# Problem instance ATT02 with translation on the protection path. # The set of nodes in the network set N := 1 2 3 4 5 6 7 8 9 10 11; # The set of links in the network set E := (1,2) (2,11) (3,8) (4,6) (4,10) (5,11) (7,10) (8,10) (1,11) (3,4) (3,11) (4,7) (4,11) (6,7) (7,11) (9,10) (2,4) (3,7) (4,5) (4,8) (5,7) (7,8) (8,9); # The set of modular sizes for structures and couplers set W := 4 8 16 20 40 80; # The set of OD pairs and # the number wavelengths required for each o-d pair param: D: r := 1 3 9 1 6 13 1 7 10 2 3 11 2 5 7 2 6 4 3 5 12 3 6 3 4 8 6 5 7 2 6 7 9 6 8 13 7 8 5 7 9 6 8 9 16 9 10 8 ; # The set of available structures set S := 1 2 3 4 5 6; # The edges in each structure set Es[1] := (1,2) (1,11) (2,4) (2,11) (4,11); set Es[2] := (4,5) (4,10) (4,11) (5,7) (5,11) (7,10) (7,11); set Es[3] := (3,7) (3,8) (7,10) (8,9) (8,10) (9,10); set Es[4] := (4,6) (4,7) (4,10) (6,7) (7,10); set Es[5] := (4,8) (4,10) (8,9) (8,10) (9,10); set Es[6] := (3,4) (3,8) (3,11) (4,8) (4,11); # The set of available switches set C := 1 2 3 4 5 6 7; # The structure costs param a: 4 8 16 20 40 80 := 1 26 47 78 104 208 390 2 25 45 75 100 200 375 3 23 41 69 92 184 345 4 22 40 66 88 176 330 5 34 61 102 136 272 510 6 33 59 99 132 264 495 ; # The switch costs param f: 4 8 16 20 40 80 := 1 4 7 12 16 32 60 2 8 14 24 32 64 120 3 14 25 42 56 112 210 4 14 25 42 56 112 210 5 23 41 69 92 184 345 6 12 22 36 48 96 180 7 30 54 90 120 240 450 ; # The set of optical cycle set K := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22; # The set of optical cycles serving each demand pair set J[1,3] := 1; set J[1,6] := 2; set J[1,7] := 3; set J[2,3] := 4; set J[2,5] := 5; set J[2,6] := 6; set J[3,5] := 7; set J[3,6] := 8; set J[4,8] := 9 10 11; set J[5,7] := 12; set J[6,7] := 13; set J[6,8] := 14; set J[7,8] := 15 16; set J[7,9] := 17 18; set J[8,9] := 19 20; set J[9,10] := 21 22; # The set of paths set P := 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 3 6 9 12 15 18 21 24 27 30 33 36 39 42; # The set of paths making up each optical cycle set Pk[1] := 1 2; set Pk[2] := 3 4; set Pk[3] := 5 6; set Pk[4] := 7 8; set Pk[5] := 9 10; set Pk[6] := 11 12; set Pk[7] := 13 14; set Pk[8] := 15 16; set Pk[9] := 17 18; set Pk[10] := 19 20; set Pk[11] := 21 22; set Pk[12] := 23 24; set Pk[13] := 25 26; set Pk[14] := 27 28; set Pk[15] := 29 30; set Pk[16] := 31 32; set Pk[17] := 33 34; set Pk[18] := 35 36; set Pk[19] := 37 38; set Pk[20] := 39 40; set Pk[21] := 41 42; set Pk[22] := 43 44; # The set of paths using each switch set L[1] := 1 4 5 7 9 11 15 27; set L[2] := 1 7 14 15 22; set L[7] := 2 3 6 8 10 12 15 27; set L[6] := 2 4 8 10 11 16 28 32 36; set L[4] := 2 8 13 16; set L[5] := 4 10 11 13 27 31 35; set L[3] := 21; # The set of paths using each edge of each structure set Pes[1,11,1] := 1 4 5; set Pes[4,11,2] := 1 4 11 15 27 35; set Pes[4,10,2] := 1 15 22; set Pes[8,10,3] := 1 14 22 30 37 41; set Pes[3,8,3] := 1 14 21 29 33; set Pes[1,2,1] := 2 3 6; set Pes[2,4,1] := 2 3 6 8 10 12; set Pes[4,10,4] := 2 8 10; set Pes[8,10,5] := 2 8 16 17 28 32 39 43; set Pes[3,8,6] := 2 8 13 16 19; set Pes[4,6,4] := 3 12 15 25 27; set Pes[4,10,5] := 4 10 11 17; set Pes[7,10,4] := 4 11 16 28 32 36; set Pes[6,7,4] := 4 11 16 26 28; set Pes[7,11,2] := 5 7 23 35; set Pes[4,7,4] := 6 25; set Pes[2,11,1] := 7 9 11; set Pes[7,10,2] := 7 14; set Pes[7,10,3] := 7 15 30 34; set Pes[3,7,3] := 7 15 29 33; set Pes[5,11,2] := 9 23; set Pes[4,5,2] := 10 13 31; set Pes[4,8,5] := 13 18 27 31 35; set Pes[5,7,2] := 14 24 31; set Pes[4,11,1] := 15 27; set Pes[3,4,6] := 19; set Pes[4,8,6] := 20; set Pes[4,11,6] := 21; set Pes[3,11,6] := 21; set Pes[8,9,3] := 33 38 41; set Pes[9,10,3] := 34 37 42; set Pes[8,9,5] := 35 40 43; set Pes[9,10,5] := 36 39 44; set H := (1,4) (2,17) (4,27) (7,29) (10,15) (13,27) (16,36) (30,34) (1,5) (2,19) (4,28) (7,30) (10,16) (13,31) (16,39) (30,37) (1,7) (2,27) (4,31) (7,33) (10,17) (13,35) (16,43) (30,41) (1,9) (2,28) (4,32) (7,34) (10,27) (14,15) (17,28) (31,35) (1,11) (2,32) (4,35) (7,35) (10,28) (14,21) (17,32) (32,36) (1,14) (2,36) (4,36) (8,10) (10,31) (14,22) (17,39) (32,39) (1,15) (2,39) (5,7) (8,11) (10,32) (14,24) (17,43) (32,43) (1,21) (2,43) (5,9) (8,12) (10,35) (14,29) (18,27) (33,38) (1,22) (3,6) (5,11) (8,13) (10,36) (14,30) (18,31) (33,41) (1,27) (3,8) (5,15) (8,15) (11,13) (14,31) (18,35) (34,37) (1,29) (3,10) (5,23) (8,16) (11,15) (14,33) (21,29) (34,42) (1,30) (3,12) (5,27) (8,17) (11,16) (14,37) (21,33) (35,40) (1,33) (3,15) (5,35) (8,19) (11,17) (14,41) (22,30) (35,43) (1,35) (3,25) (6,8) (8,27) (11,26) (15,22) (22,37) (36,39) (1,37) (3,27) (6,10) (8,28) (11,27) (15,25) (22,41) (36,44) (1,41) (4,5) (6,12) (8,32) (11,28) (15,27) (23,35) (37,41) (2,3) (4,7) (6,15) (8,36) (11,31) (15,29) (24,31) (37,42) (2,4) (4,8) (6,25) (8,39) (11,32) (15,30) (25,27) (38,41) (2,6) (4,9) (6,27) (8,43) (11,35) (15,33) (26,28) (39,43) (2,8) (4,10) (7,9) (9,11) (11,36) (15,34) (27,31) (39,44) (2,10) (4,11) (7,11) (9,15) (12,15) (15,35) (27,35) (40,43) (2,11) (4,13) (7,14) (9,23) (12,25) (16,17) (28,32) (2,12) (4,15) (7,15) (9,27) (12,27) (16,19) (28,36) (2,13) (4,16) (7,22) (10,11) (13,16) (16,26) (28,39) (2,15) (4,17) (7,23) (10,12) (13,18) (16,28) (28,43) (2,16) (4,26) (7,27) (10,13) (13,19) (16,32) (29,33);