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Working Capacity Allocation Problem

• Determine the least capacity needed to satisfy a set of given

point-to-point demands in a telecommunications network.

• A link denotes the bi-directional connection between a pair of

nodes.

– For a modern DWDM telecommunications network, a link

connecting nodes i and j consists of many pairs of fiber optic

cable co-located in a single fiber optic duct.

– One member of the pair is for traffic from i to j while the

other is for traffic in the opposite direction.

– In practice most large carriers use a separate cable for each

direction of transmission.
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Notation

• The topology of the physical network is represented by a graph

(N, L) where N = {1, . . . , n} denotes the set of nodes and L

denotes unordered pairs of nodes corresponding to links.

• Let A = {(i, j), (j, i) : {i, j} ∈ L} be a set of ordered pairs called

arcs corresponding to the links.

• Flow on arc (i, j) implies that flow is from i to j.

• Flow in the opposite direction must be on arc (j, i).

• The directed graph (network) is given by G = (N, A).
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Graph for Example Problem

4

321

5 6

N = {1, 2, 3, 4, 5, 6}

L = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, {2, 6}, {3, 6}, {4, 5}, {5, 6}}

A = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 6), (3, 6), (4, 5), (5, 6),
(2, 1), (4, 1), (5, 1), (5, 2), (6, 2), (6, 3), (5, 4), (6, 5)}
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Demand Matrix

• Let dij denote the demand for traffic with origin node i and

destination node j.

• Traffic demand need not be symmetrical (i.e., it’s possible that

dij 6= dji), and it’s assumed that dii = 0 for i = 1, . . . , n.

• The corresponding matrix is called the demand or traffic matrix.

• Since all the traffic prescribed by the demand matrix must share

the same network represented by G = [N, A], the problem is a

member of the class of multicommodity network flow problems.

• An individual commodity can be expressed as either an (i, j) pair

for each (i, j) such that dij > 0, or an aggregation of such

(i, j)-pairs by their source (or destination) nodes.
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Demand Matrix for Example Problem

1 2 3 4 5 6

1 - 10 0 10 10 0

2 0 - 10 10 10 10

3 0 0 - 0 10 10

4 0 0 0 - 10 0

5 0 0 0 0 - 10

6 0 0 0 0 0 -

11 commodities:

d12 = 10 d14 = 10 d15 = 10

d23 = 10 d24 = 10 d25 = 10

d26 = 10 d35 = 10 d36 = 10

d45 = 10 d56 = 10
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Demand Aggregation

• Produces smaller models (fewer constraints and variables) than

treating each demand pair as separate commodity.

• Up to |N | = n commodities, each having up to n − 1

destinations, corresponding to each of the other nodes in N

rather than (as many as) n2 − n commodities corresponding to

each demand pair in the traffic matrix.

• Sets up a multi-commodity flow problem where each commodity

has a single “source” and multiple “sinks” corresponding to the

nodes of a given commodity’s demand matrix
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Demand Notation

• Let the n-component requirement vector ek for commodity k ∈ N

be given by

ek
i =







∑

j∈N dkj, if i = k

−dki, otherwise.

• For a given commodity k,

– ek
i > 0 means node i is a supply node

– ek
i = 0 means node i is a transshipment node

– ek
i < 0 means node i is a demand node
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Demand Matrix for Example Problem

1 2 3 4 5 6

1 - 10 0 10 10 0

2 0 - 10 10 10 10

3 0 0 - 0 10 10

4 0 0 0 - 10 0

5 0 0 0 0 - 10

6 0 0 0 0 0 -

e1
1 = 30 e1

2 = −10 e1
3 = 0 e1

4 = −10 e1
5 = −10 e1

6 = 0

e2
1 = 0 e2

2 = 40 e2
3 = −10 e2

4 = −10 e2
5 = −10 e2

6 = −10

e3
1 = 0 e3

2 = 0 e3
3 = 20 e3

4 = 0 e3
5 = −10 e3

6 = −10

e4
1 = 0 e4

2 = 0 e4
3 = 0 e4

4 = 10 e4
5 = −10 e4

6 = 0

e5
1 = 0 e5

2 = 0 e5
3 = 0 e5

4 = 0 e5
5 = 10 e5

6 = −10
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Working Capacity Allocation: Decision Variables for

Node-Arc Model

• For each arc (i, j),

– Variable gk
ij denotes the flow of commodity k on arc (i, j).

– Variable cij denotes the capacity of link {i, j}.

gk
ij ≥ 0 and integer, ∀k ∈ N, ∀(i, j) ∈ A

cij ≥ 0, ∀{i, j} ∈ L

• This model assumes symmetrical capacity so that the capacity of

cij on link {i, j} can accommodate a simultaneous flow of cij in

both directions.

• In the classical multicommodity network flow problem the

capacities are constant and need not be identical in both

directions.
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Working Capacity Allocation: Constraints for Node-Arc

Model

minimize Total Working Capacity:
∑

{i,j}∈L

cij

subject to Flow Conservation:
∑

(i,j)∈A

gk
ij −

∑

(j,i)∈A

gk
ji = ek

i , ∀i ∈ N, ∀k ∈ N

subject to Capacity in Normal Direction:
∑

k∈N

gk
ij ≤ cij, ∀{i, j} ∈ L

subject to Capacity in Reverse Direction:
∑

k∈N

gk
ji ≤ cij, ∀{i, j} ∈ L
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Working Capacity Allocation: Optimal Solution for

Node-Arc Model

g1
12 = 10 g1

14 = 10 g1
15 = 10

g2
14 = 10 g2

23 = 10 g2
25 = 10 g2

26 = 10 g2
21 = 10

g3
25 = 10 g3

36 = 10 g3
32 = 10

g4
45 = 10

g5
56 = 10

c12 = 10 c14 = 20 c15 = 10

c23 = 10 c25 = 20 c26 = 10 c36 = 10

c45 = 10 c56 = 10
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Working Capacity Allocation: Optimal Flow for Node-Arc

Model

1

5 6

32

4

10 units of commodity 1

10 units of commodity 4
10 units of commodity 5

10 units of commodity 3

10 units of commodity 2
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Working Capacity Allocation: Optimal Flow for Capacity

Allocation

4 5 6

321

10

10

20 10 20 10

10

10

10

Slide 14

Node-Arc Model: Advantages and Disadvantages

• The advantage of this model is that it requires very little input

data and implicitly considers all possible paths for every demand

pair.

• One slight disadvantage is that some additional analysis or post

processing of the LP solution is required to find the paths and

flow for a given demand pair. This can be easily accomplished

with a procedure similar to that suggested by Dijkstra’s

algorithm for finding shortest paths.

• Also some of the paths in the optimal solution may use a large

number of arcs. The number of arcs in a path is known as the

hop count and this can not be restricted in the node-arc model.

EMIS 8374 [Survivable Network Design] 8

Slide 15

Arc-Path Formulation

• A directed path from node s to node t in the network G = (N, A)

is a sequence of nodes and arcs

p = {ii, (i1, i2), i2, (i2, i3), i3, . . . , i`, (i`, i`+1), i`+1}, where i1 = s,

i`+1 = t, and each arc and node are distinct.

• Let D denote the set of demand pairs. That is, (i, j) ∈ D implies

that dij > 0.

• Let Qij denote the set of candidate directed paths from i to j in

G = (N, A) for all (i, j) ∈ D, and let P = ∪(i,j)∈DQij.

• Let Pij denote the set of paths that contain arc (i, j) ∈ A, and let

yp denote the flow on path p.
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Candidate Paths for Example Problem

Q12 = {1, 2, 41} Q13 = {3, 4, 5}

Q14 = {6, 7, 42} Q15 = {8, 9, 10}

Q16 = {11, 12, 13, 14, 15} Q23 = {16, 17, 43}

Q24 = {18, 19} Q25 = {20, 21, 22, 44, 45}

Q26 = {23, 24, 25, } Q34 = {26, 27, 28, }

Q35 = {29, 30} Q36 = {31, 32, 46}

Q45 = {33, 34, 47} Q46 = {35, 36, 37, 48, 49, 50}

Q56 = {38, 39, 40} P = {1, 2, 3, . . . , 50}

Path 1: {1, (1, 2), 2}
Path 2: {1, (1, 5), 5, (5, 2)}
Path 3: {1, (1, 4), 4, (4, 2)}
P25 = {14, 20, 27, 43, 47, 9, 19, 25, 29, 42, 46, 48}
P52 = {2, 39, 40, 41, 50}
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Working Capacity Allocation: Arc-Path Model

minimize Total Working Capacity:
∑

{i,j}∈L cij

subject to Demand:
∑

p∈Qij

yp = dij, ∀(i, j) ∈ D (1)

subject to Capacity in Normal and Reverse Directions:
∑

p∈Pij

yp ≤ cij, ∀{i, j} ∈ L (2)

∑

p∈Pji

yp ≤ cij, ∀{i, j} ∈ L (3)

subject to Nonnegativity and Integrality:

cij ≥ 0, ∀{i, j} ∈ L (4)

yp ≥ 0 and integer, ∀p ∈ P (5)
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Example Constraints: Arc-Path Model

Demand constraint (1) for demand between 1 and 2:

y1 + y2 + y41 = 10

Capacity constraint (2) for link {2, 5}:

y14 + y20 + y27 + y43 + y47 + y9 + y19 + y25 + y29 + y42 + y46 + y48 ≤ c25

Capacity constraint (3) for link {2, 5}:

y2 + y39 + y40 + y41 + y50 ≤ c25
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Arc-Path Model: Optimal Solution for Example Problem

y1 = 10 y6 = 10 y8 = 10 y16 = 10

y18 = 10 y20 = 10 y23 = 10 y30 = 10

y31 = 10 y33 = 10 y38 = 10

c12 = 10 c14 = 20 c15 = 10

c23 = 10 c25 = 10 c26 = 10

c36 = 20 c45 = 10 c56 = 10
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Working Capacity Allocation: Optimal Solution for

Arc-Path Model

4 5 6

321

20

10

10 10 10 20

10

10

10

• Total working capacity = 110

• In this case, the total capacity installed is the same was with the

solution to the node-arc model. However, the allocation to

individual links is different.
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Arc-Path Model: Advantages and Disadvantages

• One advantage of this model is that the hop count for all paths

can be restricted.

• Paths that exceed the hop count do not appear in the sets Qij.

• A disadvantage is that the cardinality of the sets Qij can be very

large.

– For most applications Qij is replaced with Q̄ij ⊂ Qij where

only a few of the shortest paths from i to j appear in Q̄ij.

– When this substitution is made, however, there is no guarantee

that the arc-path model will give as good a solution as the

node-arc model.
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Spare Capacity Allocation Problem

• The simplest idea for protecting the links in a path is to

provision a node-disjoint backup path.

• This is also called 1:1 protection since each working path (the

path(s) a demand normally takes when all links are functioning)

has a backup path in reserve that will be used whenever, and

only when, a link in the working path fails.

• Required for some applications, but generally the most expensive

of the various protection strategies.

• In shared protection schemes, the spare capacity on a link is not

dedicated to any given demand pair and may be used in the

restoration of various demand pairs.

• Shared protection schemes come in two varieties: link restoration

and path restoration. Models for each follow.
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Shared vs. Dedidicated Capacity Example

Path 1: 1−2−6 (working path)

Path 2: 1−4−5−6 (backup path)

Path 3: 4−2−3 (working path)

Path 4: 3−6−5−4 (backup path)

Legend

Demands: (1,6) for 4 OC48s and (4,3) for 6 OC48s

6

2 31

54
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Table 1: Spare Capacity Used For Various Link Failures

Failed Path Used Spare Capacity Used

Link Demand 1-6 Demand 4-3 (1,4) (3,6) (4,5) (5,6)

(1,2) backup working 4 0 4 4

(2,6) backup working 4 0 4 4

(2,3) working backup 0 6 6 6

(2,4) working backup 0 6 6 6

Spare Capacity Required 4 6 6 6

Under Shared Protection

Spare Capacity Required 4 6 10 10

Under Dedicated Protection
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Link Restoration

• In link restoration, it is assumed that each node has the

capability of detecting link failures and implementing a rerouting

algorithm around the defective link.

• If link {s, t} fails, then restoration requires that all working

traffic that uses link {s, t} be rerouted on the reduced graph

[N, L \ {s, t}].

• Link failure refers to a cut that destroys all fiber in a duct.

• Examples (cij found with the arc-path model)

– 10 units of spare capacity on links in one or more paths from

node 1 to node 2 must be available to protect link {1, 2}.

– 20 units of spare capacity on links in one or more paths from

node 1 to node 4 must be available to protect link {1, 4}.

– Spare capacity used to protect {1, 2} is available to procted

{1, 4}, too.
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The Node-Arc Model for Link Restoration

Let cij for all {i, j} ∈ L denote the known volume of working traffic

on link {i, j}. Suppose link {s, t} fails. Then cst units of flow must

be rerouted from node s to node t and vice versa. In the node-arc

model for link restoration, the requirement at node i is given by

rst
i =























cst, if i = s

−cst, if i = t

0, otherwise.

Let the variable hij denote the spare capacity assigned to link {i, j}
and the variable f st

ij denote the restoration flow on arc (i, j) when

{s, t} fails.
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The rst
i Values for Working Capacity Determined by

Arc-Path Model

link {1, 2} : r12
1 = 10 r12

2 = −10

link {1, 4} : r14
1 = 20 r14

4 = −20

link {1, 5} : r15
1 = 10 r15

5 = −10

link {2, 3} : r23
2 = 10 r23

3 = −10

link {2, 5} : r25
2 = 10 r25

5 = −10

link {2, 6} : r26
2 = 10 r26

6 = −10

link {3, 6} : r36
3 = 20 r36

6 = −20

link {4, 5} : r45
4 = 10 r45

5 = −10

link {5, 6} : r56
5 = 10 r56

6 = −10
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The Node-Arc Model for Link Restoration

minimize Spare Capacity:
∑

{i,j}∈L

hij

subject to Flow Conservation:
∑

(k,j)∈A

f st
kj −

∑

(i,k)∈A

f st
ik = rst

i , ∀k ∈ N, ∀{s, t} ∈ L

subject to Capacity in Normal Direction:

f st
ij ≤ hij, ∀{i, j} ∈ L, ∀{s, t} ∈ L

subject to Capacity in Reverse Direction:

f st
ji ≤ hij, ∀{i, j} ∈ L, ∀{s, t} ∈ L
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The Node-Arc Model for Link Restoration

subject to Link Failures:

f st
st + f st

ts = 0, ∀{s, t} ∈ L

subject to Nonnegativity:

hij ≥ 0, ∀{i, j} ∈ L

f st
ij ≥ 0 and integer, ∀{s, t} ∈ L, ∀(i, j) ∈ A

where cij for all {i, j} ∈ L are fixed (usually to values determined by

solving a working capacity allocation model).
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Spare Capacity Allocation with Link Restoration:

Node-Arc Solution

6

3

4

21

5

[working capacity, spare capacity]

[10, 10] [10, 20]

[10, 0]

[10, 20]

[20, 10]

[10, 10]

[20, 10]
[10, 10] [10, 10]

This solution uses 100 units of spare capacity are required to protect

110 units of working capacity. This is typical for this type of

problem.
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The Arc-Path Model for Link Restoration

• The arc-path model for link restoration uses Zst for all {s, t} ∈ L

to denote the set of candidate directed paths from node s to node

t excluding the direct arc (s, t).

• Therefore, the set of all potential backup paths is given by

P = ∪{s,t}∈LZst.

• The variable hij for all {i, j} ∈ L denotes the spare capacity on

link {i, j} and the variable wst
p denotes the restoration flow on

path p when link {s, t} fails.
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The Arc-Path Model for Link Restoration

minimize Total Working Plus Spare Capacity:
∑

{i,j}∈L

hij

subject to Lost Working Capacity:
∑

p∈Zst

wst
p = cst, ∀{s, t} ∈ L

subject to Link Capacities Normal Direction:
∑

p∈Aij

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}}

subject to Link Capacities Reverse Direction:
∑

p∈Aji

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}}
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The Arc-Path Model for Link Restoration

subject to Nonnegativity:

hij ≥ 0, ∀{i, j} ∈ L

wst
p ≥ 0, ∀{s, t} ∈ L, ∀p ∈ P

where cij for all {i, j} ∈ L are fixed.
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Spare Capacity Allocation with Link Restoration: Arc-Path

Solution

3

4

21

5 6

[10, 20]

[10, 10]

[10, 20]

[10, 0]

[10, 10]

[20, 10][20, 10]
[10, 20] [10, 10]

In this solution, the total spare capacity is 110 as opposed to 100 in

the solution from the node-arc model. This is due to the fact that

not all paths are included in Zst.
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Path Restoration

• Path restoration requires allocation of spare capacity to a set of

paths that do not use the failed link.

• The distinction between path restoration and link restoration is

that path restoration uses alternative routes from the origins to

the destinations of the demand pairs affected by the failed link

rather than simply taking a “detour” around it. Thus it is a

distinction between “global” and “local” rerouting.

• The set V st
ij is the set of paths available for restoration from i to j

when link {s, t} fails (i.e., V st
ij is the set of directed paths from i

to j that do not use link {s, t}.

• Let V̄ st
ij be the set of directed paths from i to j that are not

available for working traffic when link {s, t} fails.
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Arc-Path Formulation of the Path Restoration Version of

the Spare Capacity Allocation Model

minimize Total Spare Capacity:
∑

{i,j}∈L

hij (6)

subject to Spare Demand 1:
∑

p∈V st
ij

wst
p =

∑

p∈V̄ st
ij

yp, ∀{s, t} ∈ L, ∀(i, j) ∈ D (7)

subject to Spare Demand 2:
∑

p∈V st
ji

wst
p =

∑

p∈V̄ st
ji

yp, ∀{s, t} ∈ L, ∀(i, j) ∈ D (8)



EMIS 8374 [Survivable Network Design] 19

Slide 37

Arc-Path Formulation of the Path Restoration Version of

the Spare Capacity Allocation Model

subject to Spare Capacity Normal Direction:
∑

p∈Aij

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}} (9)

subject to Spare Capacity Reverse Direction:
∑

p∈Aji

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}} (10)

subject to Nonnegativity:

hij ≥ 0, ∀{i, j} ∈ L (11)

wst
p ≥ 0, ∀{s, t} ∈ L, ∀p ∈ P (12)

where cij and yp are constants determined by solving the arc-path
formulation of the working capacity allocation model.
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Arc-Path Formulation of the Path Restoration Version of

the Spare Capacity Allocation Model: Optimal Solution

• When this model is applied to the example problem, the total

spare capacity needed was only 95 compared to 110 for link

restoration.

• A more sophisticated restoration procedure is needed to achieve

these savings.

6

3

4

21

5

[working capacity, spare capacity]

[10, 5] [10, 20]

[10, 15]

[10, 20]

[20, 10]

[10, 5]

[20, 10]
[10, 5] [10, 5]
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Joint Capacity Planning Models

• A joint model is one in which both working and spare capacity

can be determined in a single model.

• In the previous discussion, working capacity was determined with

one model and then spare capacity was determined to protect the

optimal working capacity against single link failures.

• Since the amount of working capacity on a link determines the

amount of spare capacity needed elsewhere to provide for

restoration, joint optimization should require less total capacity.

Slide 40

Joint Capacity Planning Models

• The joint model is a combination of the arc-path formulation of

the working capacity allocation model and the arc-path

formulation of the path restoration version of the spare capacity

allocation model.

• The model is stated mathematically as minimize
∑

{i,j}∈L(cij + hij) subject to (1)-(5) and (7)-(12).

• When applied to the example problem, the total capacity needed

was 176 compared to 205 for the two-phase approach. This

optimal solution is illustrated on the next slide.

• The routing for the traffic demands in the absence of failure is

split across multiple paths, which results in a smaller overall

spare capacity requirement than was the case with the two-stage

approaches considered earlier.
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Solution to the Joint Model (Working Capacity = 110 and

Spare Capacity = 66)

6

3

4

21

5

[working capacity, spare capacity]

[10, 5] [8, 12]

[10, 10]

[7, 13]

[12, 8]

[10, 5]

[13, 7]
[20, 3] [20, 3]
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Summary of Example Problem Results :

|N | = 6, |L| = 9, |A| = 18, |D| = 11, |P| = 110

Capacity

Model Working Spare Total

Working Capacity: Node-Arc Model 110 — —

Working Capacity: Arc-Path Model 110 — —

Spare Cap: Link Restoration with Node-Arc Model 110 100 210

Spare Cap: Link Restoration with Arc-Path Model 110 110 220

Spare Cap: Path Restoration with Arc-Path Model 110 95 205

Joint Working and Spare Capacity (Arc-Path Model) 110 66 176


