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Code division multiple access (CDMA) networks allow subscribers to share frequencies, so

optimizing revenue involves reserving channel equivalents to each market subject to signal-to-

interference constraints at the radio towers. We present a yield management model inspired

by those from the airline industry to optimize revenue under uncertainty. We describe the

optimality conditions and develop a supergradient algorithm. We provide computational

results that show the effects of the distribution and variance of demand. Finally, we discuss

areas of future research, including a method to optimize the locations of the towers.
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1. Introduction

Optimization models for network design, routing, and capacity expansion in the telecom-

munications industry are typically driven by demand forecasts. As Laguna [11] observes,

however, it is particularly difficult to predict the demand pattern that will be placed on a

telecommunications network. Building or expanding these networks often entails consider-

able investment in infrastructure. The investment could be lost if the network is designed

based upon an overly optimistic forecast. Moreover, if the forecast is too conservative, the

resulting network will not have enough capacity to meet all of the demand. Consequently,

the service provider risks losing market share while it scrambles to install additional capac-

ity to meet unanticipated demand. Thus, the problem of network capacity planning under

demand uncertainty has received considerable attention in the literature.

Sen et al. [19] present a stochastic programming model for capacity expansion in which

the demand is realized after additional lines are added to an existing network. The recourse
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problem is to find optimal routes for the traffic given the link capacities determined in the

first stage. Other examples of stochastic programming approaches to capacity planning in

fiber-optic networks include Lisser et al. [12], Riis and Lodalhl [17], Riis and Andersen [16],

and Smith et al. [21]. Another popular approach to incorporating demand uncertainty in

optimization models is the robust optimization methodology described by Mulvey et al. [14].

Some examples of applying this technique to capacity planning and traffic routing problems

in fiber-optic networks are Laguna [11], Gryseels et al. [7], Birkan et al. [3] and Kennington

et al. [10]. One objective in capacity planning is to optimize revenue, and in this paper

we maximize expected revenue in cellular radio networks using code division multiple access

(CDMA) technology under demand uncertainty.

Mobile telephone networks are based on the concept of cellular communications in which

the service area is divided into subsections called cells that are each served by a radio

tower. Thus, tower location is an important subproblem in cellular network design. The

other factor determining the capacity and coverage area of a cellular network is how users

share bandwidth (radio frequencies). There are two basic strategies for sharing bandwidth

in commercial cellular systems. Systems using frequency division multiple access (FDMA),

divide the bandwidth available to the service provider into distinct frequency channels. A

central problem in maximizing capacity in a FDMA system is that of assigning frequencies

to towers in such a way that users in nearby cells do not cause interference with each other

by using the same frequencies. Thus, optimization models for FDMA design often include

a graph-coloring component. Murphey et al. [15] give an extensive survey of frequency

assignment problems.

CDMA networks use a considerably different approach to bandwidth sharing than FDMA.

By using orthogonal codes and strict control of transmission power, CDMA systems enable

a service provider to use all the frequencies it has licensed in each cell [9]. Thus, frequency

assignment is not an explicit issue in CDMA planning problems. Instead, the primary issue is

to keep the signal-to-interference ratio of each subscriber at an acceptable level. In a CDMA

system, each call interferes with every other call. If the total interference at a particular

tower reaches a certain threshold, then the next subscriber in that cell who attempts to

make a call will be denied access to the system. As we describe in Section 2, the amount of

interference caused by a particular subscriber’s handset depends on the tower to which the

subscriber is assigned.

CDMA is a relatively new technology, and so there has been little research reported on
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optimizing the joint tower location and subscriber assignment problems for CDMA networks.

Galota et al. [6] present a polynomial-time approximation scheme for a profit maximization

model for radio tower location and subscriber assignment in CDMA networks. Amaldi

et al. [1] minimize the system cost, measured in terms of tower construction and overall

system interference, subject to providing enough capacity to allow all subscribers in the area

simultaneous access to the system. Mathar and Schmeink [13] maximize the system capacity

subject to a budget constraint. Kalvenes et al. [9] propose a profit maximization model that

considers the trade-off between the revenue generated per customer served and the cost of

constructing towers. Their basic model is a large integer program that requires a special

algorithm to find practical solutions.

Optimization models for cellular networks typically model demand by specifying a set of

discrete points in the service area where a given amount of traffic is requested. These points

represent “hot spots” where demand tends to be concentrated and the demand is usually

measured in Erlangs or channel equivalents (i.e., the number of simultaneous calls in progress

at any given time) [1]. Likewise, we define a market as a demand concentration point in the

service provider’s coverage area and pose the channel allocation problem as determining how

to reserve channel equivalents to markets. Although the demand at a market may fluctuate

throughout a given day and/or vary from one day to the next, the cellular network design

models described above are deterministic. This is consistent with how planning is typically

done in the industry today. Providers design their systems to be able to accommodate a small

amount more than 100% of the anticipated average peak demand. Our model addresses the

uncertainty about the values for the average peak demands that are used in the deterministic

models for cellular network design.

m1

m2

m3

ℓ2ℓ1

Figure 1: Channel Allocation Example

Regardless of the bandwidth sharing scheme, the allocation of channel equivalents to a

market can dramatically affect revenue. Consider the two towers, ℓ1 and ℓ2 and three markets

m1, m2, and m3 as depicted in Figure 1. Although the subscribers’ handsets in each market
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interfere with both towers, markets m1 and m3 interfere insignificantly with towers ℓ2 and

ℓ1, respectively. Allowing too many subscriptions in m2 interferes with both towers ℓ1 and ℓ2

and crowds out potential subscribers in markets m1 and m3. Consequently, we can capture

more revenue by reserving many channel equivalents in markets m1 and m3, but limiting

those of market m2. Kalvenes et al. [9] implicitly solve a deterministic channel allocation

problem as a subproblem to their integer program, as demonstrated in Section 2.

In this paper, we present a yield management model (YM) inspired by those in the

airline industry to optimize revenue under demand uncertainty. In Section 2, we describe

the deterministic models in Amaldi et al. [1] and Kalvenes et al. [9]). Section 3 develops our

YM model for channel allocation. We present a supergradient algorithm to solve the YM

model in Section 4. We demonstrate the effectiveness of the algorithm on CDMA network

problems from the literature and show the effects of distribution and the variance of demand

in our computational results in Section 5. Finally, we discuss conclusions and future research,

particularly how we can use this model to optimize the locations of towers, in Section 6.

2. Deterministic Models for Tower Selection and Chan-

nel Assignment

Before describing our new yield management model for CDMA systems, we first review the

framework for the deterministic problems treated by Amaldi et al. [1] and Kalvenes et al.

[9]. Let L denote the set of potential tower locations, and aℓ denote the amortized cost of

building and operating a tower at location ℓ ∈ L. The set of markets is denoted by M , and

dm denotes the expected demand for service, measured in number of channel equivalents, at

market m ∈M . The revenue received per channel equivalent served is denoted by r. There

are two types of decision variables in this model: the binary variable yℓ indicates whether or

not a tower is built at location ℓ ∈ L, and the integer variable xmℓ denotes the number of

channel equivalents at tower ℓ ∈ L that are allocated for subscribers in market m ∈ M . As

we describe below, the number channel equivalents may also be thought of as the number of

simultaneous calls supported by a tower.

The parameter Ptarget specifies the target power level for signals received at the towers.

When a subscriber in market m transmits to tower ℓ the signal strength is weakened by

a given attenuation factor gmℓ. Thus, the subscriber’s handset transmits with power level
Ptarget

gmℓ
so that the strength of the signal received at tower ℓ is gmℓ ×

Ptarget

gmℓ
= Ptarget. Each
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tower in a CDMA system receives signals from many subscriber handsets in the surrounding

neighborhood. In order for the signals to be processed with a reasonable error rate, the

signal-to-interference ratio for any call must be at least a given threshold value, SIRmin. To

illustrate how this requirement is captured in optimization models, consider the number of

channel equivalents allocated for market m ∈ M assigned to tower ℓ ∈ L, xmℓ. Since each

of these subscribers’ handsets transmits at power level Ptarget

gmℓ
, the received power from each

of these handsets at some other tower j ∈ L \ {ℓ} is gmj ×
Ptarget

gmℓ
=

gmj

gmℓ
Ptarget. In general, the

total received power at tower location ℓ from all markets is given by

P TOT

ℓ = Ptarget

∑

m∈M

∑

j∈L

gmℓ

gmj

xmj. (1)

Consider a subscriber assigned to tower ℓ. When that subscriber makes a call, Ptarget

represents the strength of signal for the session, and all other power received at tower ℓ,

P TOT

ℓ −Ptarget, is interference ([1]). Thus, the channel allocation must satisfy the requirement

Ptarget

P TOT

ℓ − Ptarget

≥ SIRmin, (2)

which is equivalent to imposing the following quality-of-service (QoS) constraint:

∑

m∈M

∑

j∈L

gmℓ

gmj

xmj ≤ 1 +
1

SIRmin

. (3)

Observe that for any tower ℓ ∈ L, (3) implies that

∑

m∈M

∑

j=ℓ

gmℓ

gmj

xmℓ =
∑

m∈M

xmℓ ≤ 1 +
1

SIRmin

. (4)

Thus, even if we ignore the attenuation factors there is an implicit limit on the number of

simultaneous calls a tower can support.

The profit-maximization model described by Kalvenes et al. (2002 [9]) is the following
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integer program (KKOIP)

max
∑

m∈M

∑

ℓ∈L

rxmℓ −
∑

ℓ∈L

aℓyℓ (5)

∑

m∈M

∑

j∈L

gmℓ

gmj

xmj ≤ s+ (1− yℓ)βℓ ∀ℓ ∈ L, (6)

xmℓ ≤ dmyℓ ∀m ∈M, ℓ ∈ L, (7)
∑

ℓ∈L

xmℓ ≤ dm ∀m ∈M, (8)

xmℓ ∈ Z
+ ∀m ∈M, ℓ ∈ L, (9)

yℓ ∈ {0, 1} ∀ℓ ∈ L, (10)

where s = 1+1/SIRmin, and βℓ is a sufficiently large constant so that the QoS constraint (6)

for tower ℓ is only binding if tower ℓ is built. Constraint set (7) links the decision variables

for tower location and market allocation variables, and the domains for the variables are

provided by constraint sets (8)-(10). The cost-minimization model presented by Amaldi et

al. [1] is similiar to KKOIP except that it is a pure binary program requiring that all demand

is served in every market and that all subscribers in a given market are assigned to the same

base station.

Our yield management model relies on a result which states that revenue is maximized by

assigning subscribers at market m to the available tower with the largest attenuation factor

[1, 9]. More precisely, suppose that towers are built at locations i ∈ L and j ∈ L where

gmi < gmj, then there exists and optimal solution in which xmi = 0. Since an important

component influencing the attenuation factor between two locations is distance, an intuitive

statement of this result is that there is always an optimal solution in which all subscribers

in a given market m are assigned to the nearest constructed tower. In our model, we assume

that the tower-selection problem has already been solved and find the maximum expected

revenue for the set of towers selected. This would likely be used in a planning tool where

the network designer would evaluate the maximum expected revenue for a variety of tower

configurations. Furthermore, we intend to use it in future research as a subproblem in a more

complex model that addresses tower-selection and subscriber assignment simultaneously.

3. Yield Management Model

Most major domestic airline carriers use yield management (YM) techniques to optimize

their revenue. American Airlines, for example, reported a $1.4 billion revenue increase
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over a three-year period due to improved YM methods [20]. The airlines use a complex

fare structure, which identifies several types of passengers, such as business and leisure.

Passengers fly a sequence of flights called an itinerary, and a fare class includes a type of

passenger and an itinerary. For each fare class, airline planners estimate the demand and

assign a fare. They maximize revenue by allocating a number of seats for each fare class

subject to the capacities of the aircraft assigned to the flights. When allocating seats, the

airlines determine a break-even price, or bid price, for each flight. Every fare class that is

allocated at least one seat has a fare greater than or equal to the sum of the bid prices of

the flights in the associated itinerary. Airlines execute these models several times before

departure, so the allocations and bid prices change dynamically. D’Slyvia [4] develops a

stochastic model for airline yield management, and Günther [8] and Chen et al. [22] discuss

a variety of airline yield management models.

Similar to the airlines, telecommunications providers segregate their demand into markets

and allocate channel equivalents to them. Although we assume the revenue per subscriber

is the same for different markets, using a variety of prices is one topic of future research.

The number of allocated channel equivalents in a market in a CDMA network is limited by

the QoS constraints (6) at the towers. In optimizing channel allocation, we determine an

interference price at each tower. A channel equivalent in a market will be allocated only

when the revenue is greater than or equal to the sum of the interference prices weighted by

the attenuation factor from the market to the towers.

3.1 Model

In this section, we provide a deterministic and a stochastic market allocation model. In both

models, we relax the allocation to be continuous.

For each market m ∈ M , let d̃m be a continuous random variable for the channel equiv-

alent demand in market m, and let fedm
(x), Fedm

(x), and E[d̃m] be the probability density

function, the cumulative distribution function, and the expected value of the demand d̃m,

respectively. The result in Amaldi et al. [1] and Kalvenes et al. [9] states that markets are

assigned to the tower with the largest attenuation factor, so for each market m ∈M , let ℓm

be the tower assigned to market m. To simplify notation, let the channel allocation xm be

equivalent to xmℓm
and the attenuation factor gm be equivalent to gmℓm

.

Let L̂ be the set of constructed towers. The deterministic channel allocation problem
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(DCA) is given by

maxDet(x) =
∑

m∈M

rxm (11)

∑

m∈M

gmℓ

gm

xm ≤ s ∀ℓ ∈ L̂ (12)

E[d̃m] ≥ xm ≥ 0 ∀m ∈M (13)

Observe that given a set of constructed towers, (DCA) is the linear programming relaxation

of the integer program (KKOIP). Constraint set (12) includes the QoS constraints (6), and

constraints (5)-(9) reduce to constraint set (13).

The deterministic model (DCA) assumes that subscribers will consume all of the allocated

channel equivalents, so the objective of (DCA) overestimates the expected revenue. The

expected number of subscribers in terms of channel equivalents is given by,

E
[
min

(
d̃m, xm

)]
=

∫ xm

−∞

tfedm
(t)dt+ xm

(
1− Fedm

(xm)
)
.

E
[
min

(
d̃m, xm

)]
is concave since the second partial derivative of the expected number of

subscribers is always nonpositive. That is,

d2E
[
min

(
d̃m, xm

)]

dx2
m

= −fedm
(xm) ≤ 0 for all xm ∈ ℜ.

The stochastic channel allocation problem (SCA) is given by

max Stoch(x) =
∑

m∈M

rE
[
min

(
d̃m, xm

)]
(14)

∑

m∈M

gmℓ

gm

xm ≤ s ∀ℓ ∈ L̂ (15)

xm ≥ 0 ∀m ∈M (16)

The airline yield management problem described in D’Sylvia [4] is similar to (SCA), but

the attenuation ratios are either one, if the flight is in the fare class, or zero, if it is not.

The stochastic and deterministic airline yield management models in Chen et al. [22] are

analogous to (DCA) and (SCA), respectively. Neither D’Sylvia [4] nor Chen et al. [22]

discuss algorithms to solve the analogous airline YM problems.

For each tower ℓ ∈ L̂, denote δℓ as the violation of the interference constraint (15) at

tower ℓ; that is,

δℓ =
∑

m∈M

gmℓ

gm

xm − s.
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For each tower ℓ ∈ L̂, let λℓ be the interference price associated with the constraint in set

(15). For each market m ∈M , let µm be the market price given by

µm =
∑

ℓ∈bL gmℓ

gm

λℓ.

Let L(x, λ) be the Lagrangian of (SCA), and so the optimality conditions in addition to

(15)-(16) are given by

∂L(x, λ)

∂xm

= r
(
1− Fedm

(xm)
)
− µm ≤ 0 ∀m ∈M, (17)

xm

∂L(x, λ)

∂xm

= xm

(
r
(
1− Fedm

(xm)
)
− µm

)
= 0 ∀m ∈M, (18)

λℓ

∂L(x, λ)

∂λℓ

= λℓδℓ = 0 ∀ℓ ∈ L̂, (19)

λℓ ≥ 0 ∀ℓ ∈ L̂. (20)

Constraint set (17) includes the dual feasibility constraints, and the primal complimentary

slackness constraints are given by (18). Constraint sets (19) and (20) are the dual compli-

mentary slackness and dual nonnegativity constraints, respectively. Observe that from (18)

the channel allocation xm is positive only when r−µm = rFedm
(xm) ≥ 0, and so the revenue

r must be greater than or equal to the market price µm.

4. Algorithm

Consider the supergradient algorithm SCAOPT, as depicted as algorithm 1, to solve (SCA).

On each iteration, SCAOPT finds the optimal channel allocations based upon the interference

prices because constraint sets (15) - (18) and (20) are satisfied. Consequently, the violation

vector δ is a supergradient. SCAOPT updates the interference prices in the directions of

the supergradient and terminates if a stopping criteria, which is discussed in Section 4.1, is

satisfied.

SCAOPT will converge as long as the step size αk is such that

0 < αk <
2
(
L(xk, λk)− L(x∗, λ∗)

)

||δ||2
,

where (x∗, λ∗) is an optimal primal-dual solution to (SCA) [2].
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Algorithm 1 SCAOPT.

k ← 0
STOP ← FALSE .
Initialize λ0 > 0.
while STOP = FALSE do

for all m ∈M do

xk
m ←





[
F−1edm

(
1− µk

m

r

)]+

if (r > µk
m),

0 otherwise.

end for

if Stopping Criteria Satisfied then

STOP ← TRUE .
else

λk+1 ←
[
λk + αkδk

]+
.

k ← k + 1
end if

end while

4.1 Feasible Projection

On iteration k of SCAOPT, the channel allocation xk typically violates some of the QoS

constraints in set (15), and a projection onto the feasible region can provide a lower bound

on the optimal Lagrangian value L(x∗, λ∗). For each market m ∈ M , let xk
m be a feasible

projection of the channel allocation xk
m, and let γk

m = xk
m − x

k
m. By weak duality,

Stoch(xk) ≤ L(xk, λk). (21)

Although there are several methods to find a feasible projection, one method is by solving

the following projection problem (SCAPROJ)

min
∑

m∈M

|γk
m| (22)

∑

m∈M

gmℓ

gm

γk
m ≤ −δ

k
ℓ ∀ℓ ∈ L̂, (23)

γk
m ≥ −x

k
m ∀m ∈M. (24)

Using weak duality, we define the gap of iteration k to be

gapk =
L(xk, λk)− Stoch(xk)

Stoch(xk)
× 100%.

For an optimal solution (x∗, λ∗), x∗ is feasible, and so x∗ = x∗. By strong duality, we know

that Stoch(x∗) = Stoch(x∗) = L(x∗, λ∗), so gap∗ = 0. Thus, we use the stopping criteria
∣∣gapk

∣∣ < ε.
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4.2 Step Size

We use three step-size approaches within SCAOPT. Approaches A and B are from [2] and

are given by

αk ←
ρk

(
L(xk, λk)− L

)

||δk||2
, (25)

where L is an estimation of the optimal value of the Lagrangian L(x∗, λ∗). Approach A sets

ρk = 1 for every iteration and calculates L using

L ← (1− φk)L̂, (26)

where L̂ = max0≤i<k L(xi, λi) and φk is a scalar between zero and one. The scalar φk is

increased when the Lagrangian is less than all of its previous values— L(xk, λk) < L̂, and

φk is decreased otherwise.

Approach B uses the optimal value of projected channel allocation to estimate the optimal

value of the Lagrangian; that is,

L ← Stoch(xk
m). (27)

The coefficient ρk is given by

ρk ←
1 + ω

k + ω
, (28)

where ω is a constant.

Approach C considers the distance of the complimentary slackness vector ||λ · δ||. If

||λk · δk|| ≥ ||λk−1 · δk−1||, then αk is decreased slightly by a constant factor, ψ; otherwise,

αk ← αk−1.

4.3 Newton Method

In addition to the supergradient approach, we implemented a Newton Method with a barrier

penalty that maximized the following function

Stoch+(x) = Stoch(x) + ε




∑

m∈M

ln(xm) +
∑

ℓ∈bL ln(−δℓ)


 .

The function Stoch+(x) is concave with a defined value, gradient vector, and Hessian matrix

for each point in the interior of the feasible region of x. The algorithm starts with an interior

point and finds a direction using the Newton Method. It then uses a line search to find a new

interior point. One major drawback to this approach is that the Hessian matrix is |M |×|M |,

so calculating its inverse can be time consuming.
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4.3.1 Dual Projection

Similar to the dual supergradient, primal Newton Methods may stop when solutions are

near optimality. On occasion, our Newton Method finds a set of Lagrange multipliers using

a linear programming projection. Let (x, δ) be a primal feasible solution. Consider the

following projection onto the Lagrange multipliers λ.

min
∑

m∈M

xmbm − ε
∑

ℓ∈bL δℓλℓ (29)

∑

ℓ∈bL gmℓ

gm

λℓ − bm = r
(
1− Fedm

(xm)
)

∀m ∈M (30)

λℓ ≥ 0 ∀ℓ ∈ L̂ (31)

bm ≥ 0 ∀m ∈M. (32)

The objective is to minimize the complementary slackness values associated with (18) and

use the values associated with (19) to break ties. If b = 0 in a projected solution, then

complementary slackness conditions (18) are held, as they are also held in SCAOPT. Because

gmℓ > 0, xm ≥ 0, δℓ ≤ 0, and 1 ≥ Fedm
(xm) ≥ 0, the Lagrange multiplier projection linear

programming problem is always feasible and bounded. Using a solution to the multiplier

projection LP and a single iteration of SCAOPT, we can find an upper bound on a primal

problem and a primal-dual gap for the Newton Method approach.

5. Computational Results

To demonstrate the effectiveness and benefits of SCAOPT and the Newton Method on

CDMA network problems from the literature, we implemented them in the C programming

language on a Dell Precision Workstation with dual Intel Xeon Processors and 2 Gb of

memory, and we tested them on a series of 36 problem instances. The instances collectively

referred to as Scenario 1 are based on a problem proposed by Amaldi et al. (2001a, 2001b).

This problem has 22 potential tower locations and 95 markets randomly placed in a 400

square meter grid. Each market has a demand for one channel equivalent and a minimum

signal-to-interference ratio of SIRmin = 0.03125. To generate the data for Scenario 1, we

solved this problem with (KKOIP) to determine the set of constructed towers L̂. The

solution of the tower location problem has 4 towers and 95 markets from which we derived

18 stochastic problems by letting d̃m have a Normal or Gamma distribution with a mean of

1 and varying the standard deviation over a set of nine values.
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To generate the data for Scenario 2, we started with a set of 40 towers that cover a large

area in the northern plains of the United States (see F [5]). Following the procedure in

Kalvenes et al. (2002), we drew a sample of 250 randomly placed markets in this service area

each with a demand dm drawn randomly from the range [1, 16] and used SIRmin = 0.009789.

Solving this deterministic problem gave us a stochastic instance with 24 towers and 250

markets from which we generated 18 problems by letting d̃m have a Normal or Gamma

distribution with a mean dm and varying the standard deviation as we did with Scenario 1.

For both scenarios, the revenue per channel was r = $42, 820.

In all of our computational experiments we stopped the supergradient algorithm after

k = 300, 000 iterations or when we had an optimality gap gapk < 0.01%. Before solving

(SCA), we used CPLEX 8.1 to solve (DCA). None of the QoS constraints in the (DCA)

solution for Scenario 1 were binding, so we initialized the interference prices to be the average

deterministic revenue per tower Det(x)

|bL|
. For Scenario 2, we initialized the tower interference

prices to be those of the (DCA) solution.

We solved the projection problem (SCAPROJ) with CPLEX 8.1, and we used functions

from the GNU Scientific Library to evaluate Stoch and F−1 for both the distributions.

For the Normal distribution, we also used GNU’s quadrature adaptive integration function,

gsl integration qagil, with 10,000 double precision intervals to calculate the integral

component of Stoch. The integration function terminated when the error was within 0.1%

of the expected demand E
[
d̃m

]
. For a Gamma random variable with distribution shape

parameter n, scale parameter l, and probability density function fn,l(x), we used cumulative

distribution function Fn+1,l and equation (33) to evaluate Stoch;
∫ x

0

sfn,l(s)ds = nlFn+1,l(x). (33)

For step size A, we started with the scalar φ = 0.0001. As described in Section 4.2,

when the Lagrangian was less than all of its previous values— L(xk, λk) < L̂, we increased

φ so that φk+1 ← min(1, 1.01φk). Otherwise, we decreased the value so that φk+1 ← 0.99φk.

With step size B, we used a value of 299 for the parameter ω. For the implementation of

step size C, we started with α = 10.0. This value was decreased by a factor of ψ = 0.9995

whenever the distance of the complimentary slackness vector increased from one iteration to

the next (i.e., ||λk · δk|| > ||λk−1 · δk−1||).

Tables 1 to 4 give the results of our experiments. In each table, the first column lists

the coefficient of variation (CV) for the distribution. The CV gives a measure of dispersion
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of the distribution and is defined as the ratio of the standard deviation to the mean. For

each of the nine CV values, we ran the algorithm three times using step sizes A, B, and C.

For each run, we report the number of iterations k∗, the quality of the projected channel

allocation as measured by expected revenue Stoch(xk∗

), the distance of the complimentary

slackness vector at termination ||λk∗

· δk∗

||, and the optimality gap gapk∗

.

Table 1 about here.

Table 1 gives the results for Scenario 1 when the demand in each market has a Gamma

distribution. In all but one of these 27 experiments, SCAOPT found a solution with a gap

gapk∗

< 0.01%. For the problem with CV = 0.01, SCAOPT had a gap of 0.02% after 300,000

iterations using step size B. For CV > 0.01, step size B used an average of 1,215 iterations.

For step sizes A and C, SCAOPT required an average of 2,443 and 4,269 iterations to find

solutions within 0.01% of optimality.

Table 2 about here.

The results for Scenario 2 when the demand in each market has a Gamma distribution are

shown in Table 2. SCAOPT found a solution within 0.01% of optimality for all experiments

using step sizes B and C, and the average number iterations were 1,449 and 572, respectively.

For each experiment in which CV ≤ 0.10, SCAOPT did not find a solution within 0.01% of

optimality using step size A. However, the geometric mean of the optimality gap was 0.02%

overall and 0.04% for those experiments that terminated after 300,000 iterations. When CV

> 0.10, the average number of iterations for step size A was 508.

Table 3 about here.

Table 3 gives the results for Scenario 1 when the demand in each market has a Normal

distribution. Results using the Normal distribution are very similar to those using the

Gamma distribution for CV ≤ 0.10. However, overall step sizes A and B used markedly

fewer iterations for the experiments that used Normal distribution than for those of the

Gamma distribution. For CV > 0.01, step size B used an average of 766 iterations when

demand was assumed to be a Normal random variable, versus 1,215 when demand was a

Gamma random variable. For step size A, SCAOPT required an average of 917 iterations

assuming the demand is from a Normal distribution, which is less than half of the average
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2,443 iterations when demand was a Gamma random variable. For step size C, the results

from Tables 1 and 3 are very similar, as SCAOPT required an average of 4,354 iterations to

find solutions within 0.01% of optimality in Table 3.

Table 4 about here.

Table 4 gives the results for Scenario 2 when the demand in each market has a Normal

distribution. In all but two of these experiments (CV = 0.05 and 0.01), SCAOPT found

solutions within 0.01% of optimality using step size A. Excluding this case, SCAOPT termi-

nated after an average number of 501 iterations for these runs. With step sizes B and C, the

algorithm found solutions for these problems that were all within 0.01% of optimality and

averaged 916 and 538 iterations, respectively.

Table 5: Summary of SCAOPT Results
Step Size No. Opt. Ave. Iter.

A 31 42,689
B 34 17,698
C 36 2,434

Table 5 summarizes our results by step size. The second column gives the number of

problems (out of 36) solved to within 0.01% of optimality, and third column shows the average

number of iterations iterations for SCAOPT with each step size. Based on these results, step

size C is clearly superior to step sizes A and B, even though it rarely outperformed both

step sizes A and B. To get even better performance using three processors, one could execute

SCAOPT with each step size on separate processors simultaneously and terminate it when

the first one finished. Using parallel processing, no instance would require much more than

1000 iterations, which takes less than 40 seconds of CPU time. Thus, SCAOPT is a practical

algorithm for these problems.

In addition to SCAOPT experiments, we also tested each instance with each CV value

using the Newton Method. However, the efficiency of the Newton Method was poor for two

reasons. One, computing the inverse of the Hessian matrix using LU-decomposition was

significantly time consuming. Two, conducting a line search to find a new interior point

required evaluating constraints (15) and (16) for several points. Consequently, an average

iteration of the Newton Method required 13 times more CPU time than an average iteration
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of SCAPOPT. We also estimated the efficiency for which each algorithm iteration reduced

the gap using the following metric

gap efficiency =
100− gap

k
.

Although the gap efficiency for the Newton Method was more than three times that of

SCAOPT, it never compensated for the increased CPU time. Consequently, SCAOPT out-

performed the Newton Method.

Observe that the total expected revenue decreases as the variance increases. For moderate

CV values of 0.15 and 0.25, the expected revenue is between 3% and 7% less than the

deterministic optimal revenue. For larger CV values of 0.50, the revenue is as much as

18% less than the deterministic revenue. Consequently, the deterministic optimal solution

overstates expected revenue.

To determine the effects of this overstatement, we compared the value of the optimal solu-

tion of the deterministic problem, denoted as Stoch(xDET ), to the best value from SCAOPT,

Stoch(xSTOCH), for each scenario, CV value, and demand distribution in Tables 6 and 7. The

column labeled “% improvement” refers the difference between the stochastic solution value

Stoch(xSTOCH) and the deterministic solution value Stoch(xDET ) as a percentage of the

deterministic solution value.

Table 6 about here.

As CV increases, the percentage improvement increases. Even for modest uncertainty,

CV = 0.10, the improvement is more than 2% for Scenario 1, while for larger uncertainty,

CV = 0.50, the improvement is about 6%.

Table 7 about here.

For Scenario 2, the improvement is less dramatic, but even for moderate uncertainty, CV

= 0.25, the improvement is over 3%, and so network designers should consider variance in

the demand forecasts.

6. Conclusions and Future Research

Using mathematical programming for telecommunications network design is prevalent in

the literature, but very little research has been reported on stochastic models for cellular
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networks. This paper develops a stochastic programming model that allocates channel equiv-

alents to optimize revenue given a set of constructed radio towers in a CDMA network. The

model is based upon a popular yield management model from the airline industry, and the

objective function uses a continuous random variable to model the demand for channels.

We provide optimality conditions for our model, and we present an algorithm (SCAOPT) to

solve it. Finally, we provide computational results for the Normal and the Gamma distrib-

utions and for several variances. SCAOPT solved every problem scenario for both Normal

and Gamma distributions and nine values for the variance.

SCAOPT could be used as a planning tool to evaluate the revenue potential of a set of

radio towers, and unlike previous literature, our model considers the demand to be random.

Ideally, however, it could be incorporated in a solution procedure that jointly optimizes

the tower location and subscriber assignment decisions like those described earlier for the

deterministic problem (e.g., [1] and [9]). Thus, one area of continuing research is integrating

this model with an integer programming model to determine a robust set of locations for

the towers. In [18] we propose a Benders’ decomposition algorithm to determine the tower

locations in the master problem, and use SCAOPT to calculate the optimal revenue in a

subproblem. Using the optimal revenue and the dual interference prices from the solution,

SCAOPT provides a Benders’ optimality cut to the master problem. The algorithm continues

until the master problem finds a set of locations that satisfy every optimality cut generated

from SCAOPT.

Another interesting direction for future research would be to extend our stochastic model

to the SIR-based power control model described by Amaldi et al. [1]. With SIR-based power

control, the strength of the received signal required for users in market m to connect to their

assigned tower is a variable, pm, rather than the fixed value of Ptarget. In this model, the total

power received at tower ℓ is

P TOT
ℓ =

∑

m∈M

pmxmgmℓ.

If we consider a single user in market m assigned to tower ℓm, then the signal strength

for that user is pm and the interference is (pm(xm − 1)gm) +
∑

i∈M\{m}(pixigiℓm
). Thus, the

QoS constraint becomes

pm

(pm(xm − 1)gm) +
∑

i∈M\{m}(pixigiℓm
)
≥ SIRmin. (34)
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The advantage of this model over using a preset value of Ptarget is that by adjusting the

handset transmission power according to the actual assignment of markets to towers, it is

possible to reduce the total interference in the system. Amaldi et al. [1] compared the two

models and found that the SIR-based power control model produced solutions with fewer

towers than those found using the fixed Ptarget value. The disadvantage of the model is that

constraint (34) is nonlinear. In the context of our model, the QoS constraints resulting from

(34) would be

pm

(pm(xm − 1)gm) +
∑

i∈M\{m}(pixigiℓm
)
≥ zmSIRmin ∀m ∈M (35)

where zm is a binary variable that is equal to one whenever xm is greater than zero, and zero

otherwise. Our analysis of these constraints indicates that the feasible region they define

may not be convex, and so a local optimum is not necessarily a global optimum. Thus, an

exact solution procedure appears to be beyond the capabilities of the current state-of-the

art of mathematical programming techniques.

Traditional models and our stochastic model assume that customers in every market

pay the same price. Another area of future research would be using different prices for

different markets. An analogy in the airline industry is how business and leisure travellers

pay different fares for the same flight. Moreover, using a variety of prices allows us to model

several discrete points on the demand curve for each market. For example, suppose a demand

curve for a market m has one point on the demand curve with price r1 and mean demand d1

and another higher priced point with price r2 and mean demand d2. We could split market

m into two markets m1 and m2 with the same attenuation factors as market m, and market

m1 has price r1 and mean demand d1, while m2 has price r2 and mean demand d2.
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Table 1: Scenario 1, Gamma distribution
CV Step Size k∗ Stoch(xk∗

) ($) ||λk∗

· δk∗

|| ($) gapk∗

0.01 A 594 4,062,436 2,296 <0.01%
0.01 B 300,000 4,061,684 835 0.02%
0.01 C 4,576 4,062,060 403 <0.01%
0.05 A 594 4,034,394 1,600 <0.01%
0.05 B 843 4,034,175 1,027 <0.01%
0.05 C 6,437 4,034,178 908 <0.01%
0.10 A 14,218 3,988,431 204 <0.01%
0.10 B 12 3,988,512 652 <0.01%
0.10 C 5,538 3,988,432 466 <0.01%
0.15 A 1,165 3,936,098 1,600 <0.01%
0.15 B 884 3,936,244 663 <0.01%
0.15 C 4,639 3,936,038 384 <0.01%
0.25 A 1,181 3,813,610 562 <0.01%
0.25 B 715 3,813,376 2,184 <0.01%
0.25 C 3,791 3,813,266 352 <0.01%
0.50 A 966 3,460,042 1,992 <0.01%
0.50 B 1,319 3,460,318 854 <0.01%
0.50 C 3,616 3,459,997 346 <0.01%
1.00 A 990 2,769,217 2,035 <0.01%
1.00 B 1,788 2,769,180 331 <0.01%
1.00 C 3,369 2,768,986 227 <0.01%
1.50 A 1,148 2,199,119 343 <0.01%
1.50 B 1,999 2,198,961 522 <0.01%
1.50 C 3,259 2,198,929 163 <0.01%
2.00 A 1,127 1,762,067 410 <0.01%
2.00 B 2,161 1,762,064 181 <0.01%
2.00 C 3,200 1,761,944 127 <0.01%

21



Table 2: Scenario 2, Gamma distribution
CV Step Size k∗ Stoch(xk∗

) ($) ||λk∗

· δk∗

|| ($) gapk∗

0.01 A 300,000 65,082,245 473,734 0.03%
0.01 B 4,003 65,098,852 192,956 <0.01%
0.01 C 806 65,099,451 672,031 <0.01%
0.05 A 300,000 64,522,454 259,059 0.09%
0.05 B 355 64,570,558 540,035 <0.01%
0.05 C 1,450 64,569,576 424,117 <0.01%
0.10 A 300,000 63,750,216 105,521 0.01%
0.10 B 104 63,752,784 271,524 <0.01%
0.10 C 777 63,751,535 260,034 <0.01%
0.15 A 427 62,832,919 146,171 <0.01%
0.15 B 166 62,836,138 85,611 <0.01%
0.15 C 597 62,833,024 83,781 <0.01%
0.25 A 297 60,862,149 65,482 <0.01%
0.25 B 66 60,864,368 71,528 <0.01%
0.25 C 744 60,862,176 56,219 <0.01%
0.50 A 289 55,647,783 27,808 <0.01%
0.50 B 291 55,644,776 2,959 <0.01%
0.50 C 321 55,644,392 1,531 <0.01%
1.00 A 559 45,146,500 14,684 <0.01%
1.00 B 2,052 45,147,380 2,401 <0.01%
1.00 C 200 45,146,460 1,034 <0.01%
1.50 A 722 36,010,548 3,699 <0.01%
1.50 B 2,564 36,009,442 3,202 <0.01%
1.50 C 144 36,008,987 620 <0.01%
2.00 A 752 28,898,441 13,743 <0.01%
2.00 B 3,437 28,897,423 4,006 <0.01%
2.00 C 109 28,897,269 483 <0.01%
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Table 3: Scenario 1, Normal distribution
CV Step Size k∗ Stoch(xk∗

) ($) ||λk∗

· δk∗

|| ($) gapk∗

0.01 A 594 4,062,457 2,322 <0.01%
0.01 B 300,000 4,061,687 866 0.02%
0.01 C 4,576 4,062,081 390 <0.01%
0.05 A 594 4,034,513 1,976 <0.01%
0.05 B 958 4,034,421 1,048 <0.01%
0.05 C 6,512 4,034,425 933 <0.01%
0.10 A 768 3,989,522 1,673 <0.01%
0.10 B 48 3,989,434 879 <0.01%
0.10 C 5,495 3,989,428 566 <0.01%
0.15 A 1,223 3,938,437 449 <0.01%
0.15 B 837 3,938,564 617 <0.01%
0.15 C 4,692 3,938,426 417 <0.01%
0.25 A 942 3,820,963 5,605 <0.01%
0.25 B 589 3,820,933 2,305 <0.01%
0.25 C 3,901 3,820,888 816 <0.01%
0.50 A 928 3,476,417 1,223 <0.01%
0.50 B 615 3,476,258 534 <0.01%
0.50 C 3,796 3,476,122 368 <0.01%
1.00 A 1,056 2,734,512 926 <0.01%
1.00 B 843 2,734,303 2,001 <0.01%
1.00 C 3,491 2,734,278 300 <0.01%
1.50 A 1,058 1,973,115 977 <0.01%
1.50 B 842 1,973,238 1,019 <0.01%
1.50 C 3,385 1,973,070 183 <0.01%
2.00 A 1,093 1,198,675 490 <0.01%
2.00 B 1,398 1,198,670 1,315 <0.01%
2.00 C 3,341 1,198,663 92 <0.01%
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Table 4: Scenario 2, Normal distribution
CV Step Size k∗ Stoch(xk∗

) ($) ||λk∗

· δk∗

|| ($) gapk∗

0.01 A 300,000 65,082,245 199,190 0.03%
0.01 B 466 65,097,739 1,363,504 <0.01%
0.01 C 718 65,099,474 417,385 <0.01%
0.05 A 300,000 64,525,139 213,870 0.08%
0.05 B 291 64,569,225 244,722 <0.01%
0.05 C 1,480 64,568,994 143,980 <0.01%
0.10 A 705 63,744,564 177,816 <0.01%
0.10 B 142 63,745,332 278,668 <0.01%
0.10 C 769 63,744,731 277,863 <0.01%
0.15 A 413 62,813,772 129,939 <0.01%
0.15 B 312 62,813,621 40,350 <0.01%
0.15 C 609 62,813,721 130,150 <0.01%
0.25 A 302 60,788,742 49,247 <0.01%
0.25 B 838 60,788,411 5,134 <0.01%
0.25 C 450 60,788,410 4,344 <0.01%
0.50 A 253 55,047,140 31,655 <0.01%
0.50 B 100 55,047,019 97,418 <0.01%
0.50 C 292 55,045,274 23,761 <0.01%
1.00 A 469 40,596,887 80,132 <0.01%
1.00 B 1,655 40,592,883 75,422 <0.01%
1.00 C 205 40,593,692 987 <0.01%
1.50 A 651 23,867,799 38,914 <0.01%
1.50 B 2,368 23,866,419 69,353 <0.01%
1.50 C 178 23,866,530 647 <0.01%
2.00 A 717 6,126,113 40,626 <0.01%
2.00 B 2,074 6,124,402 49,194 <0.01%
2.00 C 145 6,123,414 25,385 <0.01%
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Table 6: Scenario 1, Stochastic vs. Deterministic Solution Quality
CV Distribution Stoch(xSTOCH) ($) Stoch(xDET ) ($) % improvement
0.01 Gamma 4,062,436 4,051,672 0.3%
0.01 Normal 4,062,457 4,051,671 0.3%
0.05 Gamma 4,034,394 3,986,774 1.2%
0.05 Normal 4,034,513 3,986,757 1.2%
0.10 Gamma 3,988,512 3,905,749 2.1%
0.10 Normal 3,989,522 3,905,614 2.1%
0.15 Gamma 3,936,244 3,824,927 2.9%
0.15 Normal 3,938,564 3,824,471 3.0%
0.25 Gamma 3,813,610 3,664,293 4.1%
0.25 Normal 3,820,963 3,662,186 4.3%
0.50 Gamma 3,460,318 3,273,167 5.7%
0.50 Normal 3,476,417 3,256,471 6.8%
1.00 Gamma 2,769,217 2,571,403 7.7%
1.00 Normal 2,734,512 2,445,043 11.8%
1.50 Gamma 2,199,119 2,014,265 9.2%
1.50 Normal 1,973,238 1,633,614 20.8%
2.00 Gamma 1,762,067 1,596,400 10.4%
2.00 Normal 1,198,675 822,185 45.8%

Table 7: Scenario 2, Stochastic vs. Deterministic Solution Quality
CV Distribution Stoch(xSTOCH) ($) Stoch(xDET ) ($) % improvement
0.01 Gamma 65,099,451 64,954,851 0.2%
0.01 Normal 65,099,474 64,954,849 0.2%
0.05 Gamma 64,570,558 63,970,120 0.9%
0.05 Normal 64,569,225 63,969,657 0.9%
0.10 Gamma 63,752,784 62,726,626 1.6%
0.10 Normal 63,745,332 62,722,857 1.6%
0.15 Gamma 62,836,138 61,472,594 2.2%
0.15 Normal 62,813,772 61,460,710 2.2%
0.25 Gamma 60,864,368 58,953,431 3.2%
0.25 Normal 60,788,742 58,905,667 3.2%
0.50 Gamma 55,647,783 52,745,931 5.5%
0.50 Normal 55,047,140 52,272,470 5.3%
1.00 Gamma 45,147,380 41,475,553 8.9%
1.00 Normal 40,596,887 36,522,292 11.2%
1.50 Gamma 36,010,548 32,484,640 10.9%
1.50 Normal 23,867,799 18,621,424 28.2%
2.00 Gamma 28,898,441 25,736,797 12.3%
2.00 Normal 6,126,113 -125,792 NA
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