# Problem instance EUR02 with translation on the protection path. # The set of nodes in the network set N := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18; # The set of links in the network set E := (1,3) (2,9) (3,12) (4,13) (5,16) (8,17) (11,12) (1,8) (2,10) (3,14) (4,15) (6,15) (9,15) (11,15) (1,9) (2,13) (3,15) (4,17) (7,14) (9,17) (14,17) (1,14) (3,6) (4,7) (4,18) (7,16) (10,13) (16,18) (1,15) (3,7) (4,9) (5,7) (7,17) (10,15) (17,18); # The set of modular sizes for structures and couplers set W := 4 8 16 20 40 80; # The set of OD pairs and # the number wavelengths required for each o-d pair param: D: r := 1 11 6 2 6 3 3 12 11 4 5 1 4 9 13 4 11 6 4 14 1 5 11 1 5 14 20 6 10 5 7 13 6 7 16 16 9 12 6 10 12 6 10 13 15 11 16 12 11 18 17 12 16 18 ; # The set of available structures set S := 1 2 3 4 5 6; # The edges in each structure set Es[1] := (1,3) (1,15) (3,6) (3,12) (3,15) (6,15) (11,12) (11,15); set Es[2] := (1,3) (1,8) (1,14) (3,7) (3,14) (7,14) (8,17) (14,17); set Es[3] := (4,7) (4,17) (4,18) (7,14) (14,17) (17,18); set Es[4] := (1,9) (1,15) (4,9) (4,15) (4,17) (9,15) (9,17); set Es[5] := (1,8) (1,15) (2,10) (4,13) (8,17) (10,15) (1,9) (2,9) (2,13) (4,17) (10,13); set Es[6] := (5,7) (5,16) (7,14) (7,16) (7,17) (14,17) (16,18) (17,18); # The set of available switches set C := 1 2 3 4 5 6 7; # The structure costs param a: 4 8 16 20 40 80 := 1 143 257 429 572 1144 2145 2 197 355 591 788 1576 2955 3 119 214 357 476 952 1785 4 187 337 561 748 1496 2805 5 123 221 369 492 984 1845 6 149 268 447 596 1192 2235 ; # The switch costs param f: 4 8 16 20 40 80 := 1 15 26 44 60 115 225 2 26 44 75 104 200 390 3 23 39 67 92 177 345 4 31 53 90 124 239 465 5 23 39 67 92 177 345 6 47 80 136 188 362 705 7 39 66 113 156 300 585 ; # The set of optical cycle set K := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20; # The set of optical cycles serving each demand pair set J[1,11] := 1; set J[2,6] := 2; set J[3,12] := 3; set J[4,5] := 4; set J[4,9] := 5 6; set J[4,11] := 7; set J[4,14] := 8 9; set J[5,11] := 10; set J[5,14] := 11; set J[6,10] := 12; set J[7,13] := 13; set J[7,16] := 14; set J[9,12] := 15; set J[10,12] := 16; set J[10,13] := 17; set J[11,16] := 18; set J[11,18] := 19; set J[12,16] := 20; # The set of paths set P := 1 4 7 10 13 16 19 22 25 28 31 34 37 40 2 5 8 11 14 17 20 23 26 29 32 35 38 3 6 9 12 15 18 21 24 27 30 33 36 39; # The set of paths making up each optical cycle set Pk[1] := 1 2; set Pk[2] := 3 4; set Pk[3] := 5 6; set Pk[4] := 7 8; set Pk[5] := 9 10; set Pk[6] := 11 12; set Pk[7] := 13 14; set Pk[8] := 15 16; set Pk[9] := 17 18; set Pk[10] := 19 20; set Pk[11] := 21 22; set Pk[12] := 23 24; set Pk[13] := 25 26; set Pk[14] := 27 28; set Pk[15] := 29 30; set Pk[16] := 31 32; set Pk[17] := 33 34; set Pk[18] := 35 36; set Pk[19] := 37 38; set Pk[20] := 39 40; # The set of paths using each switch set L[6] := 3 19 23 31 36 37 39; set L[2] := 3 14 17 19 23 29 31 36 37 39; set L[4] := 4 24 25 30 32; set L[1] := 4 13 17 20 24 30 32 35 38 40; set L[7] := 7 18 19 26 36 37 39; set L[5] := 8 20 35 40; set L[3] := 13 20 35 38 40; # The set of paths using each edge of each structure set Pes[1,3,1] := 1 17; set Pes[3,12,1] := 1 6 13 20 30 32 35 38 40; set Pes[11,12,1] := 1 5 13 20 29 31 35 38 39; set Pes[1,15,1] := 2 3 14 19 23 29 31 36 37 39; set Pes[11,15,1] := 2 5 14 19 29 31 36 37 39; set Pes[2,13,5] := 3 12 33; set Pes[4,13,5] := 3 12 23 26 31; set Pes[4,9,4] := 3 10 14 17 19 23 31 36 37 39; set Pes[1,9,4] := 3 14 17 19 23 29 31 36 37 39; set Pes[6,15,1] := 3 23; set Pes[2,9,5] := 4 12; set Pes[1,9,5] := 4 11 30; set Pes[1,3,2] := 4 24 25 30 32; set Pes[3,6,1] := 4 24; set Pes[3,15,1] := 5; set Pes[4,17,5] := 7 11 18 19 26 36 37 39; set Pes[17,18,6] := 7 19 21 36 37 39; set Pes[16,18,6] := 7 19 21 36 39; set Pes[5,16,6] := 7 19 21 27 35; set Pes[4,7,3] := 8 16 35 40; set Pes[5,7,6] := 8 20 22 27 35; set Pes[4,17,4] := 9; set Pes[9,17,4] := 9; set Pes[8,17,5] := 11; set Pes[1,8,5] := 11; set Pes[4,17,3] := 13 15 35 40; set Pes[14,17,2] := 13 20 35 38 40; set Pes[3,14,2] := 13 17 20 35 38 40; set Pes[14,17,3] := 15 20; set Pes[7,14,3] := 16 20; set Pes[14,17,6] := 18 21; set Pes[7,14,6] := 22; set Pes[10,13,5] := 23 25 31 34; set Pes[1,15,5] := 24 25 32; set Pes[10,15,5] := 24 25 32; set Pes[3,7,2] := 25; set Pes[7,17,6] := 26; set Pes[7,16,6] := 28 40; set Pes[2,10,5] := 33; set Pes[17,18,3] := 38; set H := (1,5) (3,26) (5,39) (10,36) (14,29) (18,37) (22,35) (29,38) (1,6) (3,29) (6,13) (10,37) (14,31) (18,39) (23,25) (29,39) (1,13) (3,31) (6,20) (10,39) (14,36) (19,21) (23,26) (30,32) (1,17) (3,33) (6,30) (11,18) (14,37) (19,23) (23,29) (30,35) (1,20) (3,36) (6,32) (11,19) (14,39) (19,26) (23,31) (30,38) (1,29) (3,37) (6,35) (11,26) (15,20) (19,27) (23,34) (30,40) (1,30) (3,39) (6,38) (11,30) (15,35) (19,29) (23,36) (31,34) (1,31) (4,11) (6,40) (11,36) (15,40) (19,31) (23,37) (31,35) (1,32) (4,12) (7,11) (11,37) (16,20) (19,35) (23,39) (31,36) (1,35) (4,13) (7,18) (11,39) (16,35) (19,36) (24,25) (31,37) (1,38) (4,17) (7,19) (12,23) (16,40) (19,37) (24,30) (31,38) (1,39) (4,20) (7,21) (12,26) (17,19) (19,39) (24,32) (31,39) (1,40) (4,24) (7,26) (12,31) (17,20) (20,22) (24,35) (32,35) (2,3) (4,25) (7,27) (12,33) (17,23) (20,24) (24,38) (32,38) (2,5) (4,30) (7,35) (13,15) (17,24) (20,27) (24,40) (32,40) (2,14) (4,32) (7,36) (13,17) (17,29) (20,29) (25,30) (35,38) (2,19) (4,35) (7,37) (13,20) (17,30) (20,30) (25,31) (35,39) (2,23) (4,38) (7,39) (13,24) (17,31) (20,31) (25,32) (35,40) (2,29) (4,40) (8,16) (13,29) (17,32) (20,32) (25,34) (36,37) (2,31) (5,13) (8,20) (13,30) (17,35) (20,35) (26,31) (36,39) (2,36) (5,14) (8,22) (13,31) (17,36) (20,38) (26,36) (37,39) (2,37) (5,19) (8,27) (13,32) (17,37) (20,39) (26,37) (38,39) (2,39) (5,20) (8,35) (13,35) (17,38) (20,40) (26,39) (38,40) (3,10) (5,29) (8,40) (13,38) (17,39) (21,27) (27,35) (3,12) (5,31) (10,14) (13,39) (17,40) (21,35) (28,40) (3,14) (5,35) (10,17) (13,40) (18,19) (21,36) (29,31) (3,17) (5,36) (10,19) (14,17) (18,21) (21,37) (29,35) (3,19) (5,37) (10,23) (14,19) (18,26) (21,39) (29,36) (3,23) (5,38) (10,31) (14,23) (18,36) (22,27) (29,37);