# Data file for the NFL network described in Section 4 of # "The Use of Sparsest Cuts to Reveal the Hierarchical Community Structure # of Social Networks" by Mann, Matula, and Olinick. # # The mapping of teams to node IDs is given below. # # NFL Team Name ID Conference Division # Buffalo Bills 1 AFC East # Miami Dolphins 2 AFC East # New England Patriots 3 AFC East # New York Jets 4 AFC East # Baltimore Ravens 5 AFC North # Cincinnati Bengals 6 AFC North # Cleveland Browns 7 AFC North # Pittsburgh Steelers 8 AFC North # Houston Texans 9 AFC South # Indianapolis Colts 10 AFC South # Jacksonville Jaguars 11 AFC South # Tennessee Titans 12 AFC South # Denver Broncos 13 AFC West # Kansas City Chiefs 14 AFC West # Oakland Raiders 15 AFC West # San Diego Chargers 16 AFC West # Dallas Cowboys 17 NFC East # New York Giants 18 NFC East # Philadelphia Eagles 19 NFC East # Washington Redskins 20 NFC East # Chicago Bears 21 NFC North # Detroit Lions 22 NFC North # Green Bay Packers 23 NFC North # Minnesota Vikings 24 NFC North # Atlanta Falcons 25 NFC South # Carolina Panthers 26 NFC South # New Orleans Saints 27 NFC South # Tampa Bay Buccaneers 28 NFC South # Arizona Cardinals 29 NFC West # San Francisco 49ers 30 NFC West # Seattle Seahawks 31 NFC West # St. Louis Rams 32 NFC West param filename := NFL.txt; param n := 32; set E := (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (1, 12) (1, 13) (1, 14) (1, 15) (1, 16) (1, 21) (1, 22) (1, 23) (1, 24) (1, 25) (1, 26) (1, 27) (1, 28) (1, 29) (1, 30) (1, 31) (1, 32) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (2, 11) (2, 12) (2, 13) (2, 14) (2, 15) (2, 16) (2, 21) (2, 22) (2, 23) (2, 24) (2, 25) (2, 26) (2, 27) (2, 28) (2, 29) (2, 30) (2, 31) (2, 32) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (3, 10) (3, 11) (3, 12) (3, 13) (3, 14) (3, 15) (3, 16) (3, 19) (3, 21) (3, 22) (3, 23) (3, 24) (3, 25) (3, 26) (3, 27) (3, 28) (3, 29) (3, 30) (3, 31) (3, 32) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13) (4, 14) (4, 15) (4, 16) (4, 21) (4, 22) (4, 23) (4, 24) (4, 25) (4, 26) (4, 27) (4, 28) (4, 29) (4, 30) (4, 31) (4, 32) (5, 6) (5, 7) (5, 8) (5, 9) (5, 10) (5, 11) (5, 12) (5, 13) (5, 14) (5, 15) (5, 16) (5, 17) (5, 18) (5, 19) (5, 20) (5, 21) (5, 22) (5, 23) (5, 24) (5, 25) (5, 26) (5, 27) (5, 28) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12) (6, 13) (6, 14) (6, 15) (6, 16) (6, 17) (6, 18) (6, 19) (6, 20) (6, 21) (6, 22) (6, 23) (6, 24) (6, 25) (6, 26) (6, 27) (6, 28) (7, 8) (7, 9) (7, 10) (7, 11) (7, 12) (7, 13) (7, 14) (7, 15) (7, 16) (7, 17) (7, 18) (7, 19) (7, 20) (7, 21) (7, 22) (7, 23) (7, 24) (7, 25) (7, 26) (7, 27) (7, 28) (8, 9) (8, 10) (8, 11) (8, 12) (8, 13) (8, 14) (8, 15) (8, 16) (8, 17) (8, 18) (8, 19) (8, 20) (8, 21) (8, 22) (8, 23) (8, 24) (8, 25) (8, 26) (8, 27) (8, 28) (8, 31) (9, 10) (9, 11) (9, 12) (9, 13) (9, 14) (9, 15) (9, 16) (9, 17) (9, 18) (9, 19) (9, 20) (9, 21) (9, 22) (9, 23) (9, 24) (9, 29) (9, 30) (9, 31) (9, 32) (10, 11) (10, 12) (10, 13) (10, 14) (10, 15) (10, 16) (10, 17) (10, 18) (10, 19) (10, 20) (10, 21) (10, 22) (10, 23) (10, 24) (10, 29) (10, 30) (10, 31) (10, 32) (11, 12) (11, 13) (11, 14) (11, 15) (11, 16) (11, 17) (11, 18) (11, 19) (11, 20) (11, 21) (11, 22) (11, 23) (11, 24) (11, 29) (11, 30) (11, 31) (11, 32) (12, 13) (12, 14) (12, 15) (12, 16) (12, 17) (12, 18) (12, 19) (12, 20) (12, 21) (12, 22) (12, 23) (12, 24) (12, 29) (12, 30) (12, 31) (12, 32) (13, 14) (13, 15) (13, 16) (13, 17) (13, 18) (13, 19) (13, 20) (13, 25) (13, 26) (13, 27) (13, 28) (13, 29) (13, 30) (13, 31) (13, 32) (14, 15) (14, 16) (14, 17) (14, 18) (14, 19) (14, 20) (14, 25) (14, 26) (14, 27) (14, 28) (14, 29) (14, 30) (14, 31) (14, 32) (15, 16) (15, 17) (15, 18) (15, 19) (15, 20) (15, 25) (15, 26) (15, 27) (15, 28) (15, 29) (15, 30) (15, 31) (15, 32) (16, 17) (16, 18) (16, 19) (16, 20) (16, 25) (16, 26) (16, 27) (16, 28) (16, 29) (16, 30) (16, 31) (16, 32) (17, 18) (17, 19) (17, 20) (17, 21) (17, 22) (17, 23) (17, 24) (17, 25) (17, 26) (17, 27) (17, 28) (17, 29) (17, 30) (17, 31) (17, 32) (18, 19) (18, 20) (18, 21) (18, 22) (18, 23) (18, 24) (18, 25) (18, 26) (18, 27) (18, 28) (18, 29) (18, 30) (18, 31) (18, 32) (19, 20) (19, 21) (19, 22) (19, 23) (19, 24) (19, 25) (19, 26) (19, 27) (19, 28) (19, 29) (19, 30) (19, 31) (19, 32) (20, 21) (20, 22) (20, 23) (20, 24) (20, 25) (20, 26) (20, 27) (20, 28) (20, 29) (20, 30) (20, 31) (20, 32) (21, 22) (21, 23) (21, 24) (21, 25) (21, 26) (21, 27) (21, 28) (21, 29) (21, 30) (21, 31) (21, 32) (22, 23) (22, 24) (22, 25) (22, 26) (22, 27) (22, 28) (22, 29) (22, 30) (22, 31) (22, 32) (23, 24) (23, 25) (23, 26) (23, 27) (23, 28) (23, 29) (23, 30) (23, 31) (23, 32) (24, 25) (24, 26) (24, 27) (24, 28) (24, 29) (24, 30) (24, 31) (24, 32) (25, 26) (25, 27) (25, 28) (25, 29) (25, 30) (25, 31) (25, 32) (26, 27) (26, 28) (26, 29) (26, 30) (26, 31) (26, 32) (27, 28) (27, 29) (27, 30) (27, 31) (27, 32) (28, 29) (28, 30) (28, 31) (28, 32) (29, 30) (29, 31) (29, 32) (30, 31) (30, 32) (31, 32) ; param w := 1 2 6 1 3 6 1 4 6 1 5 2 1 6 2 1 7 1 1 8 1 1 9 2 1 10 1 1 11 2 1 12 1 1 13 1 1 14 1 1 15 2 1 16 2 1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1 1 27 1 1 28 1 1 29 1 1 30 1 1 31 1 1 32 1 2 3 6 2 4 6 2 5 1 2 6 1 2 7 2 2 8 2 2 9 1 2 10 1 2 11 1 2 12 3 2 13 2 2 14 2 2 15 1 2 16 1 2 21 1 2 22 1 2 23 1 2 24 1 2 25 1 2 26 1 2 27 1 2 28 1 2 29 1 2 30 1 2 31 1 2 32 1 3 4 7 3 5 1 3 6 2 3 7 1 3 8 3 3 9 1 3 10 5 3 11 2 3 12 1 3 13 3 3 14 2 3 15 1 3 16 2 3 19 1 3 21 1 3 22 1 3 23 1 3 24 1 3 25 1 3 26 1 3 27 1 3 28 1 3 29 1 3 30 1 3 31 1 3 32 1 4 5 2 4 6 1 4 7 2 4 8 2 4 9 2 4 10 1 4 11 2 4 12 1 4 13 1 4 14 1 4 15 2 4 16 3 4 21 1 4 22 1 4 23 1 4 24 1 4 25 1 4 26 1 4 27 1 4 28 1 4 29 1 4 30 1 4 31 1 4 32 1 5 6 6 5 7 6 5 8 6 5 9 1 5 10 3 5 11 1 5 12 2 5 13 2 5 14 2 5 15 1 5 16 1 5 17 1 5 18 1 5 19 1 5 20 1 5 21 1 5 22 1 5 23 1 5 24 1 5 25 1 5 26 1 5 27 1 5 28 1 6 7 6 6 8 7 6 9 1 6 10 2 6 11 1 6 12 2 6 13 2 6 14 2 6 15 1 6 16 1 6 17 1 6 18 1 6 19 1 6 20 1 6 21 1 6 22 1 6 23 1 6 24 1 6 25 1 6 26 1 6 27 1 6 28 1 7 8 6 7 9 3 7 10 1 7 11 1 7 12 1 7 13 1 7 14 1 7 15 2 7 16 2 7 17 1 7 18 1 7 19 1 7 20 1 7 21 1 7 22 1 7 23 1 7 24 1 7 25 1 7 26 1 7 27 1 7 28 1 8 9 1 8 10 2 8 11 3 8 12 1 8 13 2 8 14 1 8 15 2 8 16 2 8 17 1 8 18 1 8 19 1 8 20 1 8 21 1 8 22 1 8 23 1 8 24 1 8 25 1 8 26 1 8 27 1 8 28 1 8 31 1 9 10 6 9 11 6 9 12 6 9 13 1 9 14 2 9 15 2 9 16 1 9 17 1 9 18 1 9 19 1 9 20 1 9 21 1 9 22 1 9 23 1 9 24 1 9 29 1 9 30 1 9 31 1 9 32 1 10 11 6 10 12 6 10 13 3 10 14 2 10 15 1 10 16 2 10 17 1 10 18 1 10 19 1 10 20 1 10 21 2 10 22 1 10 23 1 10 24 1 10 29 1 10 30 1 10 31 1 10 32 1 11 12 6 11 13 2 11 14 2 11 15 1 11 16 1 11 17 1 11 18 1 11 19 1 11 20 1 11 21 1 11 22 1 11 23 1 11 24 1 11 29 1 11 30 1 11 31 1 11 32 1 12 13 1 12 14 1 12 15 2 12 16 2 12 17 1 12 18 1 12 19 1 12 20 1 12 21 1 12 22 1 12 23 1 12 24 1 12 29 1 12 30 1 12 31 1 12 32 1 13 14 6 13 15 6 13 16 6 13 17 1 13 18 1 13 19 1 13 20 1 13 25 1 13 26 1 13 27 1 13 28 1 13 29 1 13 30 1 13 31 1 13 32 1 14 15 6 14 16 6 14 17 1 14 18 1 14 19 1 14 20 1 14 25 1 14 26 1 14 27 1 14 28 1 14 29 1 14 30 1 14 31 1 14 32 1 15 16 6 15 17 1 15 18 1 15 19 1 15 20 1 15 25 1 15 26 1 15 27 1 15 28 1 15 29 1 15 30 1 15 31 1 15 32 1 16 17 1 16 18 1 16 19 1 16 20 1 16 25 1 16 26 1 16 27 1 16 28 1 16 29 1 16 30 1 16 31 1 16 32 1 17 18 6 17 19 6 17 20 6 17 21 1 17 22 3 17 23 1 17 24 1 17 25 1 17 26 2 17 27 2 17 28 1 17 29 2 17 30 1 17 31 3 17 32 1 18 19 7 18 20 6 18 21 2 18 22 1 18 23 1 18 24 2 18 25 2 18 26 2 18 27 2 18 28 1 18 29 2 18 30 1 18 31 2 18 32 1 19 20 6 19 21 1 19 22 1 19 23 3 19 24 2 19 25 3 19 26 2 19 27 2 19 28 1 19 29 1 19 30 2 19 31 1 19 32 2 20 21 2 20 22 1 20 23 1 20 24 2 20 25 1 20 26 1 20 27 1 20 28 4 20 29 1 20 30 2 20 31 2 20 32 2 21 22 6 21 23 6 21 24 6 21 25 1 21 26 2 21 27 2 21 28 3 21 29 1 21 30 3 21 31 2 21 32 1 22 23 6 22 24 6 22 25 3 22 26 1 22 27 1 22 28 1 22 29 3 22 30 1 22 31 1 22 32 1 23 24 7 23 25 1 23 26 2 23 27 2 23 28 1 23 29 1 23 30 1 23 31 2 23 32 2 24 25 1 24 26 2 24 27 2 24 28 1 24 29 1 24 30 1 24 31 2 24 32 2 25 26 6 25 27 6 25 28 6 25 29 2 25 30 1 25 31 2 25 32 2 26 27 6 26 28 6 26 29 2 26 30 1 26 31 2 26 32 2 27 28 6 27 29 1 27 30 2 27 31 1 27 32 2 28 29 1 28 30 2 28 31 2 28 32 1 29 30 6 29 31 6 29 32 6 30 31 6 30 32 6 31 32 7 ; set INTRACOM_EDGES := (1,2) (5,6) (9,10) (13,14) (17,18) (21,22) (25,26) (29,30) (1,3) (5,7) (9,11) (13,15) (17,19) (21,23) (25,27) (29,31) (1,4) (5,8) (9,12) (13,16) (17,20) (21,24) (25,28) (29,32) (2,3) (6,7) (10,11) (14,15) (18,19) (22,23) (26,27) (30,31) (2,4) (6,8) (10,12) (14,16) (18,20) (22,24) (26,28) (30,32) (3,4) (7,8) (11,12) (15,16) (19,20) (23,24) (27,28) (31,32);