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Per-Unit Shipping

Cost to Customer

Warehouse 1 2 3 4 5 Capacity

1 $13 $17 $11 $20 $14 70

2 $16 $22 $8 $9 $12 70

3 $14 $22 $15 $7 $11 70

4 $20 $25 $10 $17 $8 70

Demand 20 30 40 50 20

Each warehouse cost $1,000 to build.
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MCNF Model

• G = (N, A)

– N = N1 ∪ N2 where

∗ N1 = {W1, W2, W3, W4}

∗ N2 = {C1, C2, C3, C4, C5, D}

∗ b(i) = 70 if i ∈ N1

∗ b(C1) = −20, b(C2) = −30, b(C3) = −40,

b(C4) = −50, b(C5) = −20

∗ b(D) = (20 + 30 + 40 + 50 + 20)− (4× 70) = −120

– A = {(i, j) : i ∈ N1 and j ∈ N2}

∗ cij = per-unit shipping cost if j ∈ N2 \ {D}

∗ ciD = 0
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Transportation Model

Ignoring the cost of constructing the warehouses gives

the following solution:

CPLEX 6.6.0: optimal solution; objective 2200

x[W1,C1] = 20

x[W1,C2] = 30

x[W1,D] = 20

x[W2,C3] = 40

x[W2,D] = 30

x[W3,C4] = 50

x[W3,D] = 20

x[W4,C5] = 20

x[W4,D] = 50
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Observe that all four warehouses are used in this
solution. So, we need to add the construction cost of
$4,000 to the $2,200 shipping cost given above to get a
total cost of $6,200. Since each warehouse can produce
70 units and the total demand is 160 units, we could
possibly get by with only using three warehouses and
save on $1,000 in construction costs. Since the standard
transportation problem does not capture the fixed costs
(i.e., constructing the warehouse), we will have to take
another approach.
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Approach 1: Enumeration of Transportation

Subproblems

We have already found the optimal four-warehouse
solution. Since we must use at least three warehouses, we
can solve three separate three-warehouse problems and
compare the solutions to find the optimal overall
solution. This is easy to do with an AMPL run file.
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All 4 Warehouses

CPLEX 6.6.0: optimal solution; objective 2200

x[W1,C1] = 20

x[W1,C2] = 30

x[W1,D] = 20

x[W2,C3] = 40

x[W2,D] = 30

x[W3,C4] = 50

x[W3,D] = 20

x[W4,C5] = 20

x[W4,D] = 50

Construction cost = 4000

Shipping cost = 2200

Total cost = 6200
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Warehouses 2, 3, & 4

CPLEX 6.6.0: optimal solution; objective 2370

x [*,*] (tr)

: W1 W2 W3 W4 :=

C1 0 0 20 0

C2 0 30 0 0

C3 0 40 0 0

C4 0 0 50 0

C5 0 0 0 20

D 70 0 0 50

;

Construction cost = 3000

Shipping cost = 2370

Total cost = 5370
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Warehouses 1, 2, & 3

CPLEX 6.6.0: optimal solution; objective 2280

x [*,*] (tr)

: W1 W2 W3 W4 :=

C1 20 0 0 0

C2 30 0 0 0

C3 0 0 0 40

C4 0 0 50 0

C5 0 0 0 20

D 20 70 20 10

;

Construction cost = 3000

Shipping cost = 2280

Total cost = 5280
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Warehouses 1, 2, & 4

CPLEX 6.6.0: optimal solution; objective 2340

x [*,*] (tr)

: W1 W2 W3 W4 :=

C1 20 0 0 0

C2 30 0 0 0

C3 0 20 0 20

C4 0 50 0 0

C5 0 0 0 20

D 20 0 70 30

;

Construction cost = 3000

Shipping cost = 2340

Total cost = 5340
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Warehouses 1, 2, & 3

CPLEX 6.6.0: optimal solution; objective 2260

x [*,*] (tr)

: W1 W2 W3 W4 :=

C1 20 0 0 0

C2 30 0 0 0

C3 0 40 0 0

C4 0 0 50 0

C5 0 0 20 0

D 20 30 0 70

;

Construction cost = 3000

Shipping cost = 2260

Total cost = 5260
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• optimal solution: build warehouses 1, 2, and 3.

• This approach is that it doesn’t scale up well.

– For example, if each warehouse could produce 160

units, then we would have to solve all 4

single-warehouse problems, all 6 two-warehouse

problems in addition to the 4 three-warehouse

problems and the four-warehouse problem.

– It is easy to see that if we had two hundred

potential warehouse locations and one thousand

customers that this method would require solving

an enormous number of transportation problems.
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Approach 2: Integer Programming

The approach that is usually used in practice to solve

this type of problem is to add binary decision variables to

the transportation model. Let yi = 1 if warehouse 1 is

built and 0 otherwise. Let W be the set of potential

warehouses and let C be the set of customers. With the

binary variables, the objective function becomes:

min
∑

i∈W

∑

j∈C

cijxij + 1000
∑

i∈W

yi.
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To prevent shipments from warehouses that aren’t build,

we add the following set of constraints:

xij ≤ 70yi ∀i ∈ W, j ∈ C.

Observe that when in any feasible solution setting xij > 0
for any j forces yi = 0. Conversely, setting yi = 0 forces
xij = 0 for all j. An AMPL implementation of this model
and the resulting solution are shown below.
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# AMPL model for the warehouse problem

# By default, this model assumes that b[i] = 0, c[i,j] = 0,

# l[i,j] = 0 and u[i,j] = Infinity.

set NODES; # nodes in the network

set W within NODES; # set of warehouses

set C within NODES; # set of customers

set ARCS within {NODES, NODES}; # arcs in the network

param b {NODES} default 0; # supply/demand for node i

param c {ARCS} default 0; # cost of one of flow on arc(i,j)

param l {ARCS} default 0; # lower bound on flow on arc(i,j)

param u {ARCS} default Infinity; # upper bound on flow on arc(i,j)

var x {ARCS}; # flow on arc (i,j)

var y {W} binary;
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minimize cost:

sum{(i,j) in ARCS} c[i,j] * x[i,j] +

sum{i in W} 1000 * y[i];

subject to flow_balance {i in NODES}:

sum{j in NODES: (i,j) in ARCS} x[i,j] -

sum{j in NODES: (j,i) in ARCS} x[j,i] = b[i];

subject to capacity {(i,j) in ARCS}:

l[i,j] <= x[i,j] <= u[i,j];

subject to build_warehouse {i in W, j in C}:

x[i,j] <= 70 * y[i];
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# Run file for the warehouse problem

model warehouse_model.txt;

data warehouse_data.txt;

let W := {’W1’,’W2’,’W3’,’W4’};

let C := {’C1’,’C2’,’C3’,’C4’,’C5’};

solve;

display x;

display y;
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CPLEX 6.6.0: optimal integer solution;

objective 5260

93 MIP simplex iterations

16 branch-and-bound nodes

10 simplex iterations (4 in phase I)

x [*,*] (tr)

: W1 W2 W3 W4 :=

C1 20 0 0 0

C2 30 0 0 0

C3 0 40 0 0

C4 0 0 50 0

C5 0 0 20 0

D 20 30 0 70

;
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y [*] :=

W1 1

W2 1

W3 1

W4 0

;

EMIS 8374 [Network Flow Problems with Fixed Costs: Example 1] 10

Slide 19

As we would expect, the IP model gives the same
solution as the first approach. In order to solve the IP,
CPLEX actually solves a series of LP in which the y
variables can take on any value in the range [0, 1].
CPLEX indicates this by reporting that there were 16
branch-and-bound nodes used to find the solution. Notice
that if we don’t require the y variables to be binary and
try to solve the problem as an LP, we get a solution in
which some of the arc flows are not integral. The
problem is that once we add the extra set of constraints,
we lose the network flow structure of the problem and the
constraint matrix is no longer totally unimodular.
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CPLEX 6.6.0:

CPLEX 6.6.0: optimal solution;

objective 3295.238095

15 simplex iterations (3 in phase I)

x [*,*] (tr)

: W1 W2 W3 W4 :=

C1 3.33333 0 16.6667 0

C2 3.33333 10 16.6667 0

C3 3.33333 30 3.33333 3.33333

C4 0 30 16.6667 3.33333

C5 0 0 16.6667 3.33333

D 60 0 0 60

;



EMIS 8374 [Network Flow Problems with Fixed Costs: Example 1] 11

Slide 21

y [*] :=

W1 0.047619

W2 0.428571

W3 0.238095

W4 0.047619

;


