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EMIS 8374 [Network Flow Problems with Fixed Costs: Example 2]
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e Suppose that it possible to increase the capacity of the
existing arcs in network by paying $100 per extra unit
of capacity per arc.

For example, the capacity of arc (1,2) could be

increased from 3 to 5 for a cost of $200.

e Formulate a mathematical programming model to
determine a set of minimum-cost arc-capacity
increases to the network shown above so that 10
messages per minute may be transmitted from Node 1

to Node 5.
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Let y;; be the number of units of additional capacity
purchased for arc (i,j) € A. A correct mathematical

programming formulation is shown below.

Minimize 100 > w;; (1)
(i,j)€A
s.t. Z Tij — Z Tj; = 0,Vie N (2)
{5:(i,5)eA} {7:(4,1)€ A}
0<zy <wj+y;, (LHVeEA (3)
x5 > 10 (4)
(6)

V(i,j) e A

y;; is integer ,

The objective function (1) minimizes the cost of
purchasing the additional capacity. The flow balance
constraints (2) are unchanged. Constraint set (3) ensures
that enough additional capacity is added to carry the
messages routed on arc (4, j) € A. Constraint (4) forces
arc (5,1) to carry at least 10 messages. Constraints (5)
and (6) force t he y;;’s to be non-negative integers.
Alternatively, we can remove arc (5,1), set by = 10 and

bs = —10. This leads to the formul ation shown below.
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Minimize 100 > (7
(ij)eA
s.t. Z Tij — Z Tji = bl,% eN (8)
{7:G.g)eA} {5:(59)eA}
0 < @iy < wij + i, (i,j)ved (9

yi; >0, V(i,j)eA (10)
V(i,j) e A (11)

1i; is integer ,

e Can we relax the integrality constraints on the y;;
variables?

— It can be shown that the constraint matrix for the
second formulation is TU, and so it follows that this
problem can also be solved as an LP.

— Alternatively, observe that the variable y;; can be
seen to represent the flow on an arc parallel to (¢, 7).

Thus, this can be modeled as an instance of
MCNFP.
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Minimize > ey (12)
(i,)eA
s.t. Z Tij — Z Ty = b;,Vie N (13)
{:(6.5)eA} {7:(Gi)eA}
1520, V(ij)e A (14)

CPLEX 8.0.0: optimal solution;
objective 30

x =
12 10
13 10
2 4 5
32 0
3 4 0
35 5
45 0

ot
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YOO
(10,1)/( \(T'l)

20 (10,1) -5
(3.2

For each arc (4,7), add a binary variable y;; which is equal to 1 if and only if the
arc carries flow (i.e. 2;; > 0). To ensure the correct relationship between z;; and
ij, we add the following set of constraints:

w5 < 20y (i, ])-

To account for the fixed cost of installing capacity on arc (i, j), let f;; be first
number given for arc (4, j) in the figure and change the objective function to

min Z (cijrij + fijyis)-

(i,5)€A
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minimize cost:

10xy[1,2] + 10*y[1,3] + 10*y[2,4] +

10xy[3,2] + 10*y[3,4] + 15%y[3,5] +

3*y[4,5] + x[1,2] + x[1,3] +
x[2,4] +  x[3,2] + x[3,4] +
x[3,5] + 2%x[4,5];

s.t. flow_balancel[1]:
x[1,2] + x[1,3] = 20;

s.t. flow_balance[2]:
-x[1,2] + x[2,4] - xI[3,2]

]
|
[¢3]

s.t. flow_balance[3]:
-x[1,3] + x[3,2] + x[3,4] + x[3,5] = -5;

s.t. flow_balancel[4]:
-x[2,4] - x[3,4] + x[4,5]

-5;

s.t. flow_balance([5]: -x[3,5] - x[4,5] = -5;
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s.t. capacityl[1,2]: x[1,2] 20*y[1,2] <= 0;
s.t. capacityl[1,3]: x[1,3] 20*y[1,3] <= 0;
s.t. capacity[2,4]: x[2,4] 20*y[2,4] <= 0;
s.t. capacityl[3,2]: x[3,2] 20*y[3,2] <= 0;
s.t. capacityl[3,4]: x[3,4] 20*y[3,4] <= 0;
s.t. capacityl[3,5]: x[3,5] 20*y[3,5] <= 0;
s.t. capacityl[4,5]: x[4,5] 20*y[4,5] <= 0;

objective 73

x =
12 5
13 15
2 4
32
34 10
35
45

CPLEX 8.0.0: optimal integer solution;
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10

LP Relaxation
CPLEX 8.0.0: optimal solution;
objective 46.25
9 dual simplex iterations (1 in phase I)
X =
12 10
13 10
2 4 5
32 0
3 4 0
35 5
45 0
y =
12 0.
13 O.
24 0.25
32 0
34 O
35 0.25
45 O




