
EMIS 8374 [Graph Coloring] 1

Extra Credit Assignment: Graph Coloring

• Input: An undirected graph G = (N,E).

• Problem: Assign a color ci to each node i ∈ N such

that

1. ci 6= cj for all (i, j) ∈ E

2. The number of colors used is minimized.

EMIS 8374 [Graph Coloring] 2

Integer Programming Formulation:

min
∑

j∈C

yj

subject to
∑

j∈C

xij = 1 ∀i ∈ N,

∑

i∈N

xij ≤ |C|yj ∀j ∈ C,

xik + xjk ≤ 1 (i, j) ∈ E, k ∈ C,

yi+1 ≤ yi ∀i ∈ {1, 2, . . . , |C| − 1},

xij ∈ {0, 1} (i, j) ∈ E,

yj ∈ {0, 1} j ∈ C,

where C is the set of colors.

EMIS 8374 [Graph Coloring] 3

color.txt

Solve an instance of the graph coloring problem

with integer programming.

model graph_coloring_model.txt;

data g1.txt;

#option solver cplex;

option cplex_options ’timing=1’;

solve;

list the color for each node

printf "node\tcolor\n";

for {u in NODES} {

for {i in COLORS: x[u,i] == 1}

printf "%d\t%d\n",u,i;

}

EMIS 8374 [Graph Coloring] 4

ampl < color.txt

Times (seconds):

Input = 0.026352

Solve = 0.423584

Output = 0.00488

CPLEX 8.0.0: optimal integer solution; objective 4

node color

1 3

2 4

3 2

4 3

5 1

6 4

7 2

8 3

9 4

10 1

EMIS 8374 [Graph Coloring] 5

This is a simple graph-coloring heuristic that colors

the nodes in the order that AMPL stores them

in the data file.

set NODES;

set EDGES within {NODES, NODES};

data g1.txt;

In the worst case we need

to use a different color for each node.

set COLORS := {1 .. card(NODES)};

Data structures to keep track of the

nodes that have been colored.

set COLORED within NODES ordered default {};

set UNCOLORED within NODES ordered default NODES;

EMIS 8374 [Graph Coloring] 6

The next node to color (i.e., the first node in the

UNCOLORED set.

param next_node;

The set of colors allowable for next_node.

set POSSIBLE_COLORS ordered;

node_color[i] indicates the color assigned to node i.

param node_color {NODES} default 0;

#parameters to store the time when the

#algorithm starts and stops

param start_time;

param stop_time;

EMIS 8374 [Graph Coloring] 7

Start the clock.

let start_time := _ampl_elapsed_time;

repeat {

Select the first node in the uncolored list.

let next_node := first(UNCOLORED);

Check the color assignments of next_node’s neighbors.

let POSSIBLE_COLORS := COLORS;

for {u in NODES: (u, next_node) in EDGES or

(next_node, u) in EDGES} {

let POSSIBLE_COLORS :=

POSSIBLE_COLORS diff {node_color[u]};

}

let node_color[next_node] := first(POSSIBLE_COLORS);

let COLORED := COLORED union {next_node};

let UNCOLORED := UNCOLORED diff {next_node};

} until card(UNCOLORED) == 0;

let stop_time := _ampl_elapsed_time;

EMIS 8374 [Graph Coloring] 8

Print out the solution.

printf "%d colors were used:\n",

card(union {i in NODES}{node_color[i]});

display union {i in NODES} {node_color[i]};

printf "cpu seconds = %f\n",stop_time - start_time;

display node_color;

printf "\n\nVerification:\n";

for {(i,j) in EDGES} {

printf "Edge (%d,%d):\tnode %d gets color

%d\tnode %d gets color %d\n"

,i,j,i,node_color[i],j,node_color[j];

}

EMIS 8374 [Graph Coloring] 9

ampl < colorbynumbers.txt

5 colors were used:

set union {i in NODES} {node_color[i]} := 1 2 3 4 5;

cpu seconds = 0.000000

node_color [*] :=

1 1

2 2

3 3

4 1

5 2

6 4

7 3

8 1

9 3

10 5

;

