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Abstract

The dense wavelength division multiplexing routing and provisioning problem with uncer-

tain demands and a fixed budget is modeled as a multicriteria optimization problem. To obtain

a robust design for this problem, the primary objective is to minimize a regret function that

models the total amount of over and/or under provisioning in the network resulting from uncer-

tainty in a demand forecast. Point-to-point demands are given by a set of scenarios each with

a known probability, and regret is modeled as a quadratic function. The secondary objective

is to minimize the equipment cost that achieves the optimal value for regret. We propose a

two-phase robust optimization strategy that uses a pair of integer linear programs having a

large number of continuous variables, but only two integer variables for each link. In an em-

pirical study, the two-phase robust optimization strategy is compared to alternative techniques

using a mean-value model, a worst-case model, and a two-stage stochastic integer program with

recourse model. Both the worst-case model and the stochastic programming model exhibited a

bias toward low-cost designs (well below the budget) at the expense of high expected over/under

provisioning. For a tight budget, the mean-value model fails miserably yielding no design for

comparison. The two-phase robust strategy produces the optimal design for a given budget

that is the best compromise between expected regret and equipment cost.
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1 Introduction

The main components of a dense wavelength division multiplexing (DWDM) network are fiber,

terminal equipment (TE), optical amplifiers (As), and regenerators (Rs). The term TE refers

to the wavelength transponders that perform the optical-electrical-optical conversion. For this

investigation, it is assumed that dark fiber is available for use at no additional cost and that

it can be lit by the installation of optical amplifiers and regenerators, at appropriate intervals

along the link, and terminal equipment at both incident nodes. We assume that other equipment

needed to operate a DWDM network, such as switches and translators, has relatively small cost

compared to the terminal equipment, amplifiers, and regenerators. The cost of this other

equipment would be added to a final design. Links containing these components as illustrated

in Figure 1 are the basic building blocks of a DWDM network. The optical amplifiers are

associated with an individual fiber, while the regenerators are associated with a particular

channel or wavelength (λ) within a given fiber. Each link can be composed of multiple fibers

each with multiple channels per fiber. The size of the basic building blocks varies and determines

the pipe size linking a pair of cities or stations. Throughout this paper we use the term pipe to

represent a link with the associated equipment that determines the capacity of a link.

Using these building blocks of various sizes, the DWDM routing and provisioning problem

can be stated as follows:

Given a network topology and an estimate of the point-to-point demand traffic, deter-

mine the routing for each demand and the least-cost DWDM equipment configuration

required to support the routes.

For a given demand forecast, this problem can be modeled as an integer linear program

(ILP). Modern modeling languages such as AMPL [8, 23], GAMS [7, 26], and OPL [21, 27]

can be used to create very detailed design models of a problem instance with only a moderate

amount of effort. Modern solvers such as CPLEX [24, 25] can be called by the modeling

languages to obtain near optimal solutions to real-world problem instances. The key data that

drives these models is the demand forecast. Since the quality of the demand forecasts in this

domain is often found to be lacking, network designers and their clients are often concerned
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that an optimal design based on an erroneous forecast may prove to be a poor investment. If

the forecast is too low, the network will not have enough capacity to meet all the demand.

Conversely, a network designed for a forecast that predicts more demand than is realized will

be over provisioned with expensive, underutilized equipment. As illustrated in Figure 2, some

of the pipes may be under provisioned while others may be over provisioned.

In the operations research literature, design problems of this type with uncertain demand

use a set of forecasts, each with a given probability of occurrence. Such sets generally include

optimistic and pessimistic forecasts as well as some intermediate values. It would then be

possible to construct a design based on the mean value or worst-case value for the set of potential

traffic demands. However, large error bounds may result from such procedures (see Birge

[6]). Other strategies that appear in the literature include sensitivity analysis and stochastic

programming.

While the stochastic programming approach has many disciples (the bibliography [20] lists

more than 1,000 references), we chose to extend the robust optimization methodology as de-

scribed in the influential paper of Mulvey, Vanderbei, and Zenios [14] to the DWDM routing

and provisioning problem. The idea of robust optimization is to create a design that will be

fairly good (i.e., robust) regardless of which demand scenario is realized. The robust method-

ology uses a regret function to capture this notion of robustness.

While it is desirable to have a robust design, network designers are also quite concerned

about network cost. In this investigation, the DWDM routing and provisioning problem with

uncertain demands is viewed as a multicriteria design problem. The critical design criteria

are equipment cost and regret as described in the robust optimization literature. A two-phase

robust optimization strategy is proposed and demonstrated for this problem. In phase I, a

minimum-regret solution that satisfies a budget constraint is obtained. In phase II, regret is

fixed to the optimal value found in phase I and a minimum-cost solution is obtained.

There are several different concepts of robustness that appear in the literature (see e.g.

Paraskevopoulos, Karakitsos, and Rustem [16], Mulvey, Vanderbei, and Zenios [14], Kouvelis

and Yu [11], Ben-Tal and Nemirovski [4, 5], and Averbakh [2].) One of the most popular

models is the minmax-regret model for combinatorial optimization problems. A state-of-the-art
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presentation of this strategy and important applications can be found in [11]. Another popular

model is the min-regret model for linear programming models as described by Mulvey et al.

[14], and demonstrated in Bai, Carpenter and Mulvey [3]. In our investigation, we adopt the

concept and model presented in [3, 14]. However, we extend these ideas to the case of multiple

criteria. Other applications of robust optimization for telecommunications design problems may

be found in Laguna [12], Soteriou and Chase [18], and Gryseels, Sorbello, and Demeester [9].

Stochastic programming approaches for network capacity planning under uncertainty may be

found in Sen, Doverspike and Cosares [17] and in Lisser, Ouorou, Vial, and Gondzio [13]. The

issue of assigning specific wavelengths to lightpaths has been addressed in Kennington et al.

[10].

The first contribution of this investigation is a detailed optimization model that determines

the quantity and location of network terminal equipment, optical amplifiers, and regenerators

required to satisfy a given demand forecast at minimum cost. Other models in the literature

such as Sen et al. [17] and Lisser et al. [13] simply use link capacities as the decision variables.

This fails to account for the fact that the hardware must be purchased in modular values and

may lead to fairly large errors in the cost function. The second contribution is a new two-

phase optimization strategy that accounts for the multiple goals of this design problem as well

as the uncertainty in the demand forecast. The final contribution is a demonstration of this

methodology and comparison with competing methods.

2 The Models

In this section, an ILP is presented for the basic provisioning problem. We use an arc-path model

that determines the equipment required to route a set of point-to-point demands for a given

scenario. In addition, a two-phase robust optimization procedure is presented that determines

an optimal design when all scenarios are considered simultaneously. The robust models use a

convex, piece-wise linear function to model regret and extend the strategy presented in Mulvey

et al. [14].
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2.1 Sets

The network topology is represented as a graph G = [N,E], where N denotes the set of nodes

and E ⊆ N ×N denotes the set of links. For each n ∈ N , An denotes the set of links adjacent

to node n. The origin/destination node pairs o, d ∈ N corresponding to the point-to-point

demands are given by D ⊆ N ×N . For each (o, d) ∈ D, Jod denotes the set of possible paths

from o to d that can be used to route this demand. For each n ∈ N (e ∈ E), Pn (Le) denotes

the set of paths containing node n (link e). The set of scenarios for a problem having s̄ scenarios

is denoted S = {1, . . . , s̄}.

2.2 Constants

For this model we assume that a maximum of 192 DS3s can be carried on each wavelength (λ)

and that a fiber has 80 channels (2 λ’s/channel). We assume that when signal regeneration is

required, regenerators are installed on each bi-directional channel. When required by optical

reach limitations, optical amplifiers are installed to boost the signals carried by an entire fiber.

The constants used in our models along with the specific values used for the first of our two test

problems, DA, may be found in Table 1. The equipment costs used in the study approximate

current market prices, but do not represent specific prices offered by any particular vendor.

2.3 Decision Variables

The various types of decision variables used in the models are defined in Table 2. By requiring

two of these variables to assume integer values, the number of optical amplifiers and number of

regenerators will assume integer values. For our test cases, the number of TEs are always large

and we simply round them up to the nearest integer.

2.4 The Basic Routing and Provisioning Model

For each scenario s, there is a basic provisioning model whose objective is to minimize the total

cost for provisioning the network. The network has TE equipment located at each node and

optical amplifiers and regenerators associated with the links as needed. The objective is as

follows:
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minimize γs (1)

where

γs =
∑

n∈N

CTE`s
n +

∑

e∈E

(CRrs
e + CAas

e) (2)

There are six additional sets of constraints that define this model. The first set of constraints

ensure demand satisfaction and are given as follows:

∑

p∈Jod

xs
p = Rs

od, ∀(o, d) ∈ D (3)

The second set of constraints convert path capacity to link capacity and are defined by

∑

p∈Le

xs
p = zs

e , ∀e ∈ E (4)

The third set of constraints convert link capacity to TEs and are as follows:

zs
e ≤ MTEtse, ∀e ∈ E (5)

The fourth set of constraints accumulate TEs on links to give the number of TEs at each node.

These are simply accounting constraints and can be substituted out of the model. They are

∑

e∈An

tse = `s
n, ∀n ∈ N (6)

The fifth set of constraints convert link capacity into fibers and channels and place bounds on

fiber

zs
e ≤ MAfs

e , ∀e ∈ E (7)

zs
e ≤ MRcs

e, ∀e ∈ E (8)

f s
e ≤ Fe, ∀e ∈ E (9)
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The sixth type of constraints convert fiber and channels into amplifiers and regenerators. They

are defined as follows:

GA
e fs

e = as
e, ∀e ∈ E (10)

GR
e cs

e = rs
e, ∀e ∈ E (11)

The basic routing and provisioning model for scenario s is the ILP defined by (1)-(11). The

only change for different scenarios is the right-hand-side for the demand-satisfaction constraints

(3).

2.5 The Robust Models

We use the general modeling framework as described by Mulvey et al. [14] to construct our

robust models. The key is the construction of a regret function to capture the trade-off between

too little network capacity and excess capacity. For the DWDM routing and provisioning

problem, the client experiences regret when either the network can not meet a substantial part

of the demand or when the network has been over provisioned and most of the network only uses

a small amount of its available capacity. Let z+
ods denote the amount of demand for pair (o, d)

that is not satisfied in scenario s. Likewise, z−ods denotes the amount by which the demand for

pair (o, d) is exceeded in scenario s. The variables z+
ods and z−ods may be viewed as representing

the amount of under and over provisioning for pair (o, d) in scenario s. Hence, the demand

constraints can be modeled as follows:

∑

p∈Jod

xp + z+
ods − z−ods = Rs

od, ∀(o, d) ∈ D, ∀s ∈ S (12)

Using Ps to denote the probability of scenario s, Mulvey et al. [14] recommend using some type

of quadratic function of the form:

∑

s∈S

Ps

∑

(o,d)∈D

[(z+
ods)

2 + (z−ods)
2].

We believe that management will find it easier to deal with a little over provisioning as

compared to a little under provisioning; and hence, we use a non-symmetrical quadratic function
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as illustrated in Figure 3. The relative weight of over provisioning versus under provisioning

is subjective and should be determined by the client. To make our strategy computationally

viable, we use a four-piece linear approximation for each side of the quadratic function.

Let Rmax denote the largest demand value, then 0 ≤ z+
ods ≤ Rmax and 0 ≤ z−ods ≤ Rmax

for all o, d and s. Let cu
k (co

k) denote the linear penalty cost for under (over) provisioning for

linear piece k of the regret function where we assume that cu
k+1 > cu

k (co
k+1 > co

k) for k = 1, 2, 3.

Under this assumption the regret function is convex. Then,

z+
ods =

∑

k=1,...,4

z̄+
odsk, ∀(o, d) ∈ D, ∀s ∈ S (13)

z−ods =
∑

k=1,...,4

z̄−odsk, ∀(o, d) ∈ D, ∀s ∈ S (14)

and regret is modeled as

ρ =
∑

(o,d)∈D

{
∑

s∈S

Ps[
∑

k=1,...,4

(cu
k z̄+

odsk + co
kz̄
−
odsk)]} (15)

where 0 ≤ z̄+
odsk, z̄

−
odsk ≤ Rmax/4. That is, each linear piece covers 25% of the demand interval.

The regret function is actually a feasibility penalty function. It penalizes violations of

the demand constraints for the various scenarios. The regret function can also be viewed as

expressing the pain that management will feel if there is a mismatch between the infrastructure

created and the actual demand for services. An argument against using robust optimization is

that it is difficult to determine a decision maker’s regret function. However, similar arguments

exist about the notion of utility which has been used extensively in the literature concerning

decision making under uncertainty. This issue is also addressed in the the literature on game

theory. Von Neumann and Morgenstern [15] address the notion of utility and argue that it can

be quantitatively measured. For our investigation, we assume that a manager’s regret function

in the form given by (15) can be constructed.

For this problem, clients are also concerned about a budget restriction. The budget con-

straint is simply
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(budget constraint)

γ =
∑

n∈N

CTE`n +
∑

e∈E

(CRre + CAae) ≤ Budget (16)

All other constraints are similar to those presented previously.

(conversion of path flows to link flows)
∑

p∈Le

xp = ze, ∀e ∈ E (17)

(conversion of DS3s on links to TEs)

ze ≤ MTEte, ∀e ∈ E (18)

(conversion of TEs at nodes)
∑

e∈An

te = `n, ∀n ∈ N (19)

(conversion of DS3s on links to fibers and channels and bounds on fiber)

ze ≤ MAfe, ∀e ∈ E (20)

ze ≤ MRce, ∀e ∈ E (21)

fe ≤ Fe, ∀e ∈ E (22)

(conversion of fibers and channels to amplifiers and regenerators)

GA
e fe = ae, ∀e ∈ E (23)

GR
e ce = re, ∀e ∈ E (24)

(bounds on individual pieces)

0 ≤ z̄+
odsk ≤ Rmax/4, ∀(o, d) ∈ D, ∀s ∈ S, k = 1, . . . , 4 (25)

0 ≤ z̄−odsk ≤ Rmax/4, ∀(o, d) ∈ D, ∀s ∈ S, k = 1, . . . , 4 (26)

All other variables have non-negativity restrictions and fe and ce are restricted to be integer.

The budget constraint (16) places an upper bound on the equipment cost, but does not

guarantee that equipment cost is a minimum for a given regret value. Our primary objective is

to produce a design that minimizes regret. The secondary goal is to achieve this regret value at
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a minimum equipment cost. This is accomplished by using a two-phase procedure. The phase

I model is minimize ρ subject to (12) - (26). Let ρ̄ denote the optimal value for regret for phase

I. In phase II, ρ is fixed at the value of ρ̄ and we minimize γ subject to (12) - (26). The solution

from Phase II is the robust design. No other design can achieve this regret with a lower cost,

and any design with lower cost must have higher regret.

3 Alternative Techniques

Our unique implementation of the robust optimization strategy is only one of several methods

that can be used to help design a network when the demand forecast is uncertain. Other

possibilities include a mean-value model, a stochastic programming model, and a worst-case

model. When applied to the DWDM routing and provisioning problem, these models differ

only in the objective function to be optimized and possibly the formulation of the demand

constraints.

Let the mean of the demand scenarios be given by

R̄od =
∑

s∈S

PsR
s
od, ∀(o, d) ∈ D.

The mean-value model will determine the least-cost design that satisfies the mean of the demand.

Mathematically, this model is

minimize γ

subject to
∑

p∈Jod

xp = R̄od, ∀(o, d) ∈ D

and (16)− (24)

A two-stage stochastic integer program with recourse uses a penalty, say d, to represent the

cost of infeasibility (see [22]). Mathematically this model may be stated as follows:

minimize γ +
∑

s∈S

Ps[
∑

(o,d)∈D

d(z+
ods + z−ods)]
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subject to

(13)− (26)

Note that an identical penalty is used for both over and under provisioning. The worst-case

model selects a design that minimizes the largest possible value of a combination of equipment

and infeasibility cost. Mathematically, the model is

minimize {max
s∈S

[γ +
∑

(o,d)∈D

d(z+
ods + z−ods)]}

subject to

and (13)− (26)

Note that the probabilities for the various scenarios do not appear in this model.

4 Demonstration of the Robust Design Methodology

In simplest terms, the DWDM routing and provisioning problem with uncertain demands is to

determine the proper size for a set of pipes linking nodes in the network. Consider the network

illustrated in Figure 4 along with the three scenarios for the uncertain demand. Scenario 1 is

a pessimistic forecast with low demand, scenario 3 is an optimistic forecast with high demand,

and scenario 2 is the most likely forecast. The solutions for the individual scenarios and the

robust solution are illustrated in Figure 5 where the thickness of a link is proportional to the

corresponding pipe size. Note that the robust solution is clearly unique. It uses a pipe linking

Los Angeles and San Francisco whereas the scenario 2 solution does not use this link. Also

the robust solution uses a fairly large pipe linking Chicago and Dallas while scenario 3 solution

does not provision this link at all.

To illustrate the practical application of our robust design methodology for this problem, two

test problems have been solved using the various models presented in this manuscript. All mod-

els have been implemented using the AMPL modeling language [8, 23] with a direct link to the
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solver in CPLEX [24, 25] 6.6.0. All test runs were made on a Compaq AlphaServer DS20E with

dual EV 6.7 (21264A) 667 MHz processors and 4096 MB of RAM. AMPL data files for the DA

and KL test problems are available on line at http://www.engr.smu.edu/∼olinick/papers/.
The DA problem is a US network and was provided to us by Dr. J. D. Allen [1]. The KL

problem corresponds to a European network [19]. Characteristics of the DA problem may be

found in Tables 1 and 3. The model includes four candidate paths for each of the 200 demand

pairs. These paths are the four shortest loopless paths and the demand values were randomly

generated from a uniform distribution with the ranges specified in Table 4. For this application,

five demand scenarios is considered large.

The runs for the individual scenarios are summarized in Table 5, where the numbers under

the column titles TEs, Rs, and As denote the total quantity of transponders, regenerators, and

optical amplifiers required for the optimal network design for that scenario. Total equipment

cost varied from $1.82 B to $5.63 B. We used an optimality gap of 2% for CPLEX and each

of the five runs required less than a minute of CPU time. Note the dramatic improvement

in equipment cost resulting from the robust phase II calculation. The budget was large and

did not affect the solution to phase I. This clearly demonstrates the merit of the two-phase

approach as opposed to the single-phase model presented by Mulvey et al [14].

Both AMPL and CPLEX use preprocessors that attempt to reduce the size of the prob-

lem instance prior to application of the integer optimizer. The resulting problem sizes after

preprocessing for the various models are reported in Table 6. The individual scenario models

have the smallest number of nonzeros while the robust models have the largest. The number of

integer variables corresponding to the number of fibers on each link and the number of channels

on each link are approximately the same for all models (107)(2) = 214. The column increases

over the individual scenarios are primarily additional continuous variables. The robust model

uses the four-piece approximation for each z+
ods and each z−ods resulting in (200)(5)(2)(4) = 8000

additional columns prior to preprocessing.

Using the equipment cost from the Table 5 runs, three budgets were selected, the largest

value ($5.63 B) corresponds to a generous budget, the smallest value ($1.82 B) corresponds to

a very tight budget, and $3.75 B corresponds to a mid-range budget. Results from runs using

11



these three budgets with the various models may be found in Table 7. Two metrics were used

to help compare the various models, the equipment cost and regret. The regret has been scaled

for each budget so that the best value for regret is 1. For the generous budget, the regret for

the mean-value model is 40% higher than for robust optimization. For the mid-range budget,

the mean-value model was much closer to the robust strategy, but still inferior with respect

to regret. For the tight budget, the mean-value model failed, but the stochastic programming

model does fairly well. The worst-case model designs were poor for all three budgets. All

runs used a 2% optimality gap that permits early termination of the CPLEX optimizer. The

robust strategy takes more CPU time than any of the other models. However, this is a planning

problem and CPU times is not critical.

Solutions for the individual scenarios for problem KL may be found in Table 8. Again we

observe the dramatic improvement in equipment cost obtained from the second phase of the

robust optimization strategy. Without this extension to the traditional robust optimization

model, the robust strategy would not look nearly as attractive. Comparisons with the alterna-

tive methods may be found in Table 9. For the generous budget, the robust strategy reduced

regret by provisioning a larger network. This occurs because under provisioning has a larger

penalty than over provisioning. For a tight budget, the robust strategy clearly dominates the

other competing methods.

5 Summary and Conclusions

This manuscript presents a two-phase robust optimization strategy for the DWDM routing

and provisioning problem with uncertain demands. In phase I, an optimal design is obtained

that minimizes regret. In phase II, regret is fixed at this optimal value and equipment cost

is minimized. The resulting solution is optimal with respect to the primary and secondary

goals of regret and equipment cost. Our strategy is unique and different from that suggested

by Mulvey et al. [14] in three respects: our models are integer programming models rather

than linear programming models, our models consider multiple criteria, and our models use a

nonsymmetrical piece-wise linear approximation to a nonlinear regret function.

Alternative models for this problem include the mean-value model, the stochastic program-
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ming model, and the worst-case model. A major weakness of the mean-value model is that it

does not guarantee a feasible solution for all problem instances. This occurred for both test

cases under the tight budget restriction. For any given budget, the stochastic programming

model, the worst-case model, and the robust optimization model always produce a design. Both

the stochastic programming model and worst-case model require a unit cost for under and over

provisioning that is not required for the robust optimization model. In addition, the worst-case

model ignores the scenario probabilities which means that a very unlikely scenario could be the

one that drives the solution for this model. For our test cases, regret was always highest for the

worst-case model. Even though this investigation makes a compelling case for using the robust

optimization strategy for this problem, the strategy presents challenges for both the analyst

and the client. After using this methodology to create a robust design, we expect a manager

to ask why our design is better than some other design. Our response is simply that if one

believes that the regret function used in our problem instance is what one wishes to optimize,

then the robust design does this as well as or better than any other design. Our design may not

be the least cost, but it is definitely the least-regret design. Any design that costs less will yield

a larger value on the regret function. Hence, one of the major difficulties is to define a regret

function that accurately reflects the client’s position regarding under and over provisioning.

Also, instances of integer linear programs may require an excessive amount of computational

time. However, neither of these issues should prohibit use of the robust optimization strategy.

Network restorability using a dedicated protection scheme (e.g. 1+1 protection) can be

accommodated with the present model by replacing shortest paths with shortest cycles. The

issue of a shared protection scheme will be addressed in a companion study.
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Table 1: Description of Constants in Problem DA

Constant Value or Range Description
traffic demand for

Rs
od 300-1500 pair (o, d) in scenario s

in units of DS3s
number of DS3s

MTE 192 that each TE
can accommodate
number of DS3s

MR 192 that each regenerator
can accommodate
number of DS3s

MA 15,360 that each optical amplifier
can accommodate

CTE $50,000 unit cost for a TE

CR $80,000 unit cost for a regenerator

CA $500,000 unit cost for an optical amplifier

Fe 24 max number of fibers on link e

max distance that a signal can
R 80km traverse without amplification,

also called the optical reach
max number of amplified

Q 5 spans above which signal
regeneration is required

Be 2km-1106km the length of link e

number of
GA

e 0-11 amplifier sites
on link e

number of
GR

e 0-2 regenerator sites
on link e
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Table 2: Decision Variables

Variables Variable
Scenario Robust Type Description
s Model Models
xs

p xp continuous number of DS3s assigned to path p

`s
n `n continuous number of TEs assigned to node n

tse te continuous number of TEs assigned to link e

as
e ae continuous number of optical amplifiers assigned to link e

rs
e re continuous number of regens assigned to link e

f s
e fe integer number of fibers assigned to link e

cs
e ce integer number of channels assigned to link e

zs
e ze continuous number of DS3s assigned to link e

z+
ods continuous positive infeasibility for demand (o, d) and scenario s

z−ods continuous negative infeasibility for demand (o, d) and scenario s

z̄+
odsk continuous kth linear piece for z+

ods

z̄−odsk continuous kth linear piece for z−ods

γs γ continuous total equipment cost
ρ continuous regret

Table 3: Characteristics of Test Problems

Name DA KL
Source [1] [19]
Total Nodes 68 18
Total Links 107 35
Total Demand Pairs 200 100
Number of Paths/Demand 4 4
Total Demand Scenarios 5 5

Table 4: Demand Range in DS3s for Problem DA

Scenario Probability Demand Range Average Demand
1 0.15 800-9600 5200
2 0.20 2400-10800 6600
3 0.30 4000-12000 8000
4 0.20 4400-16800 10,600
5 0.15 4800-21600 12,200
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Table 5: Solution for Individual Scenarios and Robust Design for Problem DA

Scaled
Scenario Prob. TEs Rs As Links CPU Equip. Regret

Used Seconds Cost
1 0.15 24,636 3,854 558 101 41 1.00 5.73
2 0.20 38,882 6,463 861 102 37 1.59 2.73
3 0.30 50,799 8,149 1,081 101 3 2.05 1.37
4 0.20 63,840 10,228 1,332 102 7 2.57 1.01
5 0.15 76,848 12,447 1,584 104 1 3.10 1.40

Robust Phase I 63,887 10,636 7,824 104 1 4.37 1.00
Robust Phase II 64,109 10,029 1,333 102 3 2.57 1.00

Table 6: Model Sizes after Preprocessing for Test Problems

Problem DA KL
Model Rows Columns Nonzeros Rows Columns Nonzeros
Individual Scenarios 353 953 6,122 270 570 3,566
Mean Value 512 1,112 7,062 365 665 3,855
Stochastic Programming 1,326 3,126 12,290 769 1,669 641
Worst Case 1,331 3,127 14,300 774 1,670 7,425
Robust Optimization 1,164 8,963 25,745 671 4,570 13,166

Table 7: Comparisons for Various Methods for Problem DA

Budget Method TEs Rs As CPU Equip. Scaled
Cost Regret

Mean Value 51,800 8,117 1,081 1 3.79 B 1.40
Stoch. Prog. 44,272 7,443 909 2 3.26 B 1.85

$5.63 B Worst Case 40,542 5,468 786 7 2.86 B 3.48
Robust Opt. 63,680 10,121 1,337 123 4.66 B 1.00
Mean Value 51,224 8,093 1,079 1 3.75 B 1.09
Stoch. Prog. 44,272 7,443 909 1 3.26 B 1.44

$3.75 B Worst Case 40,542 5,468 786 2 2.86 B 2.71
Robust Opt. 51,489 8,108 1,068 4,803 3.75 B 1.00
Mean Value No Feasible Solution — — —
Stoch. Prog. 25,651 3,413 527 17 1.82 B 1.14

$1.82 B Worst Case 26,897 2,816 498 15 1.82 B 1.50
Robust Opt. 25,285 3,548 542 5,511 1.82 B 1.00
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Table 8: Solution for Individual Scenarios and Robust Design for Problem KL

Scaled
Scenario Prob. TEs Rs As Links CPU Equip. Regret

Used Seconds Cost
1 0.15 12,767 7,275 638 52 9 1.00 5.47
2 0.20 18,064 11,320 917 62 24 1.47 2.93
3 0.30 23,645 15,416 1,188 66 9 1.96 1.37
4 0.20 29,295 19,196 1,455 66 1 2.42 1.01
5 0.15 35,008 23,231 1,667 64 3 2.89 1.46

Robust Phase I 28,086 22,750 14,256 68 1 6.73 1.00
Robust Phase II 28,707 19,544 1,420 70 3 2.41 1.00

Table 9: Comparisons for Various Methods for Problem KL

Budget Method TEs Rs As CPU Equip. Scaled
Cost Regret

Mean Value 24,126 15,196 1,177 6 3.01 B 1.41
Stoch. Prog. 24,127 14,210 1,042 1 2.73 B 1.75

$4.44 B Worst Case 18,749 11,780 894 3 2.33 B 3.63
Robust Opt. 29,862 18,808 1,414 5 3.70 B 1.00
Mean Value 24,066 15,222 1,152 3 3.00 B 1.08
Stoch. Prog. 21,427 14,136 1,042 1 2.72 B 1.35

$3.00 B Worst Case 18,768 11,798 886 2 2.33 B 2.76
Robust Opt. 23,910 15,266 1,161 322 3.00 B 1.00
Mean Value No Feasible Solution — — —
Stoch. Prog. 12,466 7,646 598 9 1.53 B 1.13

$1.54 B Worst Case 13,709 6,974 592 2 1.54 B 1.68
Robust Opt. 13,637 7,144 572 42 1.54 B 1.00
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