EMIS 8374

1

 $\mathbf{2}$

	F	Per-Ui	nit Sh	ippin	g	
	(Cost t	o Cus	stome	r	
Warehouse	1	2	3	4	5	Capacity
1	\$13	\$17	\$11	\$20	\$14	70
2	\$16	\$22	\$8	\$9	\$12	70
3	\$14	\$22	\$15	\$7	\$11	70
4	\$20	\$25	\$10	\$17	\$8	70
Demand	20	30	40	50	20	

MCNF Model						
• $G = (N, A)$						
$-N = N_1 \cup N_2$ where						
* $N_1 = \{W_1, W_2, W_3, W_4\}$						
* $N_2 = \{C_1, C_2, C_3, C_4, C_5, D\}$						
$(i) = 70$ if $i \in N_1$						
$* b(C_1) = -20, b(C_2) = -30, b(C_3) = -40,$						
$b(C_4) = -50, \ b(C_5) = -20$						
$* b(D) = (20 + 30 + 40 + 50 + 20) - (4 \times 70) = -120$						
$-A = \{(i, j) : i \in N_1 \text{ and } j \in N_2\}$						
* c_{ij} = per-unit shipping cost if $j \in N_2 \setminus \{D\}$						
$* c_{iD} = 0$						

	Transportation Model
	Ignoring the cost of constructing the warehouses gives the following solution:
Slide 3	CPLEX 6.6.0: optimal solution; objective 2200 x[W1,C1] = 20 x[W1,C2] = 30 x[W1,D] = 20 x[W2,C3] = 40 x[W2,D] = 30 x[W3,C4] = 50
	x[W3,D] = 20 x[W4,C5] = 20
	x[W4,D] = 50

Slide 4 7 Slide 4 7 Slide 4 7	Observe that all four warehouses are used in this solution. So, we need to add the construction cost of \$4,000 to the \$2,200 shipping cost given above to get a cotal cost of \$6,200. Since each warehouse can produce 70 units and the total demand is 160 units, we could possibly get by with only using three warehouses and save on \$1,000 in construction costs. Since the standard transportation problem does not capture the fixed costs (i.e., constructing the warehouse), we will have to take another approach.
-------------------------------------	---

Slide 2

3

4

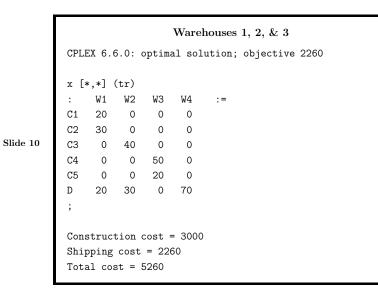
	Warehouses 2, 3, & 4									
	CPLI	EX 6.	6.0:	optim	al sol	ution;	objectiv	e 2370		
	x [;	×,*]	(tr)							
	:	W1	W2	WЗ	W4	:=				
	C1	0	0	20 0 0 50 0	0					
	C2	0	30	0	0					
Slide 7	C3	0	40	0	0					
	C4	0	0	50	0					
	C5	0	0	0	20					
	D	70	0	0	50					
	;									
		Construction cost = 3000								
	-			= 23	70					
	Tota	al co	st =	5370						

	Warehouses 1, 2, & 3 CPLEX 6.6.0: optimal solution; objective 2280									
	x [*	*,*]	(tr)							
	:	W1	W2	WЗ	W4	:=				
	C1	20	0	0	0					
	C2	30	0	0	0					
Slide 8			0							
	C4	0	0	50	0					
	C5	0	0	0	20					
	D	20	70	20	10					
	;									
	Cons	struc	ction	cost :	= 3000)				
	Ship	ping	g cost	= 228	30					
	Tota	al co	ost =	5280						

Approach 1: Enumeration of Transportation Subproblems

Slide 5 We have already found the optimal four-warehouse solution. Since we must use at least three warehouses, we can solve three separate three-warehouse problems and compare the solutions to find the optimal overall solution. This is easy to do with an AMPL run file.

All 4 Warehouses


CPLEX 6.6.0: optimal solution; objective 2200
x[W1,C1] = 20
x[W1,C2] = 30
x[W1,D] = 20
x[W2,C3] = 40
x[W2,D] = 30
x[W3,C4] = 50
x[W3,D] = 20
x[W4,C5] = 20
x[W4,D] = 50
Construction cost = 4000
Shipping cost = 2200
Total cost = 6200

Slide 9

					100000	-, -, -	~ -			
CPLI	EX 6.0	5.0: d	optima	al sol	ution;	objec	tive	2340		
x [›	*,*]	(tr)								
:	W1	W2	WЗ	W4	:=					
C1	20	0	0	0						
C2	30	0	0	0						
CЗ	0	20	0	20						
C4	0	50	0	0						
C5	0	0	0	20						
D	20	0	70	30						
;										
Construction cost = 3000										
Shipping cost = 2340										
Tota	al cos	st = {	5340							

Warehouses 1, 2, & 4

•	optimal solution: build warehouses 1, 2, and 3.
•	This approach is that it doesn't scale up well.
	 For example, if each warehouse could produce 160 units, then we would have to solve all 4 single-warehouse problems, all 6 two-warehouse problems in addition to the 4 three-warehouse
	 problems and the four-warehouse problem. It is easy to see that if we had two hundred potential warehouse locations and one thousand
	customers that this method would require solving an enormous number of transportation problems.

Approach 2: Integer Programming

The approach that is usually used in practice to solve this type of problem is to add *binary decision variables* to the transportation model. Let $y_i = 1$ if warehouse 1 is built and 0 otherwise. Let W be the set of potential warehouses and let C be the set of customers. With the binary variables, the objective function becomes:

```
\min\sum_{i\in W}\sum_{j\in C}c_{ij}x_{ij} + 1000\sum_{i\in W}y_i.
```

[Network Flow Problems with Fixed Costs: Example 1]

Slide 15

8

```
To prevent shipments from warehouses that aren't build,
we add the following set of constraints:
```

Slide 13

Slide 14

 $x_{ij} \le 70y_i \qquad \forall i \in W, j \in C.$

Observe that when in any feasible solution setting $x_{ij} > 0$ for any j forces $y_i = 0$. Conversely, setting $y_i = 0$ forces $x_{ij} = 0$ for all j. An AMPL implementation of this model and the resulting solution are shown below.

AMPL model for the warehouse problem
By default, this model assumes that b[i] = 0, c[i,j] = 0,
l[i,j] = 0 and u[i,j] = Infinity.

```
set NODES:
                        # nodes in the network
set W within NODES;
                        # set of warehouses
set C within NODES;
                        # set of customers
set ARCS within {NODES, NODES};
                                    # arcs in the network
param b {NODES} default 0;
                                    # supply/demand for node i
                                    # cost of one of flow or arc(i,j)
param c {ARCS} default 0;
param 1 {ARCS} default 0;
                                    # lower bound on flow or
                                                             arc(i,j)
param u {ARCS} default Infinity;
                                    # upper bound on flow or
                                                             arc(i,j)
                                    # flow on arc (i,j)
var x {ARCS};
var y {W} binary;
```

```
minimize cost:
```

```
sum{(i,j) in ARCS} c[i,j] * x[i,j] +
sum{i in W} 1000 * y[i];
```

```
subject to flow_balance {i in NODES}:
sum{j in NODES: (i,j) in ARCS} x[i,j] -
sum{j in NODES: (j,i) in ARCS} x[j,i] = b[i];
```

```
subject to capacity {(i,j) in ARCS}:
l[i,j] <= x[i,j] <= u[i,j];</pre>
```

```
subject to build_warehouse {i in W, j in C}:
x[i,j] <= 70 * y[i];</pre>
```

```
# Run file for the warehouse problem
model warehouse_model.txt;
data warehouse_data.txt;
let W := {'W1','W2','W3','W4'};
let C := {'C1','C2','C3','C4','C5'};
solve;
display x;
display y;
```

Slide 19

CPLE	EX 6.0	5.0: d	optima	al int	eger solution;
obje	ectiv	e 5260)		
93 M	IIP s	imple	k ite	ratior	IS
16 t	rancl	h-and	-boun	d node	S
10 s	imple	ex ite	eratio	ons (4	in phase I)
x [*	•,*]	(tr)			
:	W1	W2	WЗ	W4	:=
C1	20	0	0	0	
C2	30	0	0	0	
СЗ	0	40	0	0	
C4	0	0	50	0	
C5	0	0	20	0	
D	20	30	0	70	
;					

Slide 17

Slide 18

y [*]	:=		
W1 1			
W2 1			
W3 1			
W4 0			
;			

As we would expect, the IP model gives the same solution as the first approach. In order to solve the IP, CPLEX actually solves a series of LP in which the yvariables can take on any value in the range [0, 1]. CPLEX indicates this by reporting that there were 16 branch-and-bound nodes used to find the solution. Notice that if we don't require the y variables to be binary and try to solve the problem as an LP, we get a solution in which some of the arc flows are not integral. The problem is that once we add the extra set of constraints, we lose the network flow structure of the problem and the constraint matrix is no longer totally unimodular.

	CPLEX 6.6.0: CPLEX 6.6.0: optimal solution; objective 3295.238095 15 simplex iterations (3 in phase I) x [*,*] (tr)											
	:	W1	W2	WЗ	W4	:=						
Slide 20	C1	3.33333	0	16.6667	0							
	C2	3.33333	10	16.6667	0							
	СЗ	3.33333	30	3.33333	3.33333							
	C4	0	30	16.6667	3.33333							
	C5	0	0	16.6667	3.33333							
	D	60	0	0	60							
	;											

y [*] := W1 0.047619 W2 0.428571 W3 0.238095 W4 0.047619 ;	Γ	
W2 0.428571 W3 0.238095 W4 0.047619	-	
W3 0.238095 W4 0.047619		
W4 0.047619		
	W	0.238095
;	W	0.047619
	;	

EMIS 8374 [Network Flow Problems with Fixed Costs: Example 1] 11