

Finite state machine (FSM) is a formalism of fundamental importance in the
representation, design, and analysis of event driven systems. An FSM consists of a
finite set of states and a set of transitions among the states [23]. Transitions occur
based on a set of inputs; corresponding to each input, there exists a transition out
of every state (possibly reentering the same state, implying no state change). An
FSM has a distinguished initial state ¢y where it starts, and possibly one or more
final (goal) states. In general, an FSM may have a set of outputs tied to its states
or transitions. Associated with each FSM is a directed graph called the transition
diagram whose vertices and arcs correspond to the states and transitions in the FSM.

A general FSM may be formally defined [23] as a 6-tuple M = (Q, X, A, 5, \, qo),
where (is a finite set of states, X is a finite input alphabet, A is the output alphabet,
0 is the transition function mapping) X ¥ to @, A is an output function mapping
@ to A (when outputs are associated with states) or @ x ¥ to A (when outputs
are associated with transitions), and qp is the initial state. For each state ¢ and
input a, the next state is then given by 6(q,a). If outputs are associated with states
(Moore machines), A(q) gives the output in state ¢. When outputs are associated
with transitions (Mealy machines), A(q,a) gives the output during a transition from
state ¢ on input a.

The following section is a brief review of the application of FSM concepts in

the modeling of communication protocols.

23

4.2. Modeling Communication Protocols Using FSMs

FSMs have been used widely to model and verify general communication pro-
tocols [9] [8] [13]. Modeling and analysis of complex computer network protocols
using state machines and graph theoretic techniques was presented by Postel [43].
Most of these early attempts use explicit state enumeration to analyze protocols. A
major problem encountered in such cases is state explosion. In contrast, in the tech-
nique adopted in our present work, state explosion is mostly avoided through implicit
state enumeration. Following is a brief overview of the conventional approach used
in modeling protocols with FSMs.

The idea is to model the system as consisting of a number of components inter-
acting through messages. Each of the interacting components is a finite state machine,
and comprises a number of states (describing the properties of the component) and
transitions that move the component from one state to another. The system may
then be considered as having a state-space that is a subset of the product-space of
the individual component state-spaces. Often only a subset needs to be considered,
since many of the combinations in the original product space may not be meaningful
or valid in the specified protocol.

In communication protocols, state transitions are generally associated with mes-
sage transmissions and receptions. Since a transmission from one component will be
coupled with a corresponding reception in another, the whole system may be thought

to work as a synchronous machine, though at a finer level of detail, the components

o4

operate asynchronously with respect to each other. Thus, it is possible to apply state
machine verification techniques developed for synchronous sequential machines to the
modeling and verification of protocols as well.

The concept is illustrated below using the alternating bit protocol [6] [8], essen-
tially a 2-phase protocol involving a sender and a receiver with state machines as

shown in Figure 4.1.

-D1 use

new -Al

+A0 +D0

Sender Receiver

Figure 4.1. FSMs of ‘sender’ and ‘receiver’ in alternating bit protocol

Each data transfer cycle in the protocol occurs in 2 steps, a transmission fol-
lowed by an acknowledgment (D0, A0 or D1, Al). Generation and consumption
of messages are denoted as new and use. A transmission is indicated by ‘-’ and a re-
ception by ‘+’. E and T represent error (message corruption) and timeout (message
loss), respectively. Considering a reliable medium with no errors or message loss, a
direct coupling between sender and receiver can be defined by the transition pairs [8]:

(—=DO0 || +D0), (+A0 || —A0), (—D1 || +D1), (+A1 | —A1)

95

This means, each transmission from the sender has a corresponding reception
in the receiver and vice versa. Thus, the two state machines can be assumed to
undergo state transitions in lock step. Thus, the overall transition diagram of the
system can be represented as in Figure 4.2. When the possibility of errors and losses
is also accounted for, the number of states and transitions in the model increases

considerably.

=
a
:g

(+A1]]-A1) (-D0 ||+D0)

us

]

u

©»

O
&

(D1 |]+D1) (+A0 ||-A0)

c

Figure 4.2. FSM of the overall system in alternating bit protocol

F'SM representation of protocols provides a framework for studying various prop-
erties and for identifying errors in design or implementation. Design errors of partic-

ular interest in a general communication protocol are [50] :

26

e State deadlock, occurring when no transmission is possible from the present state
of each process and no message is in transit, forcing each process to remain in
its present state indefinitely.

e Unspecified reception, occurring when the design does not specify a possible re-
ception. Such receptions are harmful as they may cause the system to transition
to unknown states resulting in unpredictable behavior.

e Non-executable interaction, existing when the design specifies transmissions and
receptions that cannot occur under normal conditions. Such interactions repre-
sent transitions that never occur, and are analogous to dead code in computer
programs [50]).

Use of FSMs in modeling and analysis of communication protocols has been
extensively studied [8] [13] [22] [50]. Despite being intuitive and clear, use of FSM
representations is restricted by some of their limitations:

e State space explosion, meaning, the number of states and transitions tend to
grow exponentially as the system grows. Consequently, the analysis becomes
increasingly difficult, especially because most existing analysis techniques are
based on explicit state enumeration and exhaustive state space search.

e Limited expressive power in comparison with other comparable formalisms. For
instance, FSMs are considerably less expressive compared to general program-

ming languages.

o7

In general, these limitations restrict the use of FSMs to simple and small pro-
tocols. However, many of these limitations can be overcome to a great extent using
modern techniques. This fact, combined with the inherent convenience and clarity
of representation, and the amenability to well understood analysis techniques, makes
the FSM formalism an attractive and powerful choice deserving serious consideration.

The remainder of the chapter discusses techniques to overcome the major lim-
itations of FSM models, and develop an FSM based framework to model and verify
authentication protocols. The discussion begins with the examination of a state ma-
chine extension known as algorithmic state machine (ASM) that offers remarkable

improvement over the expressive power of conventional FSM models.

4.3. Algorithmic State Machines

Any system, such as a communication protocol or a data processor, that ma-
nipulates and processes data may be described by an algorithm which is a procedural
sequence of steps producing a sequence of actions and outputs from a sequence of
inputs. Accurate and clear representation of the algorithm is crucial in modeling and
analyzing the system. A limitation of conventional FSM, as mentioned in the previ-
ous section, is its comparatively weak expressive power. Algorithmic state machine
(ASM) is an extended model that attempts to overcome this limitation, and hence

makes modeling of complex systems far more expressive and powerful [30] [40].

28

Most systems can be thought of as consisting of two distinct logical parts that
interact to provide a specified functionality - a data-part and a control-part. The
data-part provides common data processing functions including arithmetic, logic and
other similar operations. In communication protocols, operations provided could also
include encoding, decoding, etc. The control-part provides command signals to the
data part to guide and sequence its various operations. In turn, the control-part takes
feedback from the data-part and modifies its own control actions appropriately.

Algorithmic state machine (ASM) concept was developed specifically to combine
the power of FSM (in expressing timing and state relations) and the clarity and
expressiveness of flowcharts. An ASM diagram is fairly similar to a conventional
flow chart, but with very different semantics and interpretation. Unlike a flowchart
describing the procedural steps and decision paths of an algorithm, an ASM diagram
codifies also the sequence of transitions among various states, events (inputs) that
trigger transitions, and events generated (outputs) when the system is in a given
state (Moore machine paradigm) or as it goes through a transition (Mealy machine

paradigm). ASM diagrams are built from three types of elements [40]:

e State box, representing a state of the system and thus, equivalent to a node of a
state diagram. For Moore type machines, it also specifies any output associated
with the state. It has a single entry point and an exit point and is represented

by a normal rectangle.

29

e Decision box, determining the transition to be taken out of a state for each
relevant input in that state. Multiple input conditions are handled by cascaded
decision boxes. It is represented as a diamond shaped box.

o Conditional output boz, specifying outputs associated with a transition in a
Mealy type machine. It is interposed between a decision box (which causes the
transition) and a state box (into which the system moves), and is represented
as a rounded box.

A state box and associated decision and control boxes together constitute an
ASM block. An ASM block corresponds to a state in the equivalent state transition
diagram and is represented as a dashed box.

Use of ASM is illustrated in Figure 4.3 showing the ASM representation of a
simple system (a Mealy machine) and the equivalent state transition diagram. The
system has only 2 states (A and B), 1 input (X), and 1 output (Z). The two dotted
lines indicate ASM blocks corresponding to the two states in the transition diagram.

Obviously, the expressive power and clarity of ASM representation is consider-
ably superior to that of simple FSMs. Later in the thesis, the ASM concept is used
extensively to model the entities involved in authentication protocols.

The second major problem with conventional FSM approach is state explosion,
making state space searches difficult and sometimes impractical. The following sec-

tions describe a powerful technique for addressing this problem.

60

0/1

X/Z
1/0 1/1

(&)
.

0/0

state box ~cce-o. .

decision box ...

output box .

ASMblock .

ASM representation State transition diagram

Figure 4.3. ASM and equivalent state diagram of a simple system

4.4. Design Verification

Verification may be applied at two stages in the development process of a sys-
tem [24] [25]. The first is design verification, wherein an abstract high level design is
verified for desired behavior or certain properties. The other is implementation ver-
ification, wherein a lower level implementation is verified for correct implementation
of the corresponding high level design.

Since most serious flaws in authentication protocols are known to arise from de-
sign flaws rather than implementation problems, only design verification is addressed
here. This section describes a technique to address problems in design verification,

originally developed in the context of hardware verification [24].

61

The design is modeled as a (possibly incompletely specified) deterministic Mealy
type finite state machine. However, unlike previous approaches that describe prop-
erties of interest in the design machine itself, this approach expresses the properties
to be verified as separate state machines. These specification machines (property
machines) are modeled as a type of non-deterministic state machine with some tran-
sitions having unspecified inputs. This partial specification of property machines
allows very efficient implicit state matching. Using the design machine and the prop-
erty machine, all states in the design that are compatible with the start state of the
specification are computed. This step identifies states in the design having the same
input-output behavior as that of the start state of the specification. Any matching
design state, if found, indicates that the design exhibits the behavior expressed in the
property machine. Conversely, absence of compatible states implies the absence of
the specified behavior in the design. This completes the verification process.

As shown later in the chapter, this methodology provides an easy and intuitive
specification format. However, its most important advantage is the power to implicitly
search a given design’s entire state space [26] [38].

In general, most approaches to design verification express properties to be exam-
ined as some form of formulas in temporal logic or as automata. Though the formulas
in temporal logic can be quite expressive and powerful, a serious drawback in using
them is that they can get extremely complicated and difficult to understand. This
increased complexity may lead to misunderstanding of what property has actually

been verified.

62

The technique discussed below was originally developed in the context of hard-
ware verification [24] [25] and is intended to provide an easier and intuitive framework
to verify various properties. We demonstrate later that this technique is very much

applicable to protocol verification as well.

4.4.1. Verification Using Property State Machines

Generally, in implementation verification, a given design is checked to be con-
tained in the implementation. Such containment proves that, for every state in the
design, the implementation contains a corresponding state having the same nput-
output behavior as that of the design state (when the two machines start from these
states). Such pairs of states are said to be compatible. Compatibility is slightly
different from the notion of equivalence since compatibility allows the design to be
partially specified, meaning, compatibility is checked only for input sequences that
are applicable to the design.

On the other hand, the aim of design verification is to ensure that the design
specification satisfies certain properties deemed necessary for the system under con-
sideration. However, the same technique as used in implementation verification may
be used here as well, using the design state machine and a property state machine
codifying some property to be verified.

As discussed in Section 4.3, most design specifications can be seen to have a

data-path and a control-path. The data-path models operations performed on data

63

(eg: arithmetic functions) whereas, the control-path models the sequencing and syn-
chronization of various system operations. Control-path determines the actions of the
data-path and, in turn, accepts inputs (status signals) from the data-path to modify
its own sequence of actions. It may be noted here that the notion of algorithmic state
machines (ASM) nicely maps to this model.

Generally, it is the data-path, depending on its size , that mostly contributes to
potentially large state spaces. In many cases, it may be possible to avoid such state
explosion by reducing the size of the data-path or even totally abstracting it out.
However, while doing so, it is necessary to prove that this abstraction does not affect
the validity of the design and that, properties such as boundary conditions which
are verified for the scaled model also hold for the original design (this is perhaps
more relevant for data processors than for protocols). This is achieved by ensuring
the functional correctness of the data-path by modeling high level operations in the
design using a library of boolean templates that have been proven correct with respect
to first principles using theorem proving techniques. Thus, design verification does
not need to deal with functional correctness. This allows a reduced model to be used,
making the state space considerably smaller and manageable.

The reduced design state machine thus obtained can subsequently be used in
conjunction with property state machines (specifying some properties to be verified)
to prove that it possesses the required behavior.

A property state machine codifies a specified behavior to be verified as a state

machine. Such a state machine consists of a sequence of inputs and corresponding

64

outputs, with a designated start state and possibly with don’t cares in outputs or
next states. A property machine differs from a conventional FSM by allowing some of
its transitions to also have unspecified inputs, meaning, transition that are taken for
some value of the inputs. This feature enables checking for transitions that satisfy the
property, without prior knowledge of the inputs that cause them. To avoid ambiguity,
only one such transition is allowed for a state, and it must be the only transition from
that state. All transitions with undefined next states are absorbed by a sink state.
Two types of properties are important in verifying a design:

1. Safety properties of the form “nothing bad will ever happen”. A safety property
is verified by checking for the existence of bad behavior. This implies checking
all possible paths to be good, or in other words, checking if any path is bad.

2. Liveness properties of the form “something good has to happen”. A liveness
property is verified by checking for states with no paths to good states. This
implies checking if any path is good, or in other words, checking if all paths are

bad.

The technique is illustrated using a simple system [25] with one input and one
output as shown in Figure 4.4(a).

The goal is to verify that whenever the input goes high, the output will go high
within two clock cycles. Verification may be done by checking for the occurrence of
bad behavior. This implies examining whether there is any sequence of states where
the output stays low for two clock cycles after the input goes high. The bad behavior is
modeled by the property machine (specification machine) shown in Figure 4.4(b). As

65

O @

1/0 1/0
-/1
1/1 @
0/0
(a) Design (b) Property specification

Figure 4.4. Example of state machine verification

the aim is to check for any such path, the two intermediate transitions in Figure 4.4(b)
(shown in dashed lines) are left with unspecified inputs (u). Verification consists in
finding if there is any state in the design state machine that is compatible with the
start state of the specification state machine that represents the bad property. Design

state D gives a match indicating that the bad sequence exists in the design, starting

from D.

4.4.2. Compatible States and Property Verification

Design verification involves finding states in the design that are compatible with
the starting state of the property specification, ie., states having the same input-
output behavior.

The procedure [24] [25] uses the notion of k-compatibility. A pair of states
is k-compatible if every input sequence applicable to the property specification, and

of length k, produces the same output sequence when applied to the two machines

66

in those states. Two states are compatible if and only if they are k-compatible for
all k. Therefore, verification starts out by finding all pairs of 1-compatible states
and proceeding incrementally to find successive sets of k-compatible states (where
k = 2,3,4,....). When no further progress is possible, the algorithm would have
computed all pairs of compatible states in the two machines. Based on this result,
if the starting state of the property state machine is seen to have any compatible
counterpart in the design state machine, then it is concluded that the design possesses
the behavior expressed in the specification. If no such state is found, the design is
declared devoid of the specified property.

Since property machines are allowed to have transitions with unspecified in-
puts, the requirement of compatibility is slightly modified by introducing the idea
of sequence sets. Sequence sets are subsets obtained by dividing the set of all input
sequences (applicable to the property machine in the state under consideration) such
that the subsets are mutually disjoint. This may be done by enumerating all possible
values of the inputs for transitions with unspecified inputs. For instance, considering
the specification machine of Figure 4.4(b), for an input sequence of length 3, the se-
quence sets are: {1,0,0},{1,0,1},{1,1,0}, and {1,1,1}. With this extension, a pair
of states in the design and specification machine are considered compatible if they
produce identical output sequences for all input sequences in at least one sequence
set.

The following section describes various steps involved in the verification proce-

dure.

67

4.4.3. Verification Procedure

As discussed in Section 4.4.2, verification of properties involves finding compat-
ible state pairs in the state machines corresponding to specification and design.
The first step is to find all 1-compatible state pairs, P;, as the union of:
1. the set of state pairs having identical input-output behavior, where the inputs
are defined for the specification
2. the set of state pairs producing identical outputs, where the inputs are not
defined in the specification
The set of all 2-compatible pairs, P,, is then found as the union of:
1. the set of 1-compatible pairs, all of whose successors are also 1-compatible,
when the outgoing transition from the specification state is fully specified
2. the set of 1-compatible pairs, some of whose successors are also 1-compatible,
when the outgoing transition from the specification state is not fully specified
This incremental procedure is repeated until the fized point Pyy4 = Py is
reached. The set of compatible states is then given by P= P.
To make the procedure efficient, states are handled in sets rather than indi-
vidually. To do this, sets of states are represented by their characteristic functions
(predicates on boolean state variables), and next-state functions are represented as

boolean functions that map sets of states into sets of states .

68

For the following discussion, consider a Mealy type state machine, M = (1,0, S, 0, \),

where,
I ={0,1}" is the input space,
O = {0,1}" is the output space,
S ={0,1}" is the state space,
0:1 xS — S isthe next-state functional vector,
and A: I xS — O is the output functional vector
Also, let

¢ = the vector of present-state variables,
Z = the input vector,

Q = the vector of next-state variables,

and, 7 = the output vector

Thus, the next state vector); and output vector y; can be determined using

the next state functional vector and output functional vector as:

Qi =6(Z,q), ie€{i.n},

and, y; =X\ (%,q), je{i.l}

Let C, be the partially specified specification machine and Cj, the corresponding
design machine. U is the set of specification states having transitions with unspecified
inputs, and U(q,) the characteristic function representing these states. Transitions

69

with defined outputs are represented by predicate n and those with undefined outputs
by its negation, —n.

Verification (finding any design state compatible with start state of specifica-
tion) is carried out in the following steps:

Step 1: ~ Compute the set of transition pairs in the two machines having identical

input-output behavior. This set,

e excludes transitions in the design with undefined outputs, given

by —ns, for the ith output

e includes transitions in the specification with undefined outputs
(since they match all corresponding transitions in the design),

given by -, for the ith output

Considering all [outputs, these transition pairs are encoded by the

predicate T"

T(7, /l\ [((a; (T, 4a) © M, (7, ‘Jb) A T]m(ﬁ‘ﬁ)) \V ﬁﬂai(f,QZ)]

=1

Here, ® is the boolean equivalence (X-NOR) operator and the term
A, (%, Ga) © A, (Z,45) represents matching outputs of the two ma-
chines.

Step 2: Using the predicate 1" found in Step 1, compute pairs of compatible
states in the design and specification machines, starting with 1 com-
patible states. Noting that U is the set of specification states having

transitions with unspecified inputs,

70

Step 3:

e the 1-compatible state pairs that include specification states in U
satisfy T" for some input values
e the 1-compatible state pairs that include specification states not
in U satisfy T for all input values
The set of 1-compatible state pairs is then the union of these two

disjoint sets and is given by the characteristic function:

Pin@) = (U@ \37:T) \ (~U(@) \VE:T)

From the 1-compatible states found in Step 2, determine the 2 com-
patible, 3 compatible etc. states until no more reduction is possible.
Given the set of k compatible states Py, the set of £ + 1 compatible
states P,.1 can be found by taking the inverse image of the set Py,
since, by definition, the next states of all states in P, must be in P.
(inverse image of a set of states is the set such that all the transitions
from the latter reach the former). There are two inverse images to be
considered:

e the inverse image of Pj such that all successor states are k com-
patible, given by, Vi : Pk(Cja, Q},); these correspond to states with
all transitions having specified inputs

e the inverse image of Py such that some successor states are k

compatible, given by, 37 : Pk(cja,cj,,); these arise from states

71

Step 4:

Step 5:

Step 6:

having transitions with unspecified inputs. Also, in this case, such

transitions must have identical outputs to satisfy the predicate T

The union of these two sets (restricted to the set of k£ compatible pairs)

gives the set of k£ 4+ 1 compatible state pairs:

Peyi(dar @) = Pulda, @) N\

(V@) A 37 (@ APL@n @) V (FU(@) A VT (@ @)

When the process in Step 3 reaches the fized point (where no more
reduction of set membership is possible), it gives the set of compatible
state pairs P.
ie., if Pyyy = P, then, P(qa, ¢) = Pr(da, ¢3)
Once P is obtained, characteristic functions can be formed to give:
e the set of design states compatible with the start state of the
specification, P(qa, %) g=d.,...-
e the set of design states that are not compatible with any state of
the specification, =3¢, : P(qa,)-
Depending on the outcome of Step 5 and the nature of properties to
be verified (as expressed in the specification), it may now be deter-

mined whether the design possesses the specified behavior or not. This

concludes the verification.

72

Based on the ideas presented in this and the previous chapters, the following
chapter demonstrates how to model and verify authentication protocols, using as

example the classic Needham-Schroeder protocol discussed in Section 2.3.2.3.

73

Chapter 5

MODELING AND VERIFICATION

State machines provide an excellent framework for modeling and analyzing au-
thentication protocols. Though all the advantages of FSM based modeling to general
communication protocols are also applicable in this case, there are certain issues that
need particular attention. This chapter explores issues pertinent to modeling au-
thentication protocols, and develops a verification methodology based on techniques
discussed in Chapter 4. The classic Needham-Schroeder public key authentication

protocol is used as an example throughout this chapter for discussions.

5.1. Verifying Needham-Schroeder Public Key Protocol

Needham-Schroeder Public Key protocol [39], described in Section 2.3.2.3, is
an authentication protocol for large networks using public key cryptography. It aims
to achieve mutual authentication of two parties with the help of a trusted third
party (certification authority), and is one of the most widely studied authentication
protocols.

There are two main reasons why this protocol is important. First, it is one

of the earliest authentication protocols to use public key cryptography and is hence

74

considered a classic case study. Second, it is vulnerable to a subtle attack which went
unnoticed in various studies and analyses for almost 17 years.

The attack on the protocol is described in Section 2.4.2.2. For ease of reference,
a concise version of the protocol and the attack are reproduced in Figure 5.1 and

Figure 5.2, respectively.

(m1) A — B : {N, A}lx
(m2) B — A : {Nu., N}k,
(m3) A — B : {Ny}g,

Figure 5.1. Needham-Schroeder public key protocol

(ml) A — Z p N, A}k,
(m1) Z(A) — B o {N., A}k,
(m2') B — Z(A) : {Na., Np}xk,
(m2) Z — A t {Na, N} g,
(m3) A — 7 AN}k,
(m3') Z(A) — B : AN}k,

Figure 5.2. Attack on Needham-Schroeder public key protocol

In the protocol, A and B perform mutual authentication by demonstrating the
knowledge of their private keys. Message exchange is secured by encryption with
respective public keys. In the attack, a third entity Z (a malicious, but legitimate,
principal in the system) cleverly manipulates messages to fool B into believing that

Z is A.

75

Using this protocol as an example, this section develops a verification framework
which models authentication protocols as interactive systems of algorithmic state
machines representing communicating entities, and enables the verification of their

authentication properties in an intuitive, yet rigorous and formal way.

5.1.1. Modeling the Authentication System

The protocol entities are modeled using state machines interacting with one an-
other through protocol messages as outlined in Section 4.2. Therefore, the system can
be viewed as a composite state machine resulting from these interacting component
state machines.

Because of their flexibility and expressive power, algorithmic state machines
(ASM) described in Section 4.3 are used to model the protocol entities. ASM mod-
els are very useful in authentication protocols because several data transformation
operations (such as encryption and decryption) need to be represented concisely, a
requirement not easily satisfied when using conventional FSM representations. The
control flow part of these machines is then derived and used for formally verifying
relevant properties. The data processing part may be separately analyzed to pro-
vide inputs to support control flow checking, and to validate vulnerabilities identified
during verification.

The following types of entities can be identified as important in modeling the

the original Needham-Schroeder public key protocol:

76

1. Certification Authority (CA), the trusted third party from which entities in the
system may obtain public keys of other entities.

2. Initiator (I), which initiates an instance of the protocol by sending the first
message.

3. Responder (R), which is the target of the first message sent from an initiator.

4. Intruder (Z), the malicious entity that tries to subvert the protocol. An intruder
could be a legitimate entity in the system and may be able to participate in
proper authentication procedures. In addition, it maybe able to observe all
messages in the network, delete messages sent by others, alter messages in
transit, or insert new messages. While participating in authentication sessions,
it may also choose not to follow the rules stipulated by the protocol, and instead,
resort to illegal manipulations or replays of messages. About the only limitation
imposed is that, based on the strong cryptography assumption, an intruder will
not be able to access the contents of encrypted messages for which it does not

possess the decryption key.

5.1.2. Modeling Trusted Entities

Though in reality any user may assume the role of initiator or responder, it is
convenient to assume (without loss of generality) that users are divided into disjoint
sets of initiators and responders. Initiators and responders are assumed to adhere to

protocol rules and message sequences, and are considered trustworthy.

7

Algorithmic state machines of an initiator and a responder in the Needham-
Schroeder public key protocol (henceforth referred to as NSPK protocol) are shown

in Figure 5.3 and Figure 5.4, respectively. In these figures,

ml,m3,m3 messages in the protocol

Ki, Kr : public keys of initiator, responder

Ki', Kr=' . private keys of initiator, responder

E(m): K : encryption of message m with public key K
D(m): K~' : decryption of message m with private key K !
nonce() : generation of a fresh random number used as nonce
Ni,Nr : nonces generated by initiator, responder
Tx(m) : transmission of message m

Rz (m) : reception of message m

T,To : time-out mechanism to detect lost messages
end : end of an authenticated session

commit : final status of an authentication session

In the figures, (10, ...,13) and (RO, ..., R4) are the various states in which the
initiator and responder can be. 10, R0 are the initial states and I3, R4 are the final
commit states (states where an entity has accepted the authenticity of the other entity
and has committed to a trusted session).

The basic state machines representing the control sequencing of initiator and
responder can be derived in a straightforward manner from the algorithmic state

machines, and are shown in Figure 5.5 and Figure 5.6, respectively.

78

10

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ni <-- nonce()
ml <-- E(Ni,I):Kr

commit <-- 0

\\\\\\\\\\\\\\\\\\\\\\\\

~
S
S
I S
| = im
” N £
| m ” Y
I
” () = = ” M
| 2 J DU
D |
, S e - ! =
” 5 : “ =
| a \% ” o=
| o i 5=
- - v g ” S
” = g ! =
, z : -
m z|l < Sl M =
, | — ” £
I | f
1 O\ | L _________] o
I
” =
” € n
| <
o
Yo
[<b]
Sl
=
oT0)
o=
S

commit <-- 0

I
Y
| - g |
| z = |
” = Q4 ”
=5 ,
” £z |
I A @ of
| R i
R ZVvatl
! 112 JE|
= > !
” £ ZEEE)
! I
! I
| |
I
I
I
I
I

commit <-- 1

Figure 5.4. ASM of responder in NSPK protocol

80

initiate

initiate/

Rx(m2)/-

@ commit

Figure 5.5. Control state machine of initiator in NSPK protocol

~D(m3)/-

commit

Figure 5.6. Control state machine of responder in NSPK protocol

81

5.1.3. Modeling an Intruder

Modeling an intruder is comparatively more complicated because of the variety
of actions it may take at each step in the protocol, and the non-determinism in its
choice. An intruder must be considered capable of performing one or more of the
following operations:

e Initiate a session with any other entity and follow the protocol faithfully for

proper authentication.

e [nitiate a session with any other entity, but not follow the protocol properly
and possibly do illegitimate operations such as manipulating messages, sending
out-of-sequence messages, and replaying old messages, all with the intention of

subverting the authentication mechanism.
e Observe any message on the network and possibly save it for later replay.

e Intercept any message sent in the network and:

Destroy the message.

Send the message unmodified to the original recipient.

Send an altered version of the message to the original recipient.

Replace it with an old valid message and send to the original recipient.

— Send the message to someone other than the original recipient (possibly

after alteration).

— Use the message in another protocol run.
Further, due to the uncertainty in its motives and consequent actions, an in-
truder is assumed to be capable of acting in the role of either initiator or responder.

As part of multiple simultaneous instances of the protocol with more than one entity,

82

it may potentially act in both roles. While doing so, the intruder may use messages
from one instance of the protocol in the other.

These numerous possibilities make modeling of the intruder rather complicated.
However, it may be done systematically (and to a degree of accuracy required for
present purposes) by observing the following about the intruder’s behavior:

e The only time the intruder acts spontaneously is when it initiates an authen-
tication session with another user. This could involve a genuine message or a
fake one, possibly a replay of an old valid message. The assumption is realistic
because, except for m1, if any other message (m2 or m3) is randomly inserted,
it will be ignored by other entities which follow protocol sequencing rules.

e At all other times, the intruder’s actions are reactive , meaning, it becomes ac-
tive on observing a message addressed to itself or to someone else. The resulting
action could be one of the possibilities discussed earlier such as deleting the mes-
sage, relaying the message modified or otherwise, replacing it with another, and
redirecting it to someone other than the originally intended recipient.

The above observations lead to the algorithmic state machine shown in Fig-
ure 5.7, Figure 5.8, Figure 5.9, and Figure 5.10. The ‘center of control’ is in Fig-
ure 5.7, from where transfer of control occurs to other states in the remaining figures,

and to where control eventually returns.

83

from Z1 from Z2 from Z3 from Z3.1 from Z3.2 fromZ4 fromZ4.1 fromZ5 fromZ6 from Z7

to Z1 to Z4

to Z2 to Z3 to Z5 to Z6 to Z7

Figure 5.7. Part 1 of ASM of intruder in NSPk protocol

from Z0 from Z0
on initiateR on Rx(m2ZR)

back to

Nz <-- nonce()
ml <-- E(Nz,2):Kr

(N Nr) <-- D(m2):Kz -l
m3 <-- E(Nr):Kr

(Tx(m21@ Tx(m3ZR)

commitZR <--1 74.1,

70 back to Z0 backto Z0 back to Z0

Figure 5.8. Part 2 of ASM of intruder in NSPK protocol

84

from Z0 from Z0
on Rx(mllZ) on Rx(m3IZ)

Nz <-- nonce()
m?2 <-- E(Ni,Nz):Ki
Tx(m2IZ)

commitl’R <--1
commitlZ <--1

back to Z0 back to Z0 back to Z0 back to Z0 back to Z0 back to Z0 back to Z0

Figure 5.9. Part 3 of ASM of intruder in NSPK protocol

from Z0 from Z0 from Z0
on Rx(mlIR) on Rx(m2IR) on Rx(m3IR)

back to Z0 back to Z0 back to Z0 backto Z0 backto Z0 back to Z0 back to Z0 back to Z0

Figure 5.10. Part 4 of ASM of intruder in NSPK protocol

85

5.1.4. Modeling a Realistic Scenario

The simplest possible scenario for the Needham-Schroeder public key protocol
involves an initiator, a responder, and an intruder. If this system is shown to be vul-
nerable to false authentication, then clearly any larger system with more entities will
also have the same vulnerability. However, verifying that the simple system is secure
does not imply that a larger system will remain secure under similar assumptions. To
account for this, the system must be incrementally expanded to include more entities
and the verification repeated until sufficient confidence is attained or a vulnerability
is identified. In theory, even after analyzing a very large number of such cases, it may
not be possible to conclude that a system is secure because of the new combinations
introduced by incremental expansion. However, in practice, the analysis can often
be safely limited to a convenient number of participants and protocol runs, as most
authentication protocols generally have only a few number of steps, resulting in a
limited number of possibilities. On the other hand, the case of a verification failure
is strong, because any weakness found in a simple case will invariably appear in big-
ger systems anyway. In the case of Needham-Schroeder protocol considered here, a
weakness is found in the simple scenario itself, allowing the verification procedure to
conclude that the system is not secure, and making further incremental verification
unnecessary.

The scenario modeled here comprises an initiator A, a responder B (both of

which are trusted entities), and an intruder C' (a legitimate entity that is malicious)

86

capable of participating in the protocol as initiator or responder. This model gives
rise to the following authentication scenarios:
e A as initiator and B as responder
e A as initiator and C' as responder
e (' as initiator and B as responder
The initiator A is modeled with a state machine having states corresponding to
its two possible authentication sessions (with B or C'). This state machine, based on

the basic initiator state machine (Figure 5.5), is shown in Figure 5.11.

initiateB/
Tx(ml1AB

~D(m2)/-

~Rx(m2AB)/-
~Na/-
Rx(m2AB)/-

endAB/- endAC/-
Na/ Na/
Tx(m3AB) Tx(m3AC)

A_commitAB A_commitAC

Rx(m2AC)/-

Figure 5.11. State machine for initiator A in NSPK protocol

Similarly, based on the responder state machine (Figure 5.6), B is modeled to
include states corresponding to its possible sessions with A or C. Figure 5.12 shows

this state machine.

87

Rx(m1AB)/-

~D(m1)/-

~Rx(m3)/- -/Tx(m2AB) ~Rx(m3)/-

Rx(m3AB)/-

~D(m3)/-

B_commitAB B_commitCB

Figure 5.12. State machine for responder B in NSPK protocol

In these figures, a message of the form maxzP(represents the xth message in
the protocol run initiated from P to @), a state label of the form PY¢q denotes the
Y'th state of P in its interaction with), and P_commit(QQP denotes establishment
of P’s belief in the authenticity of the session initiated by @) (meaning, P trusts that
it is indeed @ at the other end). Termination of an authenticated session between P
and @ is indicated by endP(Q. Further communication must involve a new run of
the protocol. A transition labeled ~ Rx(m) (non-reception of a message) is caused
by the loss of message m. Since the primary concern is with disruptions caused by
the intruder, it is implied that a transition of this type results when the intruder

destroys message m in the network. Similarly, ~ D(m) denotes a message that

88

cannot be decoded by the recipient, possibly implying an alteration by the intruder.
An example would be an encrypted message originally sent to someone other than the
recipient, or a valid message that has been tampered with during transit. Transitions
associated with ~ N (non-matching nonce) imply authentication failure, possibly as
a result of receiving an old valid message replayed by the intruder.

The entity C' may participate in legitimate protocol runs as an initiator (while
communicating with B) or as a responder (while communicating with A). In addition,
it may also act maliciously in protocol runs between A and B as a passive observer
or as an active intruder, performing various actions identified earlier.

A basic state machine describing intruder C’s behavior is shown in Figure 5.13.
Please note that, some actions that would obviously be detected and rejected by other
principals have been left out to simplify the state machine. An example would be that
of sending a message corresponding to the second step in the protocol to a principal
who is in its initial state and does not have any ongoing sessions.

As seen in the diagram, most transitions in the intruder state machine are
controlled by inputs n,d, or f. These inputs denote, respectively, that the intruder
has decided to send a normal response as per the protocol, delete a message without
the intended recipient seeing it, or send a fake message with the possible intention
of masquerading as another entity. The states annotated with C_commitAC and
C_commitC B are states where authentication involving C', acting in its real identity,
has succeeded. C may also try to pass off as A and send fake messages to B as if

coming from A, as indicated by m1A’'B etc. In such a scenario, state C_commitA’' B

89

C_commitCB @

endCB/-

C_commitA’B Tx(m2A’B) n/
(C_commitAC) @ @ Tx(ml1AB)
Phainl ‘\ o s ~
ic32) AW

.~ ~

4
e ff o Rx(m2CB)/- Rx(m1AB)/- o
Tx(m3A’B) . Tx(m2AB)
C_commitAC @ N N @
) d/
Rx(m2AB)/- del(m2AB)
Co

Rx(m3AB)/- @ 4 (3AB)

n/
Tx(m3CB)
d/
del(m1AB)

Rx(m3AC)/-
endAB/-

f/
Tx(m1A’B)

n/
Tx(m2AC)

f/
Tx(m2AC)

initiateB/-

f/
Tx(m3CB)

-/Tx(m1CB) C1

Figure 5.13. State machine for intruder C in NSPK protocol

may potentially be reached, meaning, C' has falsely convinced B that it is actually

A. If this state can indeed be reached, then C' has successfully broken the protocol.

5.1.5. Verifying Authentication

A verification framework with associated tools for design verification based on
the technique of using property state machines as outlined in Section 4.4 has been
developed at the University of Texas at Austin [24]. This framework can be used

for the verification of authentication protocols as well, because most communication

90

protocols can be approximated as synchronous state machines. In the case of authen-
tication protocols, the design state machine is the composite state machine obtained
from the interaction of the state machines corresponding to initiators, responders,
and intruders.

Continuing with our example, the Needham-Schroeder authentication protocol
is verified using the design state machine developed in the previous section and the
verification methodology based on property machines. This is done by specifying
the criterion for the success or failure of authentication as a property state machine
(specification machine) and verifying it against the design state machine. Essentially,
the verifier checks whether there is any state in the design state machine that is
compatible with the start state of the specification state machine . The presence of
any compatible state implies that the design possesses the behavior described by the
specification state machine.

As explained in Section 4.4.1, the type of the property chosen for verification
has important implications. Here ‘type’ refers to the classification of the property as a
good property or a bad property. For an authentication protocol, a good property would
be that proper authentication is achieved between two trusted principals, whereas a
bad property would be that an intruder achieves false authentication by cheating an-
other entity. Since the protocol is modeled in a minimal scenario comprising only
one of each type of entity (initiator, responder, and intruder), the only verification
that can be considered conclusive is the case where the bad property is shown to hold

true. This is because, if the protocol fails in the minimal scenario, then it is certain

91

to fail in larger systems with more entities. On the other hand, verifying that the bad
behavior is absent in the minimal system (meaning, there is no false authentication)
cannot be considered conclusive because the bad behavior may manifest in a bigger
system with more entities and consequently a larger number of potential interactions.
By the same argument, verifying that the good property holds is also not conclu-
sive, because the property may not hold good in a larger system. Therefore, when
studying authentication properties (especially if the system is modeled in a minimal
configuration), it is the presence of bad behavior that should be verified.

The scenario described in Section 5.1.4 can be checked for a bad property, mean-
ing, whether the intruder can achieve false authentication. This is done by specifying
a corresponding property state machine having a start state where both the initiator
A and responder B are in initial states A0 and B0, and an end state where they have
conflicting commit status. For instance, a false authentication could lead B to believe
that it is communicating with A, when there may not even be a session between A
and B. In such a case, the end state of the property state machine will have B in
‘B_commitAB’ whereas A will not be in ‘A_commitAB’. The intermediate states
and transitions are left undefined because the verification procedure will search for
any path between the given start and end states and satisfying the property. If the
composite design state machine is found to have a state which is compatible with the
start state of the property state machine, the presence of a flaw is evident. Figure 5.14

shows one way of specifying the property state machine.

92

Q A0,BO

/-

-0

--

B_commitAB
~ A_commitAB

Figure 5.14. A property state machine for verifying the NSPK protocol

The state machine specifies the property that, starting from initial state, the
system ends up in a state where the commit status of A and B are contradictory - B
is in ‘B_commitAB’ whereas A is not in ‘A_commitAB’. Intermediate states are left
unspecified so as to identity any matching state. A match for the property, if found
in the design, indicates the presence of a flaw in the authentication process.

The property is checked against the design state machine of the system, which
has the product state space of the state machines of initiator (A), responder (B), and
intruder (C). In the modeled scenario, verification reveals a flawed authentication
path as shown in Figure 5.15. The figure indicates the states through which the
system passes as a result of the message sequence manipulated by the intruder.

Since the intermediate transitions and outputs in the property state machine
are left unspecified, an exhaustive search for all matching paths is performed. By
specifying any known input or output values, the search space can be cut down,
making the search more efficient. One such modification is to specify the input f as

true (indicating that C' may send fake messages). This is reasonable because only the

93

A0, B0, CO

2

mlAC :A->C

Alc, B0, C2

v

mIA’B :C(A)->B

v

Alc, Bla, CO

m2A’B : B ->C(A)

v

Alc, B2a, C6
m2AC : C>A

A2c, B2a, C0

v

m3AC : A>C

A3c, B2a, C3

v

m3A’B : C(A)->B

LELELEL G

A3c, B4a, C3.2

Figure 5.15. Flaw in NSPK protocol, uncovered in verification

malicious activities of the intruder are of interest. This added constraint limits the
verification procedure to only those transitions corresponding to the true value of the
f input and saves considerable computation by avoiding many matching steps which
would otherwise be carried out. However, it is important to note that in both cases
the flaw will be found eventually, but with possibly many more steps when inputs are
unspecified.

Had this verification on the minimal system failed to find a weakness, it would
be necessary to repeat the verification procedure by incrementally introducing more
entities until a sufficient level of confidence is achieved. The cut off point for such a
repetitious process is very much dependent on the type of protocol being verified and

the various possibilities of entity interaction that may arise.

94

This demonstrates the application of the verification technique, based on ASM
modeling and property verification principles, to authentication protocols. The pro-
cedure is generic enough to be applicable to a wide variety of protocols. Also, being
capable of uncovering the subtle flaw in the Needham-Schroeder protocol, it is not
difficult to use the framework to detect other types of protocol weaknesses (many of
which, incidentally, are much less complicated). Thus, it is hoped that the frame-
work would be a potentially valuable tool in modeling and analyzing authentication

protocols.

95

Chapter 6

SIMULATION BASED VALIDATION

Chapter 5 discussed a technique for formally verifying authentication protocols.
Though powerful, application of verification techniques is complex and often demands
considerable expertise. Also, the complexity of modeling and the demands on compu-
tational resources increase rapidly as the size of the protocol being verified increases.
Thus, it is generally difficult to apply formal verification procedures to complex pro-
tocols. Therefore, an alternative approach based on simulation is investigated in this
chapter. Though lacking the rigor of formal verification, simulation can generally give

good results to help validate authentication protocols.

6.1. Protocol Validation Using Simulation

Discrete event simulation is used extensively in the study of communication
networks and protocols [33] [45] [46]. By injecting randomly generated events into a
model of the system under study, simulation helps to observe the system’s response
under various conditions. Such a study may begin by simulating a rudimentary model
of the system, and then incrementally refine the model to obtain increasingly accurate

and realistic results. Validity of the results depends largely on the accuracy of the

96

model, the coverage of various events and event sequences during the simulation, and
the duration of simulation. Simulation lacks the rigor of formal verification, but is
capable of producing close enough results if designed and carried out properly.

This chapter investigates the application of simulation techniques in validating
authentication protocols. Because of the randomness involved in simulation, caution
should be exercised in deriving conclusions based on the results of a simulation study.
In particular, if simulation does not reveal any weakness in an authentication protocol,
it can only be inferred that the protocol is very likely to not have any flaw, but it
cannot be concluded that it is certainly free of laws. On the other hand, if simulation
does reveal a weakness, it can be safely concluded that the protocol is flawed.

The remainder of the chapter details the application of simulation to authen-
tication protocols, using the example of Needham-Schroeder public key protocol, the
classic bench mark protocol that was described in Section 2.3.2.3.

The simulation study was performed using Opnet, a sophisticated simulation
tool widely used in the study of communication protocols. The following section

provides a brief overview of the tool and its capabilities.

6.2. Opnet Simulation Tool

Opnet (Optimized Network Engineering Tools) [28] [34] provides a powerful
discrete event simulation environment for modeling and simulation of a wide variety

of communication protocols and systems. The system under study is modeled as

97

a hierarchy of abstract levels (layers). The uppermost layer, network model level,
captures the topological representation of the system as a network of communicat-
ing nodes and associated interconnecting links. The structure of each node in the
network layer is defined in greater detail by the next lower layer in the hierarchy,
the node model level. At this level of abstraction, each node is modeled with basic
communication components such as processors, queues, transmitters, and receivers.
The lowest layer, the process model level, defines the process behavior of modeled en-
tities (nodes) through state transition models embedded within their processors and
queues. Simulation triggers in the form of messages are injected by packet genera-
tors that can be configured to generate messages in flexible formats and following a
variety of statistical distributions. Simulation results are gathered using configurable
probes that monitor various elements in the model. These abstractions, together with
user definable message formats and powerful communication primitives, offer a very
flexible and powerful simulation environment.

Using Needham-Schroeder public key protocol as example, the following sections

develop a framework to perform simulation studies on authentication protocols.

6.3. Simulation Model for Needham-Schroeder Public Key Protocol

A network of communicating entities that use the Needham-Schroeder public
key authentication protocol (henceforth referred to as NSPK protocol) can be modeled

in Opnet using the primitives mentioned in Section 6.2. In the modeled configuration,

98

there is one each of trusted initiator and trusted responder, and one intruder (a
malicious entity). Being itself a possibly legitimate entity in the system, the intruder
also possesses the functionality of both initiator and responder.

The ability of the intruder to observe and potentially manipulate any message
in the network is modeled by forcing all messages to go through the intruder node as if
it were acting as a transparent relay between communicating entities. This is a fairly
valid assumption in many modern communication networks (for example, a message
router could fall into this category). Besides merely passing the messages exchanged
between other entities through, the malicious node may try to delete, modify, or
manipulate them.

In the model, initiator nodes invoke authentication sessions with randomly cho-
sen responder nodes at random intervals. It is to be noted that an initiator node
may engage in sessions with the intruder node also because the latter is capable of
functioning as a normal responder node (since it may be a legitimate principal in the
system). Similarly, in its capacity as an initiator, the intruder node may engage in
sessions with other normal responder nodes.

Figure 6.1 shows the scenario implemented as an Opnet network level model. In
the figure, 1_101 and i_102 are initiators, r_201 and r_202 are responders, and z_301
is the intruder (the numerical parts in these names have no significance other than
being convenient). A minimal configuration of the modeled system can be studied
by activating only i_101, r_201, and 2301 (ie., one each of initiator, responder, and

intruder).

99

Figure 6.1. Opnet network level model of NSPK protocol authentication scenario

The internal structure of an initiator node is defined in the lower node level
model shown in Figure 6.2. It essentially consists of a processor embedding the
initiator’s protocol behavior, a transmitter, a receiver, and communication streams
connecting them. Transmitters and receivers attach to communication links between
nodes. Similarly, Figure 6.3, and Figure 6.4 show the structures of a responder node
and the intruder node, respectively. Note that the intruder node has multiple receivers

and transmitter since it has links to both initiators and responders.

b

! pr_0
O——-
nspk_initiator_nd pt_0

Figure 6.2. Opnet node level model of initiator in NSPK protocol

The protocol behavior of nodes is defined by processes running within their
processors, which are implemented at the process level of Opnet as state transition

diagrams and associated embedded code. Opnet allows executable code to be as-

100

b

¥ pr_0
o
nspk_responder_nd pt_0

Figure 6.3. Opnet node level model of responder in NSPK protocol

sociated with states themselves in the form of entry/exit executives, or with state
transitions as transition erecutives, or combinations of both. State transition models
embedded within nodes corresponding to initiator, responder, and intruder are shown
in Figure 6.5, Figure 6.6, and Figure 6.6, respectively. The process models are based
on the FSM representations of these entities developed in Section 5.1.1. The state
machines of initiators and responders are straight translations of the protocol rules
and message sequences. However, the state machine of the intruder is considerably
more complex as it needs to emulate the behaviors of both initiator and responder
(since the intruder may act in either role), and various malicious possibilities including

deletion, modification, and manipulation of messages.

6.4. Simulation Setup

In the modeled configuration, there are three possibilities for authentication
sessions. This is because the intruder z_301 is also considered to be a legitimate (but

malicious) entity capable of acting either as an initiator or as a responder.

101

B &)

pr_3 pt_3

Figure 6.4. Opnet node level model of intruder in NSPK protocol

Sessions could exist between i_101 and r_201 (a trusted initiator and a trusted
responder), between i_101 and z_301 (a trusted initiator and an intruder in the role
of responder), or between 2301 and r_201 (an intruder in the role of initiator and a
trusted responder).

In the simulation experiments, initiator 701 and intruder z_301 attempt to
initiate authentication sessions at randomly chosen instants, with a mean interval of
about 500 simulation seconds. A successfully authenticated session is assumed to be

active for 20 simulation seconds. Note that the time durations of 500 and 20 are

102

chosen to simplify simulation design (such as, to help avoid race conditions) and do
not have significance otherwise; they do not result in any loss of generality. Messages
sent between initiator i-101 and responder r_201 pass through intruder z_501 as stated
before. The intruder may relay, delete or manipulate the messages that are passing
through, the exact nature of the action at any instant being chosen randomly. If all
messages of a session are handled faithfully (ie., relayed transparently), the session
succeeds, provided ofcourse that the authentication requirements are met. If any
message is deleted or otherwise modified by the intruder, the authentication protocol
is expected to enable the involved entities to detect such attempts and safely abort
the session. However, there could be cases where some messages are manipulated by
the intruder, and yet satisfy all the requirement of the protocol. Since the affected
entities will not be able to detect such messages as malicious, these actions by the
intruder may go undetected and eventually lead to false authentication.

In the configuration studied here, a false authentication would occur if the
intruder z_201 is able to pass off as the initiator :_101 in a session with the responder

r_201, or as the responder r_201 in a session with the initiator ¢_101.

6.5. Simulation Results

The setup as described in the previous section was run for typical durations
of 100,000 simulation seconds (averaging about 22 seconds real-time in a multi-user

workstation running Digital Unix on a 300 MHz Alpha platform). At random intervals

103

(with a mean of approximately 500 simulation seconds), authentication sessions were
attempted by initiator i_101 (to responder r_201 or to intruder z. 301 acting in the
role of a normal responder) and intruder z_301 (to responder r_201). An average of
about 290 authentication attempts were made in each run. The intruder randomly
chose to relay faithfully, delete, or maliciously manipulate messages passing through
it. In approximately 30 authentication sessions of each run, the intruder attempted
faking, meaning, trying to pass of as initiator ¢+_701 in a session with responder r_201.
The results showed that, in each run of simulation, an average of 3 such attempts
succeeded. In those sessions with the responder r_201, the intruder 2301 succeeded in
falsely taking on the identity of the trusted initiator :_101. Message traces produced
during the simulation indicate that the fake sessions succeeded precisely because
of the flaw in the Needham-Schroeder public key protocol that was described in
Section 2.4.2.2.

In this case, simulation was able to reveal the flaw by modeling a minimal
scenario. Had the minimal configuration failed to expose any flaw, it could point to
two possibilities. First, the simulation might not have run long enough to encounter
the event sequences leading to the flaw. Second, the minimal configuration might
indeed be free of flaws. The first possibility can be investigated further by running
the simulation for incrementally longer durations until a weakness is revealed or a
sufficient level of confidence has been achieved. However, it is not easy to define
the threshold for this cut-off point. Even when sufficient confidence is gained in

the minimal configuration, it cannot be taken as an assurance that a weakness may

104

not manifest in a larger configuration where more entities are involved. Because of
this, the modeled system may have to be expanded incrementally by introducing
more entities until a sufficient level of confidence is attained. Again, it is hard to
clearly fix the cut-off threshold for such repetitions. However, considering that most
authentication protocols generally involve only a few entities in each run, and have
only a limited number of steps (messages), it may be possible to safely restrict the
scope of incremental simulation to a practical level. In the present experiment, since
the flaw is exposed in the minimal configuration itself, it can be concluded that the
protocol is flawed, there is no need for further incremental simulation.

From the foregoing discussions and simulation results, simulation appears to be

a potentially valuable validation technique for authentication protocols.

105

{defanlt) initiate_session(}

|
Voo fdefaultd i default ol

- A e |
;o] |
T ; |{ THTTTATE} /ml_send(} | !
P ; | | !
| I !
| | |
[| !
| | !
| | !
| ! |
| | |
[| !

! {DECEYFT_FAIL}/decrppt_failure () :

'
| |
1 Y, | GRE_MZ) A2 _rowd ()
— L !
e g
Tl ",
— P

I
- | fdefanlt) fi_default_fn
| ettty /1 sstmoteen0

{AUTH_FAIL}/i auth_failure{)

!

{defanltd i defanlt_fold - -~ {}iD_SESSID}T} Szession_timeoutis

L PP

Y

-
-

r\‘ S
fdefanlt) i defanlt_fof} |!
|

|
[

Figure 6.5. Opnet process level model of initiator in NSPK protocol

106

fdefanlt) fget_readp)

-

: T
{DECRYPT_FATILY/decrypt_failure 1% S (R MY ml_rewddd
i 1

-

HOT_M1% Fignoce_readp()
-

I |
e

1
i
1
\
1
Y
1
1
1

| Yo

.
I

!

!

I -—
!

!

!

!

!

!

| 1

: {EESPOND Y /m2_send (3 fdefault) ignore_respond(d
!

|

!

——

{defanlt)r_defanlt _fal)

T
|
|
|

-l

(HOT_M3% ignore_wait()

e N
- .
— ~,
- .
- = -

- - —_

{DECEYPT_FATIL) decrypt failure 3{} —= =TT

{AUTH_FATIL) r_auth_ failure{)

{defanlt) fignore_check ()
et

{AUTH_SUCCESS) /o -:-mmit{}:

I fdefanlt) fignore_commit()
o

S e
N
commit ||[-—-——"")
(END_SESSTIOMY r_end_session{)

Figure 6.6. Opnet process level model of responder in NSPK protocol

107

57 (RX_MSGY Mg rewdl)

e (HORMAL}/m_start_ir_rel(}
=

N (HORMAL) /m3_zr_send{)
. -
- - o (RE_MEE) MEg_rowd()
. . N "
N N -
- -
k. e ~
S “{RX_M_TRSTART)/Mm_start_ir_rewd()
- - - {DELETE}/mi_ir_del{}
=~ " = = -
Sl v . N . 3 {FREE} i~
e S S A 4 ! s
. - - - \ 1 J 4
. e e S Y ! s ul
(Fmﬂz)fm_st.art._ir_faks(}‘x\ e T S \(RX_hZ_ZR)fmZ_Zf_fGVd() J,f (RY_MSE) Mmsg_rovdd)
Sl sl T ~ [/ L
= - ~ N L 4 . X
i /J K (RX’_{MI_IR)/ml_J.r_rcvd()
h T !
\I e /.(NDRMAL),-’ml_ir_rsl()
Y s
1 -
1 s
| -
e

(RX_MSG) meg_rewd(
-

{HORMAL) /Mm2_dr_rel{)

I

= o - =
(HORMAL) Scommit_iz{} _ -~ P

— < -

s
_deLf
__ s

(FA¥E} /m2_iz_fake ()

e . FRY_M56 Y fusy_revd () " _ - 4RX_M2_TR) /mz_ir_rcvd()z

. (RX_ M EZR_START)/m_start_zr rowd({)
~o e

(Cu{)-"\:-\-“‘-\-\.

T T
\ = X
+ (DELETE}/me_ir_del{)
v - 7
s S £
“ \ !

(BX_M5GY s g_rc\\;d {0

- - I .
oo (RN_MY_TR)m3_ir_rewd ()
v Rx

s
. -
: s CORE_MI_223ml_dz_rowdl) -
(Fm)f"\l_lr_fake();; e v \ \\(NDRmL)fm_S_ r_rel()
i

s
-

vy
=T T{HORMALY /m2_iz_send(}

W T -1

|

L

|

1)

fml_zr_send{H -

et
\"u

“\‘_,—— - (RY_M5G)/msg_rovd ()
(RX_MEGY msg_rowd()

Figure 6.7. Opnet process level model of intruder in NSPK protocol

108

Chapter 7

META AUTHENTICATION

The goals of authentication protocols, their vital role in establishing secure com-
munication channels, and some of their vulnerabilities were discussed in Chapter 2.
Despite the simplicity of their structure and intuitiveness of operational logic, many
authentication protocols have been found to be flawed in subtle ways. A malicious en-
tity with sufficient resources and intelligence may potentially be able to identify and
exploit these weaknesses, thereby defeating the authentication mechanism to mas-
querade as another valid entity. Though considerable research has been done in the
past on various techniques to formally verify authentication protocols (Chapter 3),
it is generally agreed that proving an authentication protocol secure is not easy or
straightforward. As the role of networks in day to day activities continues to expand
rapidly, particularly in electronic commerce transactions, this area of research still
remains important and active. However, as protocols get increasingly complex, it is
becoming considerably more difficult and cumbersome to subject them to verification
procedures.

As Abadi and Needham rightly point out in [1], there is no substitute for good

engineering practices in designing cryptographic protocols. Approaching the problem

109

from this direction, this chapter develops an architecture designed to prevent gen-
erally known attacks on authentication protocols. Attention has been paid to keep
the architecture simple enough so that it will not face the same problems that the

protocols it tries to protect face, yet robust enough to resist most forms of attack.

7.1. Meta Authentication

The term meta authentication denotes an ‘encapsulating authentication’ mech-
anism for general authentication protocols. This is achieved through a high level
mechanism for validating the execution of underlying authentication protocols.

Meta authentication operates in the context of a meta authentication framework
comprising an architecture and a high level validation protocol that together provide a
distributed environment for monitoring and validating the execution of authentication
protocols. By utilizing the services of this layer, entities involved in an authentication
session can ensure that the execution of the authentication protocol itself has been
proper and devoid of any malicious tampering or manipulation. The framework does
not make any assumptions on the underlying authentication protocol and is generic
enough to support any protocol chosen by communicating entities. It is important
to note that, it is not a goal of meta authentication to offer any assurance as to
the correctness of beliefs established by the ‘encapsulated’ protocol; this is still the
responsibility of the encapsulated protocol. However, it does provide assurance that

the encapsulated protocol itself runs correctly, protected from extraneous interference.

110

The remainder of the chapter is devoted to developing the meta authentication

framework and to demonstrating how it helps to prevent various attacks.

7.1.1. Trust Model in Meta Authentication

Meta authentication is based on the concept of trusted third parties. All commu-
nicating entities in a domain of trust utilize the services of the trusted entity. The use
of trusted entities is not new in authentication, several authentication protocols that
depend on trusted third parties have been proposed and used in the past (a familiar
example is the Kerberos authentication system [41]). However, in almost all such
protocols, the trusted third party is an integral part of the authentication process.
Any weakness of the trusted party can seriously damage the security of numerous
entities depending on its service. Moreover, in large systems, the trusted entity can
quickly become a performance bottleneck, as it needs to be directly involved in all
sessions initiated among the entities in its authentication domain. Inter-domain au-
thentication (between two entities belonging to two different domains) is also a major
issue in such protocols, because of the potentially limited trust that entities in one
domain may be willing to have on the trusted entity belonging to another domain.

In the scheme developed here, the role of trusted third parties is limited to
only helping to monitor the execution of authentication sessions. They are neither
directly involved in the execution of the protocol, nor do they play any role in es-

tablishing beliefs between communicating parties. Their service is needed only if the

111

communicating entities wish to protect their authentication process through meta
authentication. Even without meta authentication, they will still be able to operate
any authentication protocol as normally done. However, doing so could expose the
authentication session to a variety of attacks as discussed in Chapter 2. The optional
use of meta authentication is designed to protect against such attacks, while incurring
minimal overhead.

In meta authentication, the entire user space is divided into trust domains. Each
domain includes any number of ordinary communicating entities and a trusted meta
authentication server (henceforth called the meta server). A meta server establishes
trust with every member in its domain, so as to function as an intermediary in intra-
domain authentication. An entity need not trust any member even in its own domain,
other than its meta server. Moreover, entities in one domain need not trust the meta
server in another domain. However, meta servers in different domains may establish
and maintain trust on one another, so that their services can be extended to inter-
domain authentication as well. As there is only one meta server in each domain, this
trust is far easier to establish and manage as compared to maintaining trust among
all entities in all domains, or between entities in one domain and meta servers in
other domains, or even between all entities in the same domain. Essentially, meta
authentication follows a hierarchical and transitive trust model. This means that, if
there is trust between entity A and its meta server Sy, between entity B (possibly in
another domain) and its meta server Sg, and between meta servers S, and S, then

eventually trust may be established between A and B.

112

Based on this concept, the following section describes an architecture capable

of protecting both intra-domain and inter-domain authentication sessions.

7.2. An Architecture for Meta Authentication

The meta authentication scheme uses public key cryptography to protect the
integrity of sessions. During an authentication session, communicating members and
the concerned meta servers exchange monitoring messages signed with their private
keys. These signed messages, verifiable only with the respective public keys, deliver
validating data to help the communicating members ascertain the integrity of the
‘encapsulated’ run of protocol. It may however be noted that meta authentication ex-
changes are not confidential, ie., exchanged messages are observable by anyone. This
is because, meta authentication relies only on the integrity of validation messages,
not on their confidentiality. When two members of the same domain authenticate,
this message exchange involves those two members and the domain’s meta server.
When the authentication is between two members belonging to different domains,
the exchange involves the two members and the meta servers of both domains. As
compared to other public key based systems, the meta authentication scheme imposes
only minimal requirements, which are as follows:

1. Each member and meta server in any domain has a public/private key pair.

2. The private key of every member and meta server is kept strictly confidential,
known only to the holder of the key (this is a requirement in all public key
cryptographic systems).

113

3. All members in a domain know the public key of the meta server of the same

domain.
4. A meta server knows the public keys of all members in its domain.

5. A meta server either knows the public keys of the meta servers in all other
domains, or has access to a mechanism through which such keys can be obtained

(for example, based on certificates issued by a higher trusted entity).

However,

1. A member need not know the public key of any other member (in its own, or

another, domain).
2. A member need not know the public keys of any meta server in other domains.

3. A meta server need not know the public key of any member of other domains.
Thus, the scheme allows each domain to be separately administered. The only
inter-domain knowledge is limited to meta servers who need to know the public keys
of one another. Thus, compared to schemes where every member needs to know
(or is able to access through some mechanism) the public keys of all members in
all domains, the overhead is minimal. This also enhances security by reducing the
chances of compromised key pairs being used. In large systems, the problem of
updating all members when the key pair of a member gets compromised is hard to
solve efficiently in a timely manner.
The basic scheme as would be used in intra-domain and inter-domain meta
authentication are shown in Figure 7.1 and Figure 7.2, respectively. In these figures,
the public and private keys of any entity X are represented as Kxz_pub and Kx_pruv,

respectively.

114

Trust domain

Meta Server

S

Ks_prv

Ks_pub
Ka_pub
Kb_pub

meta exchange
using Kb_prv
and Ksb_prv

meta exchange
using Ka_prv
and Ksa_prv

- - - - - - - - - - >
Ka_prv authentication protocol run Kb_prv
Ka_pub to be protected Kb_pub
Ks_pub Ks_pub

Figure 7.1. Intra-domain meta authentication

In the intra-domain case shown in Figure 7.1, members A and B belonging
to the same trust domain engage in an authentication session protected using meta
exchanges with the help of meta server S. Every entity (a member or meta server)
knows its own public and private keys. In addition, as indicated, the meta server
knows the public keys of both members. However, each member needs to know only
the public key of the meta server, not that of the other member.

In the inter-domain case shown in Figure 7.1, member A of trust domain 1
and member B of trust domain 2 engage in authentication protected using meta
exchanges with the help of meta servers Sa (trust domain 1) and Sb (trust domain
2). As indicated, each member needs to know only the public key of the meta server
of its own domain, not those of members or meta servers in other domains. Each

meta server knows the public keys of the members in its own domain. The figure

115

Trust domain 1 Trust domain 2

meta exchange
using Ksa_prv

Meta Server Meta Server

Ksa_pub and Ksb_prv Ksb_pub
Ka_pib Sa : ’ Sb Kb_prl)lb]
. Ksb_pub Ksa_prv } Ksb_prv Ksa_pub :

. meta exchange

meta exchange S
- using Kb_prv

using Ka_prv

and Ksa_prv and Ksb_prv
A el i >l B
Ka_prv fauthentication session Kb_prv
Ka_pub to be protected Kb_pub
Ksa_pub ‘ : Ksb_pub

Figure 7.2. Inter-domain meta authentication

also indicates that each meta server knows the public keys of meta servers in other
domains.

The authentication protocol employed by the communicating members A and B
is independent of the meta authentication scheme. Members may use any authentica-
tion protocol they choose. It is also irrelevant whether these ‘encapsulated’ protocols
are based on public key or shared key cryptography. Though it is desirable not to
use the key-pairs meant for meta authentication (such as Kz_pub and Kz _prv) in the
underlying authentication protocols, such use is not precluded.

The following section describes a protocol mechanism, which together with the

architecture presented, provides a robust meta authentication service.

116

7.3. A Protocol for Meta Authentication

As discussed in Section 7.2, the meta authentication framework uses signed
messages between communicating entities and meta servers to deliver validation data.
The reliability of meta authentication depends on the uniqueness of validation data.

During the run of an authentication protocol, several pieces of information are
exchanged between the two communicating entities. Such information may include
identities, nonces (one-time random values), time-stamps, and shared keys. If the
two entities calculate an integrity check value (IC'V) over these values using a pre-
defined and mutually agreed upon function, the results would be identical at the two
ends. It is also possible to calculate the IC'V using weighted functions resulting in
different values at the two ends. Still, either member will be able to deduce the value
calculated by the other entity, because both of them ideally have access to the same
pieces of information. It is desirable to use such weighted functions since it prevents
replay type attacks on the meta authentication itself. Other important properties
to be satisfied by the chosen function are that, (1) knowing an ICV it should be
infeasible to generate a set of protocol messages that would result in that IC'V, ie.,
the function must be an irreversible (one-way) function, and (2) it should be collision
resistant, meaning, different runs of the protocol must not result in the same ICV.
Thus, any good hash function may be used for IC'V generation.

By comparing the values of IC'V generated at both ends, it can be determined

whether the pieces of information seen by the entities are the same or not. By virtue

117

of encryption mechanisms used in the authentication protocol itself, many of these
values will be seen only by the communicating parties and not by any third party.
Thus it will be infeasible for an external entity to deduce the IC'V for a fresh instance
of protocol run.

Most attacks against authentication protocols as described in Section 2.4.1 in-
volve manipulation of messages in one form or another, be it replay, alteration, inser-
tion, or deletion. This indicates that in the presence of an attack, one or more pieces
of information known to one entity in the session (sent or received) may not be the
same as those seen by the entity at the other end. This implies that the IC'V will not
be the same at both ends (or, when weighted functions are used, the value calculated
by one will not be same as that deduced by the other).

If there is a reliable and trusted mechanism to exchange and compare these IC'V
values, the entities can determine whether the run of the ‘encapsulated’ authentication
protocol had been tampered with or not. However, there may be cases, depending on
the nature of attack, where the external intruding entity may be able to see all the
pieces of information seen by legitimate participants. In such cases, simply demon-
strating an /C'V is not sufficient because the intruder also will be able to generate this
value. This is the reason why signed messages are used in the meta authentication
framework to deliver validation data. The strong cryptography assumption ensures
that an intruder will not be able to forge the signature of another entity. Thus, the
mechanism used in meta authentication involves trusted delivery and comparison of

signed integrity check values.

118

An authentication session protected through meta authentication proceeds through

the following steps:

1. Before initiating the authentication session, the authenticating entities agree
whether to use the optional meta authentication services. If it is decided not
to, then no further protection is available and the entities proceed to step 3.

2. If meta authentication is to be used, the entities agree upon a predefined algo-
rithm for weighted integrity check value calculation.

3. The entities run the real authentication protocol. If meta authentication is not
used, the entities proceed to step 14.

4. As the authentication protocol proceeds, each entity calculates a local IC'V and
‘deduces’ the IC'V that is supposedly being calculated by the other.

5. When the authentication protocol run concludes, each entity sends the ‘deduced’
ICV to the meta server of its domain in a signed (signed with the entity’s
private key) message that also includes the identity of the entity, identity of the
other entity (the other participant in the authentication session) to whom the
information is to be delivered, and a time-stamp.

6. Each meta server verifies that the message came from an entity in its own
domain, and checks the validity of the signed message received using the public
key of the originating entity (this key is known to the meta sever, as the entity
is a member of its domain). It also checks the time-stamp to ensure that the

message is timely and not a replay.

119

7.

10.

Each meta server then extracts the information and determines whether the

recipient entity is a member of its own domain.

If this is the case (intra-domain authentication), it sends the information to the
entity in a signed message (signed with the server’s private key) also includ-
ing the identity of this meta server and its own time-stamp. Operation then

proceeds to step 9.

However, if the recipient entity is not a member of its own domain (inter-domain
authentication), then the meta server sends this newly formed message to the
meta server of the recipient entity, and operation continues in step 8.

The receiving meta server verifies the received message for integrity (using the
sending meta server’s public key) and timeliness. It also verifies that the re-
cipient is a member of its domain. On verification, the server extracts the
relevant information (identities of originating and receiving entities, and the
‘deduced’ ICV value) and sends it to the recipient. The message is signed with
this meta server’s private key and also includes the meta server’s identity and
a new time-stamp.

On receiving this validation message, each entity verifies that it was delivered
by the meta server of its own domain (using the public key of the server, known
to all members in the domain), and that it is timely.

From the validation message delivered in step 9, each entity extracts the identity

of the originating entity and verifies that there is indeed an authentication

120

session proceeding between the two. It then compares the ‘deduced’ IC'V value
received in the message with the value it had computed locally, and verifies that
they are identical. If both these checks are successful, then the entity proceeds
to step 13.
11. If either of the checks in step 10 fails, it indicates a possible intrusion attempt
and the entity immediately aborts the authentication session. After a timeout,
the entity at the other end will notice the absence of response and will also
terminate the session. The remaining steps are skipped in this case.
12. If an entity fails to receive the above validation message within a reasonable
amount of time after the conclusion of the authentication protocol run, it as-
sumes some foul play and aborts the authentication session. The other entity
will also have to terminate the session after a timeout. The remaining steps are
skipped in this case.
13. The successful checks in step 10 assure both authenticating entities that the
execution of the authentication protocol itself has been proper and secure.
14. Based on the outcome of the real authentication protocol, the entities determine
whether to accept the authenticity of the other entity or abort the session.
The procedure described above in steps 1 through 1/ constitute the meta au-
thentication protocol. As described, it is applicable to both intra-domain and inter-
domain authentication scenarios.

The high level message flows for these two cases are shown in Figure 7.3 and
Figure 7.4, respectively.

121

trust domain

meta server

A S B
real authentication session to be protected
i i e -
A calculates f B calculates

ICVa, ICVY’ : ICVb, ICVa’

[A, B, Ta, ICVb’]Ka_prv

ml "~ _[B,A, Tb,ICVa’]Kb_prv
: ml’
; [S,A,B,Ts, ICVD'[Ks_prv
[S,B,A, Ts,ICVa'[Ks_prv m2 |
: m2’ :
A rejects the session B rejects the session
if,ICVa’ I=ICVa if, ICVb’ |I=ICVb

if the session is accepted, A and B further process

the real authentication results

Figure 7.3. Intra-domain meta authentication protocol

In Figure 7.3, m1, m2 show the path of validation message delivery from A to B,
and m1’, m2' show the path from B to A. Note that there is no timing relationship be-
tween the two sequences, timing is applicable only within the same sequence. Similarly
in Figure 7.4, m1, m2, m3 and m1’, m2’', m3’ show the delivery path. A message of the
form [p,q,r,...]Kp_prv in fact represents the message {p,q,r, ..., (p,q,r,...) Kp_prov},

where, (p,q,r,...)Kp_prv is the originator’s signature; ie., each message is a concate-

nation of some clear-text and the corresponding validating signature.

Later sections demonstrate how this protocol prevents various attacks on au-

thentication protocols. However, before proceeding to demonstrate its use, a more

122

trusted domain 1 trusted domain 2

meta server meta server
A Sa Sb B
real%authentication session to be protectéd

- E e e e e s e e o -
A calculates : : B calculates
ICVa, ICVb’ : : ICVb, ICVa’

[A.B.Ta, ICVD'Ka prv | < IB.A.Tb,ICVa’JKb_pry
ml [Sa,A, B, Tsa, ICVb’]Ksa_prv ; ml’
m2 :

; . [Sb,B, A, Tsb,ICVa'JKsb_prv '
;[Sa, B, A, Tsa,ICVa’]Ksa_prv -

m2’ [Sb, A, B, Tsb, ICVb'JKsb_prv
: m3’ : : m3 :
A rejects‘the session ‘ ‘ B rejects the session
if, ICVa’ I=1ICVa if, ICVb’ 1= ICVb

if the session is accepted, A and B further process
the real authentication results

Figure 7.4. Inter-domain meta authentication protocol

formal argument on the security properties of the meta authentication protocol is

given in the following section.

7.3.1. Security of Meta Authentication Protocol

A qualitative explanation of meta authentication was given in preceding sec-
tions. A more formal argument on the security of meta authentication is given here.
Consider the high level view of the transfer of validating information in the meta
authentication model shown in Figure 7.5, and the trusted paths shown in Figure 7.6.
In these figures, z and y are the integrity check values (ICV) calculated locally
by A and B. Also, y' is the value deduced by A (corresponding to y calculated by

B), and 2’ is the value deduced by B (corresponding to = calculated by A).

123

meta channel

Sa Sb
meta channel meta channel
y9
X!
real authentication channel
A ------ - - B
X y

Figure 7.5. Validation data transfer in meta authentication

The security of the meta authentication scheme can be demonstrated through
the following argument:

1. Entity A accepts the authentication protocol run if and only if 2’ = x.

Entity B accepts the authentication protocol run if and only if ¢ = y.

2. Given x or y, it is infeasible to generate a set of messages that give the same
ICVs. This is because of the collision resistance and irreversibility of the IC'V
generating function.

3. A and B exchange 3’ and z' through a sequence of signed messages as indicated

in Figure 7.6.

(y’)Ka_prv (y’)Ksa_prv (y’)Ksb_prv

A L Sa Sb - B
(x*)Ksa_prv (x”)Ksb_prv (x")Kb_prv

Figure 7.6. Trusted paths in meta authentication

4. Under the given assumptions and based on the properties of public key cryp-

tography, a malicious entity cannot do the following:

124

(a) forge any of the signed messages in (3), because the required private key
will not be known to it. This follows from the strong cryptography assump-
tion.

(b) replay any of the messages in (3), because x and y are time-dependent
since their calculation uses time-stamps as one of the inputs.

(c) substitute a message in (3) with a similar message from a different run
of the protocol, because (2) ensures that it is infeasible to manipulate a
protocol run such that it results in a known ICV (ie., x or y).

Therefore, if a message is delivered in (3), the receiver is assured of the data ori-
gin authenticity and data integrity (note that data confidentiality is not assured,
but meta authentication does not rely on confidentiality). Any attempt to carry
out (a), (b), or (c) will be detected by the receiver, which then promptly aborts
the session.

However, a malicious entity capable of observing and manipulating protocol
messages may be able to do the following:

(a) intercept and possibly delete a message in (3). But the receiver will detect
the message loss through timeout and abort the session.

Therefore, if a message is not delivered in (3), the receiver will terminate safely

and stop all further processing of the ‘encapsulated’ protocol.

Thus tampered or manipulated messages and lost messages result in the termi-

nation of the authentication session, ie., the meta protocol is fail safe.

125

5. From (4), it follows that the meta channel between A and B is secure (in the
limited sense of providing integrity and authenticity without any confidentiality)
and fail safe. This implies that, any message that is successfully delivered and
accepted is valid, fresh, and authentic.

6. From (5), it follows that:

(a) if an IC'V match is found, then the integrity of the monitored authentica-
tion protocol is assured.

(b) if an ICV match is not found, then the monitored protocol run did not
proceed properly.

(c) failure of the meta protocol itself (through loss of messages, for example)
leads to safe termination, and is equivalent to (b).

7. From (6), it follows that an ‘encapsulated’ (monitored) authentication protocol
is secure (in terms of integrity) if the meta channel between the authenticating
entities is secure and fail safe.

Thus, the meta authentication scheme provides a robust mechanism to ensure
the integrity of authentication protocols.
The following section demonstrates how meta authentication scheme can be

used to protect against various attacks on authentication protocols.

126

7.4. Protecting Authentication Protocols Against Attacks

Authentication protocols are vulnerable to a variety of attacks as discussed
in Section 2.4.1. Most of these attacks exploit vulnerabilities in protocol structure
and belief establishment mechanisms, and do not depend on the strength (or lack
thereof) of any specific encryption mechanism used in the protocol. Replay attacks,
oracle session attacks, and parallel session attacks are examples of potential threats
to authentication protocols. This section demonstrates how such attacks may be
defended against using the meta authentication scheme, by considering a variety of
known attacks against different types of protocols. The more general scenario of inter-
domain authentication is assumed in all these cases, since inter-domain authentication

can be considered as a subset of the former.

7.4.1. Preventing Parallel Session Attacks

This section shows, using the example of a simple shared key one-way authen-
tication protocol, how meta authentication can prevent parallel session attacks. An
entity A tries to authenticate another entity B using the shared key protocol; B does
not try to authenticate A in this case, so the authentication is one-way. This simple
protocol is vulnerable to a parallel session attack wherein an intruder C' manages to
falsely convince A that it is in fact B. It does this by engaging in two parallel sessions

with A. B need not even be involved in any session while the attack occurs.

127

The authentication protocol and the parallel session attack are shown in Fig-

ure 7.7 and Figure 7.8, respectively.

initiator responder

A B
Kab : : Kab
A, B, (Na)Kab

ml

. A

B, A, (Na + 1)Kab

m2

Figure 7.7. Simple one-way authentication protocol

initiator intruder responder
A C (B) B
Kab : : : Kab
: A, B, (Na)Kab % :
ml k
. |
. I
3 B, A, (Na)Kab L
;o ml’ i
parallel session : - original session
I : .
NE A,B,(Na+ DKab & |
: m2’ : i
|
!
|

B, A, (Na+ 1)Kab

m2

Figure 7.8. Parallel session attack on simple one-way protocol

In the normal protocol run (Figure 7.7), A sends a nonce Na to B (message m1),
encrypted using their shared key Kab. If B is able to send back (Na + 1) (message
m2) encrypted with the same shared key, A assumes that it is indeed communicating

with B. In the attack (Figure 7.8), a malicious entity C' intercepts message m1 from

128

A. As it does not have access to Kab, C' cannot recover Na. But, using the same
encrypted value, C' starts another parallel session with A by sending message m1’.
Believing that B has initiated a new session, A sends back the encrypted value of
(Na + 1) in message m2'. Though C' cannot decrypt this value either, it can use the
encrypted value as it is to form the response expected in the original session initiated
by A (as this is exactly the value A expects to receive from ‘B’). When the message
m2 generated by C' arrives, A concludes that it must have come from B. Thus, C
succeeds in masquerading as B.

Figure 7.9 shows the scenario when meta authentication is employed.

trust domain a trust domain ¢ trust domain b
initiator meta server intruder meta server ‘responder’ meta server
'Y
A Sa C (‘B Sc B Sb
original authentication session
............. e e —, e —,——————-
A caldulates A :

ICVa, ICVb’

[A,B,Ta, ICVb’[Ka_prv :

ml . [Sa,A,B,Tsa,ICVb'|Ksa_prv
A does not get R m2
validdtion message: : s
- 29 Sb, A, B, Tsb, ICVb’]Ksb_prv
times out, - : Cean’tsend o2 : ! Jisb-p :

m3

aborts session needed message

B igﬁores m3

parallel authentication session

B L L) .

A calculates A
ICVa, ICVb’ :

[A,B,Ta, ICVb’ [Ka_prv

ml ~ [SaA, B, Tsa, ICVb']Ksa_prv
: m2
A does not get - 29 [Sb, A, B, Tsb, ICVb’]Ksb_prv
validation message: ..~ C can’t send ° ; :
L - :
times out, : needed message : m3

aborts session B ignores m3

Figure 7.9. Preventing parallel session attack using meta authentication

129

As per the meta authentication protocol rules, A calculates ICVa and ICVV
(assuming that it is talking to B) and sends the validation message containing IC'V'b’
to B (via Sa and Sb). However, when B receives this message, it recognizes that it
has currently no session with A (because A’s initiation message was intercepted by
C' and never reached B). Hence, the message will be simply discarded by B. It may
be noted that, even if C' manages to intercept the validation message itself as well,
no harm is done as B would have discarded it anyway.

Meanwhile, A is expecting the corresponding message from B. Since B is not
a participant in the session, it will not send any message. Even if it wants, C' will
not be able to send a fake validation message to A. To do that, C should be able
to calculate the IC'V and be able to get Sc to deliver a signed message on its behalf
to A (via Sa). But, without Kab, C' cannot see the information carried inside the
messages of the real authentication protocol, and hence will not be able to deduce
the IC'V. Also, to be accepted by A, the message must have B as the identity of its
originator. Because of this, C' cannot use its own identity in the message, as it would
be rejected by A who is not expecting anything from C'.

If C tries to use B’s identity in the message sent to Sc¢ (to be forwarded to
A via Sa), Sc will detect the discrepancy between the claimed identity (‘B’) and
the signature, and refuse to deliver it. A possible conspiracy between C' and Sc will
also not work because, if Sc forwards the ‘validation” message mentioning B as the
originating entity, it would be rejected by Sa when it notices that the message is

signed by Sc¢ which is not a meta server for B’s domain.

130

In short, C' will not be able to deliver an acceptable validation message to A,
either during the original session initiated by A or during the parallel session started
by C. Therefore, according to the meta authentication rules, A will time out and
abort the ongoing authentication sessions for which the decisions of acceptance are
pending. Thus, C’s attempt to pass off as B through the parallel session attack is

defeated.

7.4.2. Preventing Replay Attacks

In the Needham-Schroeder shared key protocol discussed in Section 2.3.2.2, two
trusted entities, A and B, use the services of a trusted authentication server, AS,
to establish fresh session keys to be used in their communication. There is a known
freshness attack (replay attack) against this protocol as described in Section 2.4.2.1.
The original protocol and the attack are reproduced for convenience in Figure 7.10
and Figure 7.11, respectively. In the attack, a malicious entity C' replays a message
from an old session between A and B, and succeeds in falsely convincing B that it is
indeed A. The trusted authentication server is not even involved during the session.

This attack can be prevented by executing the protocol under the meta authen-
tication scheme. Figure 7.12 shows the scenario.

As shown in Figure 7.12, the unsuspecting responder B calculates and sends the
ICV to A (the claimed initiator) via Sb and Sa, and then waits for a similar message

to arrive from ‘A’ in order to make a decision on whether to proceed with the session.

131

However, A ignores the validation message from B since it is not expecting any such
message from B with whom it does not have any session in progress. Due to the same
reasons as given in Section 7.4.1 for the case of the simple shared key protocol, the
intruder C' will not be able to get an acceptable validation message delivered to B.
Therefore, after waiting, B will eventually time out and abort the real authentication
session for which the decision for acceptance is pending. Thus C’s attempt to fake

A’s identity through the replay (freshness) attack fails.

initiator responder authentication server
A B AS
. . - Kb
A requests foré session key with B A.B.Na ‘
: m0’ :
(Na.B Kab (Kab, A)Kb)Ka AS generates and sends Kab
Lm0 ‘

A recovers Kab,
forward;S B’s portion (Kab, AKb

ml :
B recovers Kab

(Nb)Kab
m2

(Nb- Kab
m3

Figure 7.10. Needham-Schroeder shared key protocol

132

initiator intruder
A C (3 A 9)
 Ka :

C replays old me:%sage between A and B
(Kab, A)Kb

responder authentication server
B AS
" Kb Ka

- Kb

ml’

(Nb)Kab

B recovers Kab

m2’

C replays the nex? message also
(Nb - 1)Kab

m3’

Figure 7.11. Freshness attack on Needham-Schroeder shared key protocol

trust domain a

trust domain ¢

trust domain b

initiator meta server

A Sa

intruder

C (‘A?)

meta server ‘responder’ meta server
Sc B Sb
replayed authentication session
........... -
B calculates
ICVb, ICVa’

needed message

[B, A, Tb, ICVa’IKb_prv

ml

[Sb,B, A, Tsb, ICVb’]Ksb_prv

[B, A, Tsa, ICVa’]Ksa_prv

m3

A ignores m3

m2

; . B does not get
“validation message:

timés out,
aboits session

Figure 7.12. Preventing replay (freshness) attack using meta authentication

133

7.4.3. Preventing Oracle Session Attacks

In the Needham-Schroeder public key authentication protocol, described in Sec-
tion 2.3.2.3, two trusted entities, A and B, use the knowledge of their respective
private keys to prove identity. As explained in Section 2.4.2.2, this protocol is vul-
nerable to an oracle attack. A malicious third entity, C', who also happens to be a
legitimate member of the domain, waits until A initiates an authentication session
with it. C' then initiates a fake session with B, using A as an ‘oracle’ to generate
messages needed in the fake session. Through the clever manipulation of messages,
C succeeds in faking the identity of trusted entity A. A simplified version of the
original protocol and the attack scenario are shown in Figure 7.13 and Figure 7.14,

respectively.

initiator responder
A B
Ka_prv : Kb_pub Kb_prv: Ka_pub
Ka_pub : Kb_pub:
(Na, A)Kb_pub
ml

(Na, Nb)Ka_pub

m2

(Nb)Kb_pub

m3

Figure 7.13. Needham-Schroeder public key protocol

By subjecting the protocol to the supervision of the meta authentication scheme,

the attack can be prevented from succeeding. Figure 7.15 shows the scenario.

134

initiator intruder responder

A C(AY) B
Ka_prv @ Kb_pub Kc_prv: Ka_pub Kb_prv: Ka_pub

Ka_pub | Kc_pub Kc_pub: Kb_pub Kb_pub: Kc_pub

(Na, A)Kc_pub

(Na, A)Kb_pub

ml
ml’
: (Na, Nb)Ka_pub
(Na, Nb)Ka_pub : m2’
m2 :
(Nb)Kc_pub
m3 3 (Nb)Kb_pub

m3’

Figure 7.14. Oracle attack on Needham-Schroeder public key protocol

As shown in Figure 7.15, there are two sessions to be considered. The first is the
legitimate session initiated from A to C'. The other is the fake session initiated from
C' (in the guise of A) to B. In the first session, both A and C' are able to exchange
validation messages with each other (m1, m2, m3, and m1’, m2’, m3’) and therefore
the session is accepted as properly executed.

In the fake session from C' to B, B calculates and sends the IC'V to A (the
claimed initiator) via Sb and Sa (messages m1”, m2”, m3”), and waits for a message
from ‘A’. However, A ignores this message as it is not expecting any message from
B. Again, for the same reasons as explained in Section 7.4.1, the intruder C' will not
be able to deliver an acceptable validation message to B through S¢ and Sb. Thus,
B will eventually time out and abort the authentication session to ‘A’ (actually C')
for which acceptance decision is pending. This defeats C’s attempt to take on A’s

identity through the oracle session attack.

135

trust domain a trust domain ¢ trust domain b

initiator meta server intruder meta server ‘responder’ meta server

A Sa C(‘A%) Sc B Sb

A calculates : C calculates
ICVa, ICVc ICVe, ICVa’

[A,C, Tsa, ICVc’|Ksa_prv

[Sa, A, C, Tsa, ICVc’]Ksa_prv

“m2

ml

[Sc, A, C, Tsc, ICVc’[Kse_prv

m3
session with A ok

- [C, A, Tc,ICVa’]Ke_prv
ml’

[Sc,C, A, Tsc, ICVa’|Ksc_prv

:[Sa, C, A, Tsa,ICVa’|Ksa_prv :

m2’
m3’ :
: fake authentication session
session with C ok mmmmmmmmmmmmm——————— mmmmmm———— -
V'A B calculates
C can’t send ?? : ICVb, ICVa’
e T e - :
needed message [B, A, Tb, ICVa’|Kb_prv
b R m[iR
‘ [Sb, B, A, Tsb, ICVb’]Ksb_prv
. [Sa,B, A, Tsa,ICVa’]Ksa_prv : : m2” .

3
B does not get
validation message:

" times out,
aborts session

A ignores m3”’

Figure 7.15. Preventing oracle session attack using meta authentication

7.4.4. Preventing Binding Attacks

Binding attacks are generally not aimed directly at authentication protocols,
but is equally dangerous. The attack compromises the security and trustworthiness of
directory servers commonly used in public key encryption infrastructures to distribute
public keys of entities. Entity A, that wants to send encrypted messages to another
entity B, requests a directory server D for B’s public key, by sending a message
containing the identity of B and a nonce. The server D sends the requested key to

A, along with its own identity, the requester’s identity, the nonce, and the requested

136

public key. This reply message is signed with D’s public key which is considered to be
well known. A may then proceed to send encrypted messages to B using the public
key of B thus obtained.

In the attack, an intruder C' intercepts the original request from A and then
forwards it to D after replacing the identity of B with its own identity (C'). The
reply from D, which contains the public key of C, is forwarded to A by C. The
unsuspecting A starts sending encrypted messages to B using the public key received
in the response. As the returned key is that of C' and not that of B, C' can intercept
and decrypt all the messages. Even if B happens to see the messages, it will not be
able to decrypt them. The attack is called a binding attack because it compromises
the ‘binding’ between an entity and its public key.

The original protocol and the attack scenario are shown Figure 7.16 and Fig-

ure 7.17, respectively.

well known
sender receiver directory server
A B D
Ka_prv: Kd_pub Kb_prv: Kd_pub Kd_prv: Ka_pub

Ka_pub: Kb_pub: Kd_pub: Kb_pub

A requests B’s ‘bublic key A.B.Na

ml D sendsiB’s public key
in signed message

D, (D, A, Na, Kb_pub)Kd_prv

m2

A recovers Kb: pub
sends encrypted messages to B

B recovers messages

Figure 7.16. Public key distribution protocol

137

well known

sender intruder receiver directory server
A C B D
Ka_prv. Kd_pub Kc_prv. Kd_pub Kb_prv: Kd_pub Kd_prv: Ka_pub
Ka_pub: Kc_pub: Kb_pub: Kd_pub: Kb_pub
: : : Kc_pub

Arequests B)Sip ublic key C interc:epts message

A’s original request does not reach D

A,B,Na

ml

C sends dltered request
: A,C,Na

B

ml :
D sends C’s public key

in signed message

D, (D, A, Na, Kc_pub)Kd_prv

m2 '
A recovers Kc_pub
believes it is B’s key 1
sends encrypted messages 1o ‘B’ :
....... K]
CG..)Keppp ¢+ =
C intercepts and B is unable to decrypt
decrypts messages even if messages arrive

Figure 7.17. Binding attack on public key distribution protocol

The meta authentication scheme can be used in this case also to defend against
the attack. Though the protocol being protected is not an authentication protocol,
this example illustrated the more general applicability of the meta authentication
scheme. Figure 7.18 shows how the scheme handles the attack.

In this case, since the messages seen by A and D will be different (because
of the alterations by C'), the ICV calculated by them will be different. Thus when
the validation message from D arrives, A detects the discrepancy and discards the
received public key ‘Kb,ub’ (in reality, Kc,ub). Since this key will not be used by A
for encrypting any messages, C’s intention of snooping on messages meant for B will
not succeed.

[t is evident that a wide variety of attacks against authentication protocols (and

other security protocols such as the key binding protocol in the last example) can be

138

trust domain a trust domain d

well known
sender meta server intruder directory server meta server
A sa c D >
: manipﬁlated binding requeéljresponse
I it el -
oo ‘ ‘
A cafculates messages at A and D differ, so ICVs will differ D calculates

: ICVd, ICVa’
ICVa, ICVd’ .

[D, A, Tb, ICVa’|Kd_prv

ml’

[A, D, Ta, ICVd’]Ka_prv
ml :

[D, A, Tsa, ICVa’]Ksa_prv

{[Sd, D, A, Tsd, ICVa’]Ksd_prv

m3’ [Sa, A, D, Tsa, IéVd’]Ksa_prv "
: m2 3
© [D, A, Tsa, ICVa’]Ksa_prv
) m3
A finds rﬁismatch inICV - D finds mismatch in ICV

discards ‘Kb_pub’ (Kc_pub, in reality)
does not use it for encryption

Figure 7.18. Preventing binding attack using meta authentication

prevented by employing the meta authentication scheme. Further, as this example
shows, the meta authentication scheme has more general applicability than being just
limited to protecting authentication protocols.

Thus, the meta authentication paradigm appears to hold much promise in de-

fending networks against various forms of malicious activities.

139

Chapter 8

CONCLUSION AND FUTURE DIRECTION

This chapter provides a summary of the work presented in this thesis. It also
presents an outline of potential future directions for further research in the areas

investigated in the thesis.

8.1. Thesis Summary

This thesis is the result of an investigation into the potential vulnerabilities of
authentication systems, attempts to detect such weaknesses, and techniques to defend
against the exploitation of those weaknesses.

Chapter 2 discussed the principles of operation of authentication protocols and
some of their potential weaknesses, along with examples of attacks that exploit such
weaknesses to breach security. The need for formal analysis and verification tech-
niques in the case of authentication protocols was discussed and a survey of previous
approaches presented in Chapter 3.

A verification framework for authentication systems was developed, based on
state machine principles, in Chapter 4. Authentication scenario modeling, and a

demonstration of the use of the framework in verification was presented in Chapter 5.

140

An alternative approach, based on simulation, was developed in Chapter 6.
The approach, which stresses validation rather than verification, was shown to be
potentially useful in identifying protocol flaws. Though not as rigorous as formal
techniques, this simulation approach promises to be a valuable and powerful tool in
studying authentication protocols, especially considering its relative simplicity and
flexibility as compared to formal verification techniques.

After investigating these different methods to model and analyze authentica-
tion systems, and identify their weaknesses, a meta authentication scheme to protect
authentication even in the presence of vulnerabilities was developed in Chapter 7.
An architecture and protocol for meta authentication were developed, and their ef-

fectiveness demonstrated by showing how various attacks can be prevented.

8.2. Future Directions

In each of the areas mentioned in the previous section, there is ample opportu-
nity for further research. The following sections briefly describe some potential future

directions in these areas.

8.2.1. Verification Techniques

The state machine based verification framework developed in Chapter 4 is a
potentially powerful tool to analyze authentication systems. However, the verification

procedure is still complex and require fairly good expertise in protocol modeling

141

and representation. Therefore it is felt that an automated system with a simplified
protocol modeling interface may prove valuable. This would be an area that needs
further research and could provide very useful results.

Devising a simple and flexible language for expressing authentication protocols
and properties would be another useful contribution that needs to be investigated
further. Integration of such a language into the verification framework could yield a
very flexible and powerful verification framework that would be useful for researchers

and protocol designers alike.

8.2.2. Simulation Based Validation

As demonstrated in Chapter 6, discrete event simulation appears to be a promis-
ing approach to validate authentication protocols. In the work presented in that
chapter, modeling of the protocol and its translation into a simulation framework
was performed manually. It would be a very worthwhile effort to investigate the fea-
sibility of automating this process. Such a modified setup would provide a valuable
environment to study authentication protocols.

Another area to be investigated is regarding the coverage provided by simula-

tion, and hence its effectiveness as a dependable validation tool.

142

8.2.3. Meta Authentication

Chapter 7 developed the meta authentication scheme as an effective way to
counter various types of attacks against authentication protocols. As demonstrated,
the results appear to be promising and consistent. One major assumption behind the
scheme’s operation was that there would be trust domains based on public key cryp-
tography. In practice, this may prove to be somewhat of a restriction, especially with
the emergence of small networked devices that may not have enough computational
resources to carry out expensive public key transformations.

One very promising area to investigate is, whether it is possible to remove
the above mentioned restriction without jeopardizing the security and robustness of
the scheme. Though it seems unlikely that it would be possible to totally do away
with encryption operations, there is hope that techniques developed for agreement
and consensus in distributed systems may prove valuable in devising techniques to
provide an efficient solution.

With the emergence of IPsec as a standardized framework for Internet security
[3] [21], it is important to investigate how a scheme like meta authentication can
coexist with, and contribute to it. This is especially true in environments where
minimal overhead (in terms of computational resources, communication bandwidth,
and managability) is important as in the case of increasingly popular mobile networks

with low power devices. This is another potential area for further research.

143

8.3. Conclusion

The design of authentication protocols is both exciting and challenging. It is
also notoriously full of potential pitfalls. Even a very slight lack of attention to details
could result in protocols with subtle vulnerabilities that are hard to detect and defend
against. Security of entire networks could be jeopardized by such protocols, with very
serious and far reaching implications.

This thesis investigated potential vulnerabilities in authentication protocols,
to develop methods to detect such weaknesses, and to devise techniques to defend
against the exploitation of those weaknesses that might still escape careful design
and thorough analysis, and creep into protocols deployed in real data networks.

Evidently, there is considerable opportunity for further research into each of
the discussed areas. It is hoped that the work presented in this thesis may trigger
further investigations in this very rewarding and important field - the art and science

of authentication protocols.

144

REFERENCES

[1] ABaDI, M., AND NEEDHAM, R. Prudent engineering practice for cryptographic
protocols. IEEE Transactions on Software Engineering 22, 1 (Jan. 1996), 6-15.

2] AMOROsO, E. Fundamentals of Computer Security Technology. Prentice-Hall,
Englewood Cliffs, NJ, 1994.

[3] ATKINSON, R., AND KENT, S. Security Architecture for the Internet Protocol.
The Internet Society, Nov. 1998. RFC 2401.

[4] AurA, T. Modelling the needham-schroeder athentication protocol with high
level petri nets. Digital Systems Laboratory Report B14, Helsinki Univ. of Tech-
nology, Sep. 1995. (http://saturn.hut.fi/html/staff/tuomas.html).

[5] BAKER, R. H. Computer Security Handbook. McGraw-Hill, NY, 1991.

6] BARTLETT, K. A., SCANTLEBURY, R. A., AND WILKINSON, P. T. A note on
reliable full-duplex transmission over half-duplex links. Communications of the

ACM, 12 (1969).

[7] BirD, R., GopAL, 1., HERZBERG, A., JANSON, P. A., KUTTEN, S., MOLVA,
R., AND YOUNG, M. Systematic design of a family of attack-resistant authen-
tication protocols. IEEFE Journal on Selected Areas in Communications 11, 5
(June 1993), 679-693.

[8] BocHMANN, G. V. Finite state description of communication protocols. Com-
puter Networks, 2 (1978), 361-372.

9] BRAND, D., AND ZAFIROPULO, P. On communicating finite-state machines.
Journal of the ACM 30, 2 (Apr. 1983), 323-342.

[10] BurRrROWS, M., ABADI, M., AND NEEDHAM, R. A logic of authentication.
Research Report SRC-39, DEC Systems Research Center, Palo Alto, CA, 1989.

[11] Burrows, M., ABapi, M., AND NEEDHAM, R. A logic of authentication.
ACM Transactions on Computer Systems 8, 1 (Feb. 1990), 18-36.

[12] CLARK, J., AND JAcOB, J. A survey of authentication protocol literature.
Survey report, University of York, UK, 1996. (http://www.cs.york.ac.uk/ jac/).

145

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

DANTHINE, A., AND BREMER, J. Modelling and verification of end-to-end
transport protocols. Computer Networks, 2 (1978), 381-395.

Davies, D. W., AND PrIice, W. L. Security for Computer Networks. John
Wiley & Sons, Ltd., Chichester, UK, 1984.

DENNING, D. E., AND SAcco, G. M. Time stamps in key distribution proto-
cols. Communications of the ACM 24, 8 (Aug. 1981), 533-536.

DEVARGAS, M. Network Security. NCC Blackwell, Oxford, UK, 1993.

DoLEv, D., AND YAO, A. C. On the security of public key protocols. IEEFE
Transactions on Information Theory IT-29, 2 (Mar. 1983), 198-208.

GOLLMANN, D. What do we mean by entity authentication? In Proceedings of
the IEEE Symposium on Security and Privacy (1996), IEEE Computer Society
Press, 46-54.

Gong, L., NEEDHAM, R., AND YAHALOM, R. Reasoning about belief in cryp-
tographic protocols. In Proceedings of the IEEE Computer Society Symposium
on Research in Security and Privacy (1990), IEEE Computer Society Press,
234-248.

GoNG, L., AND SYVERSON, P. Fail-stop protocols: An approach to designing
secure protocols. In 5th International Working Conference on Dependable Com-
puting for Critical Applications (DCCA-5) (1995), Springer-Verlag, Heidelberg,
Germany, 44-45.

HARkINS, D., AND CARREL, D. The Internet Key Exchange (IKE). The
Internet Society, Nov. 1998. RFC 2409.

HorLzMmANN, G. J. Design and Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs, NJ, 1991.

HoprcroFT, J. E., AND ULLMAN, J. D. Introduction to Automata Theory, Lan-

gauges, and Computation. Addison-Wesley Publishing Company Inc., Reading,
MA, 1979.

HoskoTE, Y. V. Formal Techniques for Verification of Synchronous Sequential
Circuits. PhD thesis, University of Texas, Austin, 1995.

HoskoTE, Y. V., ABRAHAM, J. A., AND FUsseLL, D. S. Automated verifi-

cation of temporal properties specified as state machines in vhdl. In Proceedings
Fifth Great Lakes Symposium on VLSI, Buffalo, NY (Mar. 1995), 100-105.

INDIRADEVI, K., AND NAIR, V. S. S. Usability and reliability evaluation
of user interfaces. Proceedings of IEEE International Workshop on Evaluation
Techniques for Dependable Systems, San Antonio, TX (Oct. 1995).

146

[27]

28]

[29]

[30]
[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

KAILAR, R., AND GLIGOR, V. D. On belief evolution in authentication pro-
tocols. In Proceedings of the IEEE Computer Security Foundations Workshop,
Franconia, NH (1991). (http://www.bnetal.com/raja/).

KATZELA, 1. Modeling and Simulating Communication Networks: A Hands-On
Approach Using OPNET. Prentice-Hall, Englewood Cliffs, NJ, 1999.

Lowg, G. An attack on the needham-schroeder public key authentication pro-
tocol. Information Processing Letters (Nov. 1995), 131-136.

MANO, M. M. Digital Design, 2 ed. Prentice-Hall, Englewood Cliffs, NJ, 1991.

Meapows, C. A. The nrl protocol analyzer: An overview. In Proceedings of
the 2nd Conference on the Practical Applications of Prolog (1994), Association
for Logic Programming.

MEADOWS, C. A. Formal verification of cryptographic protocols: A survey.
In Advances in Cryptology - Asiacrypt ‘94, LNCS 917 (1995), Springer-Verlag,
Heidelberg, Germany, 133-150.

MicHEL, J., BALABAN, P., AND SHARUNUGAN, K. S. Simulation of Commu-
nications Systems, 2 ed. Kluwer Publishers, USA, 2000.

MiL3. Opnet Documentation. MIL 3, Inc., Washington DC, USA, 1997.
(http://www.mil3.com).

MiLLEN, J. K. The interrogator model. In Proceedings of the IEEE Symposium
on Security and Privacy (1995), IEEE Computer Society Press, 251-260.

MiILLEN, J. K., CLARK, S. C., AND FREEDMAN, S. B. The interrogator:

protocol security analysis. IEEE Transactions on Software Engineering SE-13,
2 (Feb. 1987), 274-288.

MitcHELL, J. C., MITCHELL, M., AND STERN, U. Automated analysis of
cryptographic protocols using mur-phi. In Proceedings of the IEEE Symposium
on Security and Privacy (1997), IEEE Computer Society Press, 141-151.

NAIR, V. S. S., ABRAHAM, J. A., AND INDIRADEVI, K. Formal checking

of reliable user interfaces. First Conference on Fault-Tolerant Systems, Madras,
India (Dec. 1995).

NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for authentica-

tion in large networks of computers. Commaunications of the ACM 21, 12 (Dec.
1978), 993-999.

NELsON, V. P., NAGLE, H. T., CARROLL, B. D., AND IRWIN, J. D. Digital
Logic Circuit Analysis € Design. Prentice-Hall, Englewood Cliffs, NJ, 1995.

147

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

NeuMmAN, B. C., AND Ts’0, T. Kerberos: An authentication service for com-
puter networks. IEEE Communications 32, 9 (Sep. 1994), 33-38.

OPPLIGER, R. Authentication Systems for Secure Networks. Artech House, Inc.,
Norwood, MA, 1996.

PosTEL, J. B. A Graph-Model Analysis of Computer Communication Protocols.
PhD thesis, University of California, Los Angeles, 1974.

RivesT, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining
signatures and public-key cryptosystems. Communications of the ACM 21, 2
(Feb. 1978), 120-126.

SADIKU, M., AND ILYAs, M. Simulation of Local Area Networks. CRC Press,
Boca Raton, FL, 1995.

SAUER, C. Simulation of Computer Communication Systems. Prentice-Hall,
Englewood Cliffs, NJ, 1983.

SCHNEIDER, S. Security properties and csp. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (1996), IEEE Computer Society Press, 174-
187.

SCHNEIER, B. Applied Cryptography - Protocols, Algorithms, and Source Code
in C, 2 ed. John Wiley & Sons, Inc., NY, 1996.

SYVERSON, P. F., AND VAN OORSCHOT, P. C. On unifying some cryptographic
protocol logics. In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy (1994), IEEE Computer Society Press, 14—
28.

ZAFIROPULO, P., WEsT, C. H., RubpiN, H., CowAN, D. D., AND BRAND,
D. Protocol analysis and synthesis using a state transition model. In Computer
Network Architectures and Protocols, J. P. E. Green, ed., Plenum Press, NY,
1982, 645-669.

148

