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Abstract

The design of a cellular network is a complex process that encompasses the selection and configura-

tion of cell sites and the supporting network infrastructure. This investigation presents a net revenue

maximizing model that can assist network designers in the design and configuration of a cellular system.

The integer programming model takes as given a set of candidate cell locations with corresponding costs,

the amount of available bandwidth, the maximum demand for service in each geographical area, and

the revenue potential in each customer area. Based on these data, the model determines the size and

location of cells, and the specific channels to be allocated to each cell. To solve problem instances, a

maximal clique cut procedure is developed in order to efficiently generate tight upper bounds. A lower

bound is constructed by solving the discrete optimization model with some of the discrete variables fixed.

Computational experiments on seventy-two problem instances demonstrate the computational viability

of our new procedure.

1 Introduction

Some 20 years after their commercial introduction, cellular mobile communication services are as popular as

ever, with demand increasing at an exponential rate and network expansion following suit. Although not

comparable to the wire-based communication infrastructure, investments in cellular systems are large and an

economical use of resources is a necessity for companies operating in this competitive market.

All wireless systems are constrained in capacity by the available communication bandwidth. As demand

for services has expanded in the cellular segment, several innovations have been made in order to increase

the utilization of bandwidth. The cellular concept itself is one of the most prominent examples of such

innovation. The cellular design increases bandwidth utilization by limiting the reach of a radio tower so that

a frequency channel can be re-used by a tower that is located sufficiently far away from other towers utilizing

the same channel. Given a service area and potential demand in this service area, an important decision is

to determine the size of each cell in the service area.

Another proposed improvement is dynamic channel assignment. In traditional cellular systems designs,

the allocation of frequency channels to cells is fixed. That is, once a frequency channel has been allocated
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to a cell, it cannot be used by other cells that may interfere with this. Realizing that most of the time, all

channels will not be in use in all cells, schemes have been designed so that channels may be ‘borrowed’ from

other cells, given that the borrowing of the channel will not cause intereference in other cells. While the

advantages of channel borrowing (and other dynamic cell assignment schemes) are obvious, they also have

some drawbacks. In order to borrow a channel from another cell, the cell that borrows the channel must have

sufficient capacity to handle the extra channel. This has implications for tower equipment allocation, mobile

telephone switching office capacity, cellular network backbone design, and traffic management.

A third proposed method to improve resource utilization is the concept of hierarchical (or multi-tier)

network design. In a hierarchical system, various cell sizes may be deployed. In the initial proposal, there

were two types of cells; macrocells and microcells. The microcells are similar to regular cells in traditional

designs. Superimposed on this structure are the macrocells, each of which covers the same geographical area

as several microcells. There are two principal benefits of a two-tier design. First, if a macrocell covers an

area, it is not necessary to cover the same area with a microcell. In rural areas with low overall demand

and scattered high demand points, this means that fewer resources need to be spent on providing adequate

service. Instead of covering the entire service area with microcells, a macrocell can be used in combination

with microcells at high demand points. The cost savings from this design can be substantial compared to a

traditional design. Second, if there are mobile phone users that are traveling at high speeds, these users can

be serviced by the macrocell and thereby reduce the need for handoff of the calls. When a handoff is avoided,

the risk of call dropping due to channel shortage in the handoff service area is eliminated. The two-tier model

can be extended into a three-tier model where a smaller cell size (picocell) is introduced. Picocells can be

used in very high density areas, such as urban commercial centers. Thus, a multi-tiered design combines high

frequency reuse in high demand areas with low system investment in low demand areas. In this investigation,

a new model is proposed that incorporates multi-tiered design with channel allocation based on demand for

service in different geographical locations in the service area.

1.1 Previous Work

Hierarchical cellular networks have been the topic of several studies, with focus in particular on accommoda-

tion of users that travel at different velocities. Characteristics of hierarchical cellular networks, such as call

blocking and handoff failure probabilities have been investigated extensively by Rappaport and Hu [11, 18]

for entirely ground based networks as well as for hybrid networks that combine services from a ground based

network with those of satellite based overlay networks. Extensions of this work have been concerned with

resource management in hierarchical networks, with an emphasis on channel allocation between network

levels (both static and dynamic allocation schemes), cell size determination, and user mobility management

[6, 14, 23].

Several hierarchical cellular network design models have been proposed in the literature. Ganz et al.

[8] propose a model that minimizes total system deployment cost subject to quality of service constraints for
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customers assigned to each tier. The quality of service measure used is the probability of call loss. While

this formulation takes into account user mobility, it assumes that demand is uniformly distributed across

the network service area. Moreover, the formulation is based on the assumption that all demand has to be

serviced at some given quality of service level. In a more recent paper, Wu and Lin [24] develop a model

that minimizes the cost of system development subject to quality-of-service (QoS) constraints. In this model,

the authors use cell radius as an independent variable and find a solution that satisfies demand subject to

QoS constraints. In their work, QoS measures include signal-to-noise ratios for each cell location and a

requirement that the system meets average demand for service. Neither of the papers consider economic

factors other than cost.

Sarnecki et al. [21] compare the characteristics of macrocells and microcells and conclude that the

cost per subscriber of using microcells may be as much as 60-70% lower than the cost of using macrocells.

However, this cost reduction is due to the use of low-power transmitters in microcells and the figures do not

include the possible incremental cost of connecting the cell sites to switching offices. Using an engineering

cost approach, Reed [19] estimates the costs of PCS networks and studies the economies of scope in PCS

service provision. He finds that there is some minimum bandwidth that allows PCS operators to reach a point

where all economies of scope are exhausted and concludes that this finding may have important regulatory

implications. Finally, Gavish and Sridhar [9] use a cost and revenue model to find optimal configurations (in

terms of cell size and channel allocation) of cellular systems. Their model assumes that demand is uniformly

distributed and that each cell in the system will be configured exactly the same. Due to the symmetry

arguments made, the channels available to the system can be divided a priori in equal numbers between

cells without causing interference. The remaining channel allocation problem is to decide how many of the

channels available to a cell should actually be used. Thus, interference considerations do not play a role in

their model.

The problem considered in this work includes as part the assignment of frequency channels to cells in

the network. The frequency assignment problem is closely related to the graph coloring problem and has

been subject to intensive study in the literature (see Murphey et al. [17] for a comprehensive survey). The

frequency assignment problem has been examined for a number of objective functions, mostly related to

minimizing the number of channels used to satisfy demand or to minimizing the total system interference

while satisfying demand for communication. In this context, methods for deriving strong lower bounds on

the number of frequency channels utilized have been developed (see, e.g., Gamst [7] and Tcha et al. [22]).

In common for most of the work on finding feasible solutions to the frequency assignment problem is that

the solution methodology relies on specific geometric cell structures [3] or on the use of randomized local

search procedures without known deviation from the optimal solution [2, 4, 10, 12, 15, 20], while integer

programming based approaches have successfully solved only small problem instances [16].

The model presented in the next section differs from previous research in that it simultaneously incor-

porates base station location, cell size choice, and channel allocation in a multi-tier cellular network. Both
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cost and revenues are consideried in the design of the cellular network. The model does not, however, directly

address queueing or mobility aspects of cellular network operations. It is assumed that the service demand

parameters are adjusted for mobility and queueing effects and, thus, the proposed model is suited for planning

rather than operational purposes.

1.2 Contributions

We claim four contributions from the investigation described in this manuscript. First, we present a new

optimization model for the hierarchical network design problem. This is the first three-tier model that we have

seen and it includes macrocell, microcell and picocell selection. It is a profit maximization model, as opposed

to the usual cost minimization strategy, which better reflects the requirements of potential clients. Channels

are assigned to cells in blocks, which reduces the problem size and improves computational tractability.

Our basic model is a large mixed-integer linear program whose problem instances are not solvable

using standard commercial optimization software. However, there exists an underlying graph (called the

interference graph) that can be used to create an almost unlimited number of valid inequalities for any large

problem instance. While this class of valid inequalities is well-known for the frequency assignment problem

[1], our second contribution is a set of algorithms to successively and selectively generate valid inequalities

from the interference graph by repeatedly solving maximal clique problems to produce a problem with a much

stronger continuous relaxation. Our third contribution is a computational study that provides convincing

evidence that good solutions to realistically sized problems can be obtained with our procedures. The feasible

solutions obtained, combined with upper bounds on the optimal solution value generated, provide a solution

quality measure in terms of a known maximal deviation from the optimal solution value. Finally, we make our

AMPL models and algorithms available on the World Wide Web for downloading free of charge for immediate

use by industrial design groups who need solutions to this type of problem. Users only need supply their

specific data to have a working design tool. Other research groups also have complete access to our models,

algorithms, and test data for independent verification and comparison with their design tools.

2 The Model

In this section, we present a model for the hierarchical cellular network design problem. The model proposed

in this investigation is applicable for cell planning for analog cellular systems (in particular, AMPS using

FDMA), digital cellular (standard IS-54 using TDMA), and GSM. The minimum service requirements in the

model conform to the guidelines for markets in the United States established by the Federal Communications

Commission (FCC). In the remainder of this section, we present the integer programming formulation and

discuss some properties of the mathematical model.
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2.1 Sets Used in the Model

Let L denote the set of candidate locations for tower construction. In each tower location, the system can

use one or more equipment types to generate coverage areas corresponding to different cell sizes. The set of

equipment types, J , contains the three elements macro, micro and pico. There is a set of subscriber locations,

M . This set may or may not be different from the set of candidate tower locations, L. The identification of

suitable candidate tower locations is non-trivial and involves field measurements of radio signal propagation

characteristics, resolution of right-of-way issues, etc. Our model takes the candidate locations emanating

from this process as an input and makes a selection among these for construction. The set Tm ⊂ L × J

is the tower-cell combinations that can service customers in location m ∈ M . For every ` ∈ L, j ∈ J ,

P`j ⊂ M is the set of customer locations that can be serviced by tower-cell combination (`, j). Finally, H is

the pairwise set of tower-cell combinations (`, j, `′, j′) that cause interference with one another if the same

frequency channel is assigned to both (`, j) and (`′, j′).

2.2 Constants Used in the Model

The demand for service in customer area m ∈ M is denoted by dm. This value is the number of frequency

channels required to service the population in the area at an acceptable service level (call blocking rate). Let

r denote the annual revenue (in $) generated by each frequency channel allocated to a customer area. This

number is not the revenue generated by a single customer in one year. Rather, it is the aggregate revenue

collected as a result of providing the channel. For example, a customer is not connected 24 hours a day, so the

same frequency channel can be used by multiple customers during a 24-hour period. Similarly, since cellular

systems in general experience two busy hours in a 24-hour period [13], it is the system capacity during these

two busy hours that define the number of subscribers the system can reasonably accommodate and, thus, it

determines the revenue potential of a frequency channel. The relationship between demand for service, call

blocking probability (one of the measures of quality of service) and system capacity in steady state can be

modeled with the Erlang-B formula. Also note that it is difficult to assess the marginal revenue of a frequency

channel as a function of the demand area to which it is assigned. Thus, using the same revenue parameter

for all demand areas may be the best estimate available in the network planning process. If demand area

specific data are available, the proposed model can be modified accordingly. The mandated minimum service

requirement, given as a proportion of the number of customers in the market the service provider operates,

is denoted by ρ. The cost (amortized annually) of building a tower in location ` ∈ L and connecting it to the

backbone network is given by the parameter a`. The annual cost of operating and maintaining equipment

of type j ∈ J in location ` ∈ L (including ammortization of the equipment) is represented by b`j . The

annual cost of assigning a frequency channel to tower type j ∈ J in location ` ∈ L is denoted by c`j . This

includes the cost of transmission power, marketing, accounting, customer aquisition and retention, and any

other cost that is contingent upon channel allocation to a tower-cell combination. The number of frequency

channels available to the service provider is given by N . Finally, we define for each tower-cell combination
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the parameter N ′
`j = min

(
N,

∑
m∈P`j

dm

)
, which represents an upper bound on the average number of

customers that can be serviced from this combination.

2.3 Decision Variables Used in the Model

The decision variables in this model includes both integer and continuous variables. The decision to build a

tower in a candidate location is represented by variable z`, which is one if a tower is built in location l ∈ L and

zero, otherwise. The binary variable y`j represents the decision to install equipment type j ∈ J in location

l ∈ L and is one if installation takes place and zero, otherwise. The model includes the number (sm`j) of

customers in location m ∈ M that are serviced by equipment type j ∈ J in tower location l ∈ L. The number

of channels assigned to tower-cell combination (`, j) is given by tt`j , while hh`j (ll`j) is the highest (lowest)

channel number assigned to (`, j). Thus, the model includes a specific, continuous range of channels to each

of the tower-cell combinations that are installed. All variables of type tt, hh and ll are continuous.

We introduce five additional types of variables that ensure the proper assignment of frequency chan-

nels. The midpoint channel number assigned to tower-cell combination (`, j) is given by mm`j , and dp`j`′j′

(dm`j`′j′) is the positive (negative) distance between the midpoint channel number of tower-cell combinations

(`, j) and (`′, j′).

An indicator variable which is one if the midpoint channel number of tower-cell combination (`, j) is

greater than that of (`′, j′) is given by bb`j`′j′ . The integrality of the bb variables together with the objective

function ensure that tt, hh and ll are all integer in the solution. Finally, qm is an indicator variable that is

one if customer location m can be serviced by at least one tower-cell combination and zero, otherwise. The

variable qm does not appear in the objective function and its value is closely tied to the channel assignment

variable tt`j . In other words, the service requirement represented by the constraints involving qm will have

an impact on the allocation of channels and, thus, indirectly on the infrastructure investment decisions.

2.4 Mixed-Integer Linear Program

The objective of the model is to maximize the total annual revenue generated by the cellular network less

the cost of building, maintaining and operating it. Mathematically we have

maximize
∑

m∈M

∑

(`,j)∈Tm

rsm`j

︸ ︷︷ ︸
−

∑

`∈L

a`z`

︸ ︷︷ ︸
−

∑

`∈L

∑

j∈J

b`jy`j

︸ ︷︷ ︸
−

∑

`∈L

∑

j∈J

c`jtt`j

︸ ︷︷ ︸
.

revenue tower cost cell cost channel cost

(1)

There are 20 sets of constraints that define the model. The first three sets ensure that customers can be

serviced only if there are towers and cell types that cover the demand area and there are frequency channels

available at these tower-cell combinations. Please note that multiple types of equipment (cell sizes) can be

used at any one tower that is constructed. This permits a designer to user the same tower to provide many

channels in a micro- or picocell without causing widespread interference in neighboring candidate tower-cell
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locations, while at the same time allocating a few channels to a macrocell to reach a few periferal customers or

to provide continuous coverage between cells without making an investment in an additional tower location.

Also, it is possible to service customers in one demand area from several towers, provided that they do not

use the same frequency channels.
∑

m∈P`j

sm`j ≤ N ′
`jy`j ∀` ∈ L, j ∈ J (2)

∑

j∈J

∑

m∈P`j

sm`j ≤ N ′
`1z` ∀` ∈ L (3)

∑

m∈P`j

sm`j = tt`j ∀` ∈ L, j ∈ J (4)

The next set of constraints ensures that one cannot serve more customers in a location than there is demand

for service (although it is possible to choose to serve only a portion of the customers in a demand area or

none at all).
∑

(`,j)∈Tm

sm`j ≤ dm ∀m ∈ M (5)

The minimum service requirements are handled by three types of constraints. The first type states that

customers cannot be serviced in location m if there are no frequency channels assigned to the tower-cell

combinations that can reach demand area m. Second, if there is at least one channel that can reach area

m, then customers in this location can be serviced. Finally, a constraint ensures that service is available in

demand areas that have at least a proportion ρ of all customers in the operator’s total service area. Note,

however, that there does not have to be a sufficient assignment of channels to service all of the customers that

can be reached by the cellular network. While these minimum service requirements may appear strange, they

are reasonable in the sense that a service provider must provide a sufficient infrastructure to reach a certain

proportion of the population in the market. When the investment in the infrastructure has been made, it is

reasonable to assume that the service provider will offer at least some service in the covered demand areas.

qm ≤
∑

(`,j)∈Tm

tt`j ∀m ∈ M (6)

Nqm ≥
∑

(`,j)∈Tm

tt`j ∀m ∈ M (7)

∑

m∈M

dmqm ≥ ρ
∑

m∈M

dm (8)

The next six constraint types assign frequency channels to tower-cell combinations. The first set defines the

number of channels assigned to each (`, j), while the second set calculates the midpoint of the assigned channel

range. The third set defines the absolute value of the distance (in channels) between two pairs of channel

midpoints. This distance can be either positive or negative. The fourth set of constraints forces the distance

between a pair of channel assignments to be sufficiently far apart as not to overlap if the corresponding
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tower-cell type pairs are within interference distance of one another. Finally, the last two sets force either

the positive or the negative distance between two pairs of channel assignments to be zero, thus serving as an

absolute value operator. The value of the variable bb`j`′j′ indicates whether the assigned channel range of

tower-cell (`, j) is to the left or to the right of the assigned channel range of tower-cell (`′, j′).

tt`j = hh`j − ll`j + 1 ∀` ∈ L, j ∈ J (9)

2mm`j = hh`j + ll`j ∀` ∈ L, j ∈ J (10)

mm`j −mm`′j′ = dp`j`′j′ − dm`j`′j′ ∀(`, j, `′, j′) ∈ H (11)

2 (dp`j`′j′ + dm`j`′j′) ≥ tt`j + tt`′j′ ∀(`, j, `′, j′) ∈ H (12)

dp`j`′j′ ≤ Nbb`j`′j′ ∀(`, j, `′, j′) ∈ H (13)

dm`j`′j′ ≤ N (1− bb`j`′j′) ∀(`, j, `′, j′) ∈ H (14)

The last seven sets of constraints provide the domains for the variables. Note that if ll`j = h`j + 1,

then no channels are assigned to tower-cell (`, j). Thus, the range of variable ll`j which indicates the lowest

channel number in the range assigned to tower-cell (`, j) is one greater than that of variable hh`j which

represents the highest channel number in the range, so that no channels can be assigned to tower-cell (`, j).

1 ≤ ll`j ≤ N + 1 ∀` ∈ L, j ∈ J (15)

0 ≤ hh`j ,mm`j , tt`j ≤ N ∀` ∈ L, j ∈ J (16)

0 ≤ dm`j`′j′ , dp`j`′j′ ≤ N ∀(`, j, `′, j′) ∈ H (17)

0 ≤ sm`j ≤ N ∀m ∈ M, ` ∈ L, j ∈ J (18)

bb`j`′j′ ∈ {0, 1} ∀(`, j, `′, j′) ∈ H (19)

y`j ∈ {0, 1} ∀` ∈ L, j ∈ J (20)

z` ∈ {0, 1} ∀` ∈ L (21)

The model defined above is similar, but not equivalent to models that allow the independent assignment

of single frequency channels to tower-cell combinations. Let I be the set of available frequency channels.

Traditional frequency assignment models use a variable for each frequency assignment, x`ji, which is one if

frequency i ∈ I is assigned to tower-cell (`, j) and zero, otherwise. Let

tt`j =
∑

i∈I

x`ji ∀` ∈ L, j ∈ J.

Constraints (9)–(14) in our model are replaced with

x`ji + x`′j′i ≤ 1 ∀i ∈ I, (`, j, `′, j′) ∈ H.

Each of the |I| = N channels generates a maximal independent set problem over the interference graph H.
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Figure 1: Illustration where block assignment yields fewer subscribers.

Our model is more compact than the traditional models in the sense that it requires substantially fewer

decision variables than models that assign individual channels to tower-cell combinations rather than an

interval of frequency channels. From a computational point of view, the number of frequency assignment

constraints in our model is 4|H|+2|L||J | while the traditional model formulation results in N |H| constraints.

Since the number of channels is 500 or more in this type of communication system, the difference in model

size becomes subtantial. However, while a feasible solution to our formulation is feasible also for models

using individual channel assignment, the converse is not true. Specifically, consider the example illustrated in

Figure 1. Areas a, b and c have one possible subscriber while areas d, e and f each have two. The maximum

number of subscribers that can be serviced using three channels and block assignment is eight, as illustrated

in Figure 1b. By permitting channels 1 and 3 (non-consecutive channel assignment) to be assigned to area

e, one additional subscriber can be accommodated, as shown in Figure 1c.

Theorem 1 The hierarchical cellular network design with channel allocation problem is NP-complete.

Proof Consider the problem formulation given by (1)–(18). Restrict the problem by letting N = 1, ρ = 0,

dm = 1 ∀m ∈ M , a` = 0 ∀` ∈ L, b`j = 0 ∀` ∈ L, j ∈ J , r − c`j = 1 ∀` ∈ L, j ∈ J , J = {1} and P`j = ` ∀` ∈
L, j ∈ J . This eliminates index j and variables q, y and z, and all associated constraints. A pair of towers

that interfere cannot be assigned an overlapping set of channels. Equation (4) now states that s` = tt` where

s` ∈ {0, 1}. Since only one channel is available, constraints (9)–(19) reduce to tt` + tt`′ ≤ 1, ∀(`, `′) ∈ H. The

restricted problem can now be written as max
{ ∑

`∈L tt` : tt` + tt`′ ≤ 1, ∀(`, `′) ∈ H; tt` ∈ {0, 1}, ∀` ∈ L
}
.

This is the maximal indpendent set problem, which is known to be NP-complete.
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Figure 2: A three tower example.

3 Solution Procedure

The linear-programming (LP) relaxation of the ILP model presented in Subection 2.4 is weak; i.e., the gap

between the LP upper bound and the ILP optimum can be relatively large. One difficulty is that the LP

relaxation allows for channels to be shared among tower-cell combinations that are close enough to interfere

with each other. Our experience with this model indicates that for even a toy problem, an ILP solver may

have to branch an enormous number of times in order to resolve these conflicts. We developed a procedure

to find an upper bound for the ILP by relaxing the integrality constraints on the bb variables and, then,

successively adding valid inequalities to reduce the upper bound. Adding these valid inequalities to the

model itself is not feasible since the number of these constraints increases exponentially with problem size,

thus making the problem defined in this fashion impossible to solve with a commercial ILP solver. Instead,

these valid inequalities are added iteratively as the procedure discovers that they are violated. A lower bound

procedure was developed that makes a valid channel assignment to the best tower-cell combinations produced

by the upper bound procedure. These two procedures produce a feasible solution along with a guaranteed

deviation from optimality.

3.1 Upper Bound Procedure

We relax the integrality condition on variables bb`j`′j′ , ∀(`, j, `′, j′) ∈ H. That is, (19) is replaced with

0 ≤ bb`j`′j′ ≤ 1, ∀(`, j, `′, j′) ∈ H. (22)

In turn, this implies that the same channel may be assigned to two interfering towers. In this subsection, we

describe procedures for generating classes of valid inequalities which we add to the formulation to counter
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c,2

c,3

Figure 3: Interference graph fore the three tower example of Figure 2.

Table I: Cliques and valid inequalities for the three-tower problem illustrated in Figures 2 and 3.

Clique Nodes in Valid
Number Clique Inequality

1 (a,1), (b,1), (c,1) tta1 + ttb1 + ttc1 ≤ N
2 (a,1), (a,2), (a,3) tta1 + tta2 + tta3 ≤ N
3 (a,1), (a,2), (b,1) tta1 + tta2 + ttb1 ≤ N
4 (a,1), (b,1), (b,2) tta1 + ttb1 + ttb2 ≤ N
5 (b,1), (b,2), (b,3) ttb1 + ttb2 + ttb3 ≤ N
6 (c,1), (c,2), (c,3) ttc1 + ttc2 + ttc3 ≤ N

this effect.

For a given problem instance, we construct an interference graph which has a vertex v`j corresponding

to the tower/equipment combination (`, j) and an edge (v`j , v`′j′) if and only if tower/equipment combination

(`, j) interferes with tower/equipment combination (`′, j′). Our valid inequalities are derived by finding cliques

in the interference graph and limiting the total number of channels assigned to each clique to N .

The interference graph for the three-tower problem illustrated in Figure 2 is given in Figure 3. Each

clique in this graph can be used to produce a valid inequality for (1)–(18). For this example, the six largest

cliques and corresponding inequalities are given in Table I. Finding all cliques of maximal size for a problem

with even a modest number of towers, say 20, is not computationally feasible. Our strategy is to create a

subset of these cliques and valid inequalities that appear to be most beneficial.

3.1.1 Preprocessing Algorithms for Clique Generation

Let IG = [E, V ] denote the interference graph with edge set E and vertex set V . A clique is a subgraph of

IG, say [E, V ], where E = V × V . A recursive algorithm can be applied to create a clique. Given a link

(n1, n2) ∈ E,
{
E = {(n1, n2)}, V = {n1, n2}

}
is a clique. If there exists another node n3 ∈ V such that

(n1, n3) ∈ E and (n2, n3) ∈ E, then
{
E = {(n1, n2), (n1, n3), (n2, n3)}, V = {n1, n2, n3}

}
is also a clique.

Hence, a clique with |V | = m can be constructed from a clique with |V | = m − 1 by appending one new

vertex and m − 1 new edges. By varying the rules for selecting new vertices, a large set of cliques can be
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generated.

From the interference graph, we see that edges can be classified into the following six groups: macro-

macro, macro-micro, macro-pico, micro-micro, micro-pico, and pico-pico. We developed six algorithms based

on the above classifications by varying the rules for selecting the first link and additional vertices to be

appended to a current clique. For example, macro-macro, micro-micro, and pico-pico cliques always begin

with a link connecting like cell types. These six procedures create a set of valid inequalities that are appended

to (1)–(18) prior to obtaining the first upper bound. These additional constraints are global and are retained

for all upper and lower bound calculations. These constraints take the form

∑

(`,j)∈Ec

tt`j ≤ N, ∀c ∈ C. (23)

The set C = {1, ..., c} denotes the set of cliques that have been appended to the problem, and is data

dependent.

3.1.2 Online Algorithms for Clique Generation

Let t̂t`j denote an optimal solution to (1)–(17), (20)–(23). Since the bb variables are continuous, there may

exist cliques in the interference graph for which more than N channels are assigned. Such cliques can be

found by solving a simple binary linear program. Let γ`j be one if vertex (`, j) is in the clique and zero,

otherwise. Then we seek a set of γ`j such that

γ`j + γ`′j′ ≤ 1 ∀(`, j, `′, j′) /∈H (24)

cw =
∑

`∈L

∑

j∈J

t̂t`jγ`j ≥ N + 1 (25)

γ`j ∈ {0, 1} ∀` ∈ L, j ∈ J (26)

Possible objective functions include maximizing the weight of a clique

maximize cw (27)

and maximizing the size of a clique

maximize
∑

`∈L

∑

j∈J

γ`j (28)

We actually solve both problems and append the corresponding cuts to the valid inequality constraints (23).

These cuts will force some modification to the channel allocation and this process is repeated. Each solution

to (1)–(17), (20)–(23) is a valid upper bound and this loop continues until (24)–(27) has no feasible solution

(i.e., (23) is satisfied for all cliques in the interference graph).
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3.2 Lower Bound Procedure

Let ẑ`, ŷ`j , and t̂t`j denote the optimal solution obtained from the upper bound procedure. Let H0 =
{
(`, j, `′, j′) ∈ H : t̂t`j = 0

}
and H1 =

{
(`, j, `′, j′) ∈ H : t̂t`j > 0∧ t̂t`′j′ = 0

}
. Then the following constraints

fix bb variables that were not active in the upper bound problem:

bb`j`′j′ = 0 ∀(`, j, `′, j′) ∈H0 (29)

bb`j`′j′ = 1 ∀(`, j, `′, j′) ∈H1 (30)

The constraints below fix the tower selection and cell selection variables to their current state:

z` = ẑ` ∀` ∈L (31)

y`j = ŷ`j ∀` ∈ L, j ∈J (32)

The lower bound is simply (1)–(18), (23), (29)–(32). Since all variables must be integer, a solution is feasible

for the hierarchical cellular network design problem and, hence, is a valid lower bound. Also note that there

is always a feasible solution to the lower bound procedure since no customers are required to be served.

4 Empirical Analysis

The upper and lower bound algorithms have been implemented using A Mathematical Programming Language

(AMPL) and CPLEX (http://www.ampl.com and http://www.ilog.com/products.cplex). Each iteration of

the upper bound procedure requires the solution of three problems, UB, C1, and C2. Problem UB is (1)–(17),

(20)–(23), problem C1 is (24)–(27), and C2 is (24)–(26), (28). Exact solutions are obtained for C1 and C2

and an optimality gap of 1% is used for UB. That is, CPLEX terminates as soon as a solution is found that is

guaranteed to be within 1% of an optimum. Optimality gaps greater than zero are used to speed convergence.

In each iteration, C1 and C2 each generate a new valid inequality for UB that cuts off the current solution.

This process continues until C1 has no feasible solution. The solution available at this time is taken as the

best upper bound.

The lower bound procedure involves solving two problems LB1 and LB2. The problem LB1 is (1)–(18),

(23), and (29)–(32). The problem LB2 is obtained from the solution to LB1 by fixing all bb variables and

dropping constraints (31) and (32). Each problem used an optimality gap of 10% and a time limit of 16

hours.

All test runs were made on a Compaq Alpha Server DS20E with dual EV6.7 (21264A) 667 MHz

processors and 4,096 MB of RAM. The algorithm in AMPL format and selected test cases may be found at

http://www.engr.smu.edu/˜jlk/publications/01-EMIS-08/.

Previous work on cellular system design has been based on certain assumptions about system cost and

demand structure. Consistent with the studies by Gavish and Sridhar [9] and Wu and Lin [24], we assume

that mobility of users can be ignored. This is a reasonable assumption in a system planning model. Instead
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Table II: Constants for test problems.
Constant Value or Range Description
dm U [50, 250] Demand in each service area is different, but is drawn from

the same uniform distribution with an expected offered load
of 150 customers per service area.

ρm 0.45 This is under the assumption that there are two service
providers in the licensed area and that they have to cover
areas with at least 90% of all demand combined.

r $64,800 Each channel is used 518,400 minutes per year while each sub-
scriber uses 12,000 minutes per year at a charge of $1,500 per
year, resulting in 43.2 customers per channel paying $64,800
per channel per year.

N 500 In GSM systems, two service providers typically share 1,000
channels in each direction.

a` $144,500 This parameter includes the annualized costs of land acqui-
sition, tower construction and connection of the tower to an
MTSO.

b`j $1,734, $1,445, $1,156 For macrocells, microcells and picocells, respectively; this pa-
rameter includes the cost of installation and maintenance of
tower transmission equipment, which will vary depending on
the desired cell size.

c`j $21,980 This annualized cost includes per-channel equipment cost,
power, licensing, administration, accounting, marketing and
other costs associated with the per subscriber operation of
the system.

Table III: Cell range and interference data.
Cell Type Range (mi.) Interference Distance to Cell Type (mi.)

macro micro pico
macro 1.00 3.000 2.625 2.250
micro 0.75 2.625 2.250 1.875
pico 0.50 2.250 1.875 1.500

of formally modeling the call arrival and duration processes (which can be translated with the Erlang B

formula into an equivalent channel requirement for a given call rejection rate), we use the equivalent channel

requirement to represent demand for service. The revenue per minute per channel is stated in channel

requirement equivalents. Our test problems are based on the data in Tables II and III.

The candidate tower locations and demand area locations are assumed to be the same. We use the

four sets of candidate tower locations first introduced by Farmehr [5]. These are labeled the Southwest,

Southeast, Northwest and Northeast market clusters, respectively. For each market cluster, we generated

three random sets of demand for service, resulting in twelve market cluster/demand combinations. From

each such combination, we created smaller subsets of 15, 20, 25, 30, 35 and 40 candidate tower locations, for

a total of 72 test problems. The computational results are summarized in Table IV. The solution for the

20-tower Northwest Market Cluster A problem is illustrated in Figures 4 and 5. The picocells are represented
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Table IV: Empirical Results
Number of Towers

Test Case 15 20 25 30 35 40
Southwest Cluster – A
Gap (% ) 1.4 8.0 7.0 8.8 9.1 9.6
CPU Time (hh:mm:ss) 00:00:01 00:00:08 00:02:06 00:04:06 05:14:14 13:23:22

Southwest Cluster – B
Gap (% ) 1.6 2.7 6.7 6.0 8.7 7.7
CPU Time (hh:mm:ss) 00:00:01 00:00:26 00:01:13 00:07:06 00:52:03 06:09:49

Southwest Cluster – C
Gap (% ) 0.0 0.0 8.4 5.6 7.2 6.5
CPU Time (hh:mm:ss) 00:00:01 00:00:07 00:01:56 00:05:05 00:32:43 02:57:40

Southeast Cluster – A
Gap (% ) 6.5 2.9 8.2 9.7 7.8 9.7
CPU Time (hh:mm:ss) 00:00:04 00:00:12 00:12:31 04:18:53 00:31:46 02:32:40

Southeast Cluster – B
Gap (% ) 8.2 8.2 8.0 6.5 8.0 5.5
CPU Time (hh:mm:ss) 00:00:03 00:00:18 00:02:14 00:35:29 00:19:09 02:06:46

Southeast Cluster – C
Gap (% ) 0.7 5.6 7.3 10.0 5.7 6.9
CPU Time (hh:mm:ss) 00:00:02 00:00:07 00:01:04 00:12:10 00:18:54 01:27:22

Northwest Cluster – A
Gap (% ) 6.1 11.5 8.8 8.4 9.5 1.7
CPU Time (hh:mm:ss) 00:01:13 00:06:24 01:39:46 01:10:50 05:30:25 06:09:34

Northwest Cluster – B
Gap (% ) 5.9 5.9 9.6 7.3 9.6 13.1
CPU Time (hh:mm:ss) 00:01:29 00:04:51 16:40:30 05:55:21 21:10:56 38:02:24

Northwest Cluster – C
Gap (% ) 2.9 9.0 8.3 2.5 8.7 8.3
CPU Time (hh:mm:ss) 00:00:20 00:07:32 00:32:50 00:39:14 01:26:49 09:07:46

Northeast Cluster – A
Gap (% ) 6.0 8.0 7.8 12.4 19.4 9.3
CPU Time (hh:mm:ss) 00:00:37 00:04:43 02:53:13 18:34:48 19:30:46 06:51:57

Northeast Cluster – B
Gap (% ) 6.7 9.1 6.1 9.4 11.6 18.0
CPU Time (hh:mm:ss) 00:04:31 00:25:51 01:00:07 15:58:57 34:24:19 40:04:45

Northeast Cluster – C
Gap (% ) 4.5 8.4 8.5 5.7 8.8 7.9
CPU Time (hh:mm:ss) 00:00:19 00:02:10 02:07:36 01:15:46 03:57:11 12:48:56

Average
Gap (% ) 4.3 6.4 7.9 8.2 9.4 7.2
CPU Time (hh:mm:ss) 00:00:43 00:04:19 02:06:16 04:04:49 07:49:06 11:48:35

by the smallest circles, microcells by the intermediate-sized circles, and macrocells by the largest circles.

Note that the circles in Figure 4 are smaller than those in Figure 5, reflecting the fact that the service area

is smaller than the interference area. The numbers in Figure 4 give the total subscribers serviced by a tower

and the numbers in Figure 5 give the channels assigned. The 374 subscribers assigned to the tower in the

northeast corner use channels 127–344 on a microcell and channels 345–500 on a macrocell.

Inspection of Figure 4 indicates that there is not coverage overlap between all selected cells. Instead,

the ‘coverage’ graph has five components. A customer in the northeast corner will have his call dropped when
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Figure 4: Subscribers serviced by the towers selected for the 20-node Northwest Market Cluster – A.
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Figure 5: Channel assignment for the 20-tower Northwest Market Cluster – A.

traveling toward the southwest in the service area. From the figure, it is obvious that this problem can be

resolved by adding a macrocell in the three locations with 164, 336 and 343 channels assigned, respectively.

Thus, when the computational procedure terminates, these operational constraints can be added interactively

by the network planner and the model can be solved again. In this case, we added the constraints

y1,1 = 1, tt1,1 ≥ 1,
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Figure 6: Revised coverage and service plan for the 20-node Northwest Market Cluster – A.

y7,1 = 1, tt7,1 ≥ 1,

y17,1 = 1, tt17,1 ≥ 1.

The additional computational time was 71 CPU seconds and the objective function value was reduced

by 0.14% (or $131,928). The new solution is displayed in Figure 6 and we observe that coverage is contiguous.

At the same time, the total number of channels assigned to towers (including frequency reuse) was reduced

from 2,209 to 2,206, reflecting the additional interference introduced when assigning channels to the three

new macrocells.

The decision where to provide additional coverage in spite of low customer demand for service is beyond

the model proposed in this paper and can be done interactively in an ad-hoc fashion by the network planner.

Considerations such as coverage on roads connecting heavy demand areas serviced by the network to provide

consistent service to mobile customers may be added to the model in terms of hard constraints, similar to

the ones added above, on cell sites constructed and channels provided to a specific low volume demand point.

Note, however, that coverage in our solutions is not complete, but rather only in those areas of the market

where demand for service makes it profitable. This is consistent with industry practice as evidenced by the

actual coverage map (Figure 7) for the market we have obtained tower data for.

Our goal was to obtain solutions guaranteed to be within 10% of an optimum. That is, our lower

bound problem LB1 terminated whenever such a feasible solution was found. We successfully found such a

solution in 66 of the 72 problems attempted (or in 92% of the cases). Six of the 72 problems were terminated

due to the 16-hour time limit without finding the guaranteed 10% solution. However, all were within a 20%

guarantee and four provide guarantees no larger than 13.1% . The two most difficult problems were from

the Northwest Cluster Groups A and B. The most difficult part of the hierarchical cellular network design

problem is the allocation of channels. Even if the tower-cell combinations are fixed, an optimal channel
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Figure 7: Actual coverage in the market from which the empirical study draws its candiate tower locations.

allocation to these cells is a challenging problem.

The results show that it is possible to find good feasible solutions as the problem size (in the number of

candidate tower locations) increases. However, the computational time increases substantially with problem

size. This is consistent with expectations since the lower bound procedure solves reduced-size versions of

the original problem. As problem size increases, so does the reduced-size version of it and the associated

computational time. Although the average computational times are relatively long, the solution procedure

solves a planning problem rather than an operational problem and, consequently, computational times that

support real-time decision-making are not a consideration. The cost of the computing resources required to

implement the solution procedure are minor compared to the potential cost savings provided by the model’s

use.

Overall, the proposed solution procedure meets the stated goals including a) implementation based on

commercially available linear integer programming software, b) reasonable resource commitments, c) ability

to solve realistic problem instances, and d) satisfactory quality of obtained solutions.

5 Conclusion

This manuscript presents a formulation and solution procedure for the hierarchical network design problem

with channel allocation. The proposed model includes the cost of system investments and operation, as well

as revenues generated by the system based on customer demand for service. In contrast to previous work in

this area, the model specifically includes heterogeneous demand for service. Simultaneously, the model also

solves the channel allocation problem taking into consideration interference constraints. In a hierarchical
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design, which includes macrocells, microcells and picocells, the interference matrix is very dense. This results

in a channel allocation problem that is very difficult to solve. The proposed model differs from previous work

also in that a consecutive range of channels is allocated to each tower. This feature makes the solution more

easily implemented in the field. We demonstrated that consecutive channel solution may differ in objective

function value from models in which this requirement is not imposed. Finally, we show that the hierarchical

cellular network design model with channel allocation is an NP-complete problem.

The solution procedure, which was implemented and tested on a Compaq Alpha Server, uses as a

base the commercially available integer linear programming software package CPLEX. While CPLEX cannot

solve even small instances of the problem, our solution procedure makes use of the problem structure to

obtain a near-optimal solution. In particular, our model relaxes the integrality constraint of some of the

model variables. The relaxed problem is solved using CPLEX. For each solution to the relaxed problem, we

identify valid global cuts by solving two maximal clique problems. Based on the solutions from the maximal

clique problems, we add a pair of cuts and resolve. This procedure is repeated until no further constraint

violations can be identified with this procedure. The final solution is a tight upper bound. The feasible

solution procedure creates a smaller-size version of the original problem based on the upper bound solution.

This smaller-size problem is also solved by CPLEX until either a satisfactory solution is found (defined as

being within 10% of the upper bound) or a 16-hour time limit is reached.

The computational experience with the proposed solution procedure is very encouraging. The pro-

cedure finds a solution within the specified tolerance in over 90% of all test problems. The computational

times may be large, but are certainly acceptable given that the model is for planning purposes rather than

operational use.
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