Work Scheduling: The following table summarizes the Centerville Bank's requirements for tellers according to the time of day:

Shift	Time	Tellers Required
1	10.00 A.M 12.00 P.M.	10
2	12.00 P.M 2.00 P.M.	16
3	2.00 P.M 4.00 P.M.	14

Tellers report for duty at the start of each of the above three shifts. Tellers reporting at the start of shifts 1 and 2 work for 4 consecutive hours. Tellers reporting at the start of shift 3 work for 2 consecutive hours.

Formulate a MCNFP that Centerville can use to minimize the number of tellers it must hire.

Solution Let y_i be the number of nurses who start duty at shift *i*.

Start	Shifts Covered
y_1	1 and 2
y_2	2 and 3
y_3	3

Add slack variables minimize $y_1 + y_2 + y_3$ = 10s.t. y_1 s_1 — = 16 s_2 $y_1 + y_2$ $- s_3 = 14$ $s_3 \ge 0$ $+ y_3$ y_2 $s_2,$ $y_2,$ $y_3,$ $s_1,$ $y_1,$

Add a redundant constraint

 $\min y_1 + y_2 + y_3$ s.t. (1)= 10 y_1 s_1 $(2) \quad y_1 + y_2$ = 16 s_2 $- s_3 = 14$ + $s_3 = -14$ (3) $y_2 + y_3$ (4) $- y_2$ y_3 ____ $s_2, \quad s_3 \geq 0$ $s_1,$ $y_1,$ $y_2,$ $y_3,$

Replace (2) with
$$(2)' = (2) - (1)$$
, and (3) with $(3)' = (3) - (2)$

 $\min y_1 + y_2 + y_3$ s.t. (1)= 10 y_1 s_1 (2)' $+ y_2 + s_1$ = 6 $- s_2$ $(3)' - y_1$ $+ y_3 + s_2 - s_3 = -2$ (4) $+ s_3 = -14$ $- y_2$ $- y_3$ $y_3, \qquad s_1, \qquad s_2, \qquad s_3 \ge 0$ $y_2,$ $y_1,$ Does this look familiar?

Node-Arc Incidence Matrix

