# Problem instance J02 with translation on the protection path. # The set of nodes in the network set N := 1 2 3 4 5 6 7 8 9 10; # The set of links in the network set E := (1,3) (1,9) (2,7) (2,10) (4,8) (5,6) (6,8) (9,10) (1,7) (2,6) (2,9) (3,9) (4,10) (5,8) (8,10); # The set of modular sizes for structures and couplers set W := 4 8 16 20 40 80; # The set of OD pairs and # the number wavelengths required for each o-d pair param: D: r := 1 2 2 1 6 20 1 7 8 1 10 16 2 4 4 2 6 9 2 8 20 2 9 17 2 10 5 3 4 5 3 6 19 3 9 13 3 10 12 4 5 2 4 8 16 4 9 2 5 6 4 5 9 10 5 10 2 6 8 3 6 10 7 7 10 7 8 9 10 8 10 11 ; # The set of available structures set S := 1 2 3 4 5; # The edges in each structure set Es[1] := (5,6) (5,8) (6,8); set Es[2] := (2,6) (2,10) (5,6) (5,8) (6,8) (8,10); set Es[3] := (1,7) (1,9) (2,7) (2,9); set Es[4] := (4,8) (4,10) (8,10); set Es[5] := (1,3) (1,7) (1,9) (2,7) (2,9) (3,9); # The set of available switches set C := 1 2 3 4 5 6; # The structure costs param a: 4 8 16 20 40 80 := 1 35 63 105 140 280 525 2 23 41 69 92 184 345 3 39 70 117 156 312 585 4 15 27 45 60 120 225 5 45 81 135 180 360 675 ; # The switch costs param f: 4 8 16 20 40 80 := 1 5 9 15 20 40 74 2 7 12 20 27 55 104 3 5 9 15 20 40 74 4 6 10 17 23 47 89 5 8 14 23 31 63 119 6 3 5 9 12 24 45 ; # The set of optical cycle set K := 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30; # The set of optical cycles serving each demand pair set J[1,2] := 1 2; set J[1,6] := 3; set J[1,7] := 4 5; set J[1,10] := 6; set J[2,4] := 7; set J[2,6] := 8; set J[2,8] := 9; set J[2,9] := 10 11; set J[2,10] := 12; set J[3,4] := 13; set J[3,6] := 14; set J[3,9] := 15; set J[3,10] := 16; set J[4,5] := 17; set J[4,8] := 18; set J[4,9] := 19; set J[5,6] := 20 21; set J[5,9] := 22; set J[5,10] := 23; set J[6,8] := 24 25; set J[6,10] := 26; set J[7,10] := 27; set J[8,9] := 28; set J[8,10] := 29 30; # The set of paths set P := 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60; # The set of paths making up each optical cycle set Pk[1] := 1 2; set Pk[2] := 3 4; set Pk[3] := 5 6; set Pk[4] := 7 8; set Pk[5] := 9 10; set Pk[6] := 11 12; set Pk[7] := 13 14; set Pk[8] := 15 16; set Pk[9] := 17 18; set Pk[10] := 19 20; set Pk[11] := 21 22; set Pk[12] := 23 24; set Pk[13] := 25 26; set Pk[14] := 27 28; set Pk[15] := 29 30; set Pk[16] := 31 32; set Pk[17] := 33 34; set Pk[18] := 35 36; set Pk[19] := 37 38; set Pk[20] := 39 40; set Pk[21] := 41 42; set Pk[22] := 43 44; set Pk[23] := 45 46; set Pk[24] := 47 48; set Pk[25] := 49 50; set Pk[26] := 51 52; set Pk[27] := 53 54; set Pk[28] := 55 56; set Pk[29] := 57 58; set Pk[30] := 59 60; # The set of paths using each switch set L[2] := 5 11 26 28 32 37 43 53 55; set L[3] := 6 12 25 27 31 38 44 54 56; set L[1] := 13 26 37; set L[6] := 13 26 33 37; set L[4] := 14 25 34 38; set L[5] := 26 28 32; # The set of paths using each edge of each structure set Pes[1,7,3] := 1 5 7 11 20 26 28 32; set Pes[2,7,3] := 1 5 8 11 20 26 28 32 53; set Pes[1,9,3] := 2 8 20; set Pes[2,9,3] := 2 8 19 37 43 55; set Pes[1,7,5] := 3 6 9 12 22; set Pes[2,7,5] := 3 6 10 12 22 54; set Pes[1,9,5] := 4 10 22 30; set Pes[2,9,5] := 4 10 21 25 27 31 38 44 56; set Pes[2,6,2] := 5 12 13 15 17 24 26 27 32 37 43 46 52 53 55 60; set Pes[2,10,2] := 6 11 14 16 18 23 25 28 31 38 44 46 52 54 56 60; set Pes[8,10,2] := 6 12 16 18 24 28 32 34 44 45 51 53 56 59; set Pes[6,8,2] := 6 12 16 17 24 28 32 42 49 51 53 55 60; set Pes[6,8,1] := 13 26 37 40 47; set Pes[4,8,4] := 13 26 33 35 37 58; set Pes[4,10,4] := 14 25 34 36 38 58; set Pes[3,9,5] := 25 27 29 31; set Pes[1,3,5] := 26 28 30 32; set Pes[5,8,1] := 33 40 48; set Pes[5,8,2] := 34 42 44 45 50; set Pes[8,10,4] := 36 57; set Pes[5,6,1] := 39 48; set Pes[5,6,2] := 41 43 46 50; set H := (1,5) (6,27) (11,53) (14,46) (18,38) (25,46) (31,56) (42,50) (1,7) (6,28) (11,54) (14,52) (18,44) (25,52) (31,60) (42,51) (1,8) (6,31) (11,55) (14,54) (18,45) (25,54) (32,34) (42,53) (1,11) (6,32) (11,56) (14,56) (18,46) (25,56) (32,37) (42,55) (1,20) (6,34) (11,60) (14,58) (18,51) (25,58) (32,42) (42,60) (1,26) (6,38) (12,13) (14,60) (18,52) (25,60) (32,43) (43,46) (1,28) (6,42) (12,15) (15,17) (18,53) (26,27) (32,44) (43,50) (1,32) (6,44) (12,16) (15,24) (18,54) (26,28) (32,45) (43,52) (1,53) (6,45) (12,17) (15,26) (18,56) (26,30) (32,46) (43,53) (2,8) (6,46) (12,18) (15,27) (18,59) (26,32) (32,49) (43,55) (2,19) (6,49) (12,22) (15,32) (18,60) (26,33) (32,51) (43,60) (2,20) (6,51) (12,24) (15,37) (19,37) (26,35) (32,52) (44,45) (2,37) (6,52) (12,25) (15,43) (19,43) (26,37) (32,53) (44,46) (2,43) (6,53) (12,26) (15,46) (19,55) (26,40) (32,55) (44,50) (2,55) (6,54) (12,27) (15,52) (20,26) (26,43) (32,56) (44,51) (3,6) (6,55) (12,28) (15,53) (20,28) (26,46) (32,59) (44,52) (3,9) (6,56) (12,31) (15,55) (20,32) (26,47) (32,60) (44,53) (3,10) (6,59) (12,32) (15,60) (20,53) (26,52) (33,35) (44,54) (3,12) (6,60) (12,34) (16,17) (21,25) (26,53) (33,37) (44,56) (3,22) (7,11) (12,37) (16,18) (21,27) (26,55) (33,40) (44,59) (3,54) (7,20) (12,38) (16,23) (21,31) (26,58) (33,48) (44,60) (4,10) (7,26) (12,42) (16,24) (21,38) (26,60) (33,58) (45,50) (4,21) (7,28) (12,43) (16,25) (21,44) (27,29) (34,36) (45,51) (4,22) (7,32) (12,44) (16,28) (21,56) (27,31) (34,38) (45,53) (4,25) (8,11) (12,45) (16,31) (22,30) (27,32) (34,42) (45,56) (4,27) (8,19) (12,46) (16,32) (22,54) (27,37) (34,44) (45,59) (4,30) (8,20) (12,49) (16,34) (23,25) (27,38) (34,45) (46,50) (4,31) (8,26) (12,51) (16,38) (23,28) (27,43) (34,50) (46,52) (4,38) (8,28) (12,52) (16,42) (23,31) (27,44) (34,51) (46,53) (4,44) (8,32) (12,53) (16,44) (23,38) (27,46) (34,53) (46,54) (4,56) (8,37) (12,54) (16,45) (23,44) (27,52) (34,56) (46,55) (5,7) (8,43) (12,55) (16,46) (23,46) (27,53) (34,58) (46,56) (5,8) (8,53) (12,56) (16,49) (23,52) (27,54) (34,59) (46,60) (5,11) (8,55) (12,59) (16,51) (23,54) (27,55) (35,37) (49,51) (5,12) (9,12) (12,60) (16,52) (23,56) (27,56) (35,58) (49,53) (5,13) (9,22) (13,15) (16,53) (23,60) (27,60) (36,38) (49,55) (5,15) (10,12) (13,17) (16,54) (24,26) (28,30) (36,57) (49,60) (5,17) (10,21) (13,24) (16,55) (24,27) (28,31) (36,58) (51,53) (5,20) (10,22) (13,26) (16,56) (24,28) (28,32) (37,40) (51,55) (5,24) (10,25) (13,27) (16,59) (24,32) (28,34) (37,43) (51,56) (5,26) (10,27) (13,32) (16,60) (24,34) (28,37) (37,46) (51,59) (5,27) (10,30) (13,33) (17,24) (24,37) (28,38) (37,47) (51,60) (5,28) (10,31) (13,35) (17,26) (24,42) (28,42) (37,52) (52,53) (5,32) (10,38) (13,37) (17,27) (24,43) (28,43) (37,53) (52,54) (5,37) (10,44) (13,40) (17,28) (24,44) (28,44) (37,55) (52,55) (5,43) (10,54) (13,43) (17,32) (24,45) (28,45) (37,58) (52,56) (5,46) (10,56) (13,46) (17,37) (24,46) (28,46) (37,60) (52,60) (5,52) (11,14) (13,47) (17,42) (24,49) (28,49) (38,44) (53,55) (5,53) (11,16) (13,52) (17,43) (24,51) (28,51) (38,46) (53,56) (5,55) (11,18) (13,53) (17,46) (24,52) (28,52) (38,52) (53,59) (5,60) (11,20) (13,55) (17,49) (24,53) (28,53) (38,54) (53,60) (6,9) (11,23) (13,58) (17,51) (24,55) (28,54) (38,56) (54,56) (6,10) (11,25) (13,60) (17,52) (24,56) (28,55) (38,58) (54,60) (6,11) (11,26) (14,16) (17,53) (24,59) (28,56) (38,60) (55,60) (6,12) (11,28) (14,18) (17,55) (24,60) (28,59) (39,48) (56,59) (6,14) (11,31) (14,23) (17,60) (25,27) (28,60) (40,47) (56,60) (6,16) (11,32) (14,25) (18,23) (25,28) (29,31) (40,48) (6,17) (11,37) (14,28) (18,24) (25,29) (30,32) (41,43) (6,18) (11,38) (14,31) (18,25) (25,31) (31,38) (41,46) (6,22) (11,43) (14,34) (18,28) (25,34) (31,44) (41,50) (6,23) (11,44) (14,36) (18,31) (25,36) (31,46) (42,44) (6,24) (11,46) (14,38) (18,32) (25,38) (31,52) (42,45) (6,25) (11,52) (14,44) (18,34) (25,44) (31,54) (42,49);