EMIS 8374 [Graph Coloring]

Extra Credit Assignment: Graph Coloring

e Input: An undirected graph G = (N, F).

e Problem: Assign a color ¢; to each node ¢ € N such
that

1. ¢; #cjfor all (i,5) € £

2. The number of colors used is minimized.

EMIS 8374 [Graph Coloring]

Integer Programming Formulation:

min > Y
1eC
subject to Y x;; =1 Vi € N,
1eC

> wi; < |Cly; Vjedl,

1eN

Tip + T < 1 (7,j) € E, k € C,
yir1 <y Vi€{l,2,...,[C] -1},
vy €{0,1} (i,j) € .

y; € 40,1} j €,

where (' is the set of colors.

EMIS 8374 [Graph Coloring]

color.txt
Solve an instance of the graph coloring problem

with integer programming.

model graph_coloring_model.txt;
data gl.txt;

#option solver cplex;

option cplex_options ’timing=1’;

solve;

list the color for each node

printf "node\tcolor\n";
for {u in NODES} {
for {i in COLORS: x[u,i] == 1}
printf "%d\t%d\n",u,i;

EMIS 8374 [Graph Coloring]

ampl < color.txt

Times (seconds):

Input = 0.026352

Solve = 0.423534

OQutput = 0.00488

CPLEX 8.0.0: optimal integer solution; objective 4
color

B
©)
o,
®

1
2
3
4
5
6
7
3
9

= o WO NP WD AW

=
o

EMIS 8374 [Graph Coloring]

This is a simple graph-coloring heuristic that colors
the nodes in the order that AMPL stores them
1in the data file.

set NODES;
set EDGES within {NODES, NODES};

data gl.txt;
In the worst case we need

to use a different color for each node.
set COLORS := {1 .. card(NODES)};

Data structures to keep track of the

nodes that have been colored.
set COLORED within NODES ordered default {};
set UNCOLORED within NODES ordered default NODES;

EMIS 8374 [Graph Coloring]

The next node to color (i.e., the first node in the
UNCOLORED set.

param next_node;

The set of colors allowable for next_node.
set POSSIBLE_COLORS ordered;

node_color[i] indicates the color assigned to node i.
param node_color {NODES} default O;

#parameters to store the time when the
#algorithm starts and stops
param start_time;

param stop_time;

EMIS 8374 [Graph Coloring]

Start the clock.
let start_time := _ampl_elapsed_time;

repeat {

Select the first node in the uncolored list.
let next_node := first(UNCOLORED);
Check the color assignments of next_node’s neighbors.
let POSSIBLE_COLORS := COLORS;
for {u in NODES: (u, next_node) in EDGES or
(next_node, u) in EDGES} {
let POSSIBLE_COLORS :=
POSSIBLE_COLORS diff {node_color[ul};
}
let node_color[next_node] := first(POSSIBLE_COLORS);
let COLORED := COLORED union {next_node};
let UNCOLORED := UNCOLORED diff {next_node};
} until card (UNCOLORED) == O;
let stop_time := _ampl_elapsed_time;

EMIS 8374 [Graph Coloring]

Print out the solution.

printf "Yd colors were used:\n",
card(union {i in NODES}{node_color[il});
display union {i in NODES} {node_colorl[i]};

printf "cpu seconds = %f\n",stop_time - start_time;
display node_color;
printf "\n\nVerification:\n";
for {(i,j) in EDGES} {
printf "Edge (%d,%d):\tnode %d gets color
%d\tnode %d gets color J%d\n"

,i,j,1i,node_color[i],j,node_colorl[j];

EMIS 8374 [Graph Coloring]

ampl < colorbynumbers.txt

5 colors were used:
set union {i in NODES} {node_color[il} :=1 2 3 4 5;
cpu seconds = 0.000000
node_color [*] :=
1

2
3
4
5
6
7
38
9

OO W L W &SP N = W DN~

=
-

