# Problem instance ATT01 with translation at the switches. # The set of nodes in the network set N := 1 2 3 4 5 6 7 8 9 10 11; # The set of links in the network set E := (1,2) (2,11) (3,8) (4,6) (4,10) (5,11) (7,10) (8,10) (1,11) (3,4) (3,11) (4,7) (4,11) (6,7) (7,11) (9,10) (2,4) (3,7) (4,5) (4,8) (5,7) (7,8) (8,9); # The set of modular sizes for structures and couplers set W := 4 8 16 20 40 80; # The set of OD pairs and # the number wavelengths required for each o-d pair param: D: r := 1 3 7 1 6 15 1 7 2 2 3 12 2 5 12 2 6 12 3 5 3 3 6 12 4 8 5 5 7 7 6 7 14 6 8 16 7 8 13 7 9 13 8 9 2 9 10 8 ; # The set of available structures set S := 1 2 3 4 5 6; # The edges in each structure set Es[1] := (1,2) (1,11) (2,4) (2,11) (4,11); set Es[2] := (4,5) (4,10) (4,11) (5,7) (5,11) (7,10) (7,11); set Es[3] := (3,7) (3,8) (7,10) (8,9) (8,10) (9,10); set Es[4] := (4,6) (4,7) (4,10) (6,7) (7,10); set Es[5] := (4,8) (4,10) (8,9) (8,10) (9,10); set Es[6] := (3,4) (3,8) (3,11) (4,8) (4,11); # The set of available switches set C := 1 2 3 4 5 6 7; # The structure costs param a: 4 8 16 20 40 80 := 1 19 34 57 76 152 285 2 13 23 39 52 104 195 3 17 31 51 68 136 255 4 16 29 48 64 128 240 5 16 29 48 64 128 240 6 18 32 54 72 144 270 ; # The switch costs param f: 4 8 16 20 40 80 := 1 4 7 12 16 32 60 2 7 13 21 28 56 105 3 6 11 18 24 48 90 4 14 25 42 56 112 210 5 16 29 48 64 128 240 6 17 31 51 68 136 255 7 30 54 90 120 240 450 ; # The set of optical cycle set K := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22; # The set of optical cycles serving each demand pair set J[1,3] := 1; set J[1,6] := 2; set J[1,7] := 3; set J[2,3] := 4; set J[2,5] := 5; set J[2,6] := 6; set J[3,5] := 7; set J[3,6] := 8; set J[4,8] := 9 10 11; set J[5,7] := 12; set J[6,7] := 13; set J[6,8] := 14; set J[7,8] := 15 16; set J[7,9] := 17 18; set J[8,9] := 19 20; set J[9,10] := 21 22; # The set of paths set P := 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64; # The set of paths making up each optical cycle set Pk[1] := 1 2 3 4 5 6; set Pk[2] := 7 8 9 10 11; set Pk[3] := 12 13 14; set Pk[4] := 15 16 17 18 19 20; set Pk[5] := 21 22 23 24 25; set Pk[6] := 26 27 28 29 30; set Pk[7] := 31 32 33 34; set Pk[8] := 35 36 37 38 39 40; set Pk[9] := 41; set Pk[10] := 42; set Pk[11] := 43 44 45; set Pk[12] := 46; set Pk[13] := 47; set Pk[14] := 48 49 50 51 52; set Pk[15] := 53; set Pk[16] := 54 55 56; set Pk[17] := 57; set Pk[18] := 58 59 60; set Pk[19] := 61; set Pk[20] := 62; set Pk[21] := 63; set Pk[22] := 64; # The set of paths using each switch set L[1] := 1 2 8 9 12 13 15 16 21 22 26 27 36 37 49 50; set L[2] := 2 3 16 17 33 34 35 36 44 45; set L[7] := 3 4 7 8 13 14 17 18 22 23 29 30 37 38 48 49; set L[6] := 4 5 10 11 18 19 23 24 28 29 39 40 51 52 55 56 59 60; set L[4] := 5 6 19 20 31 32 38 39; set L[5] := 9 10 24 25 27 28 32 33 50 51 54 55 58 59; set L[3] := 43 44; # The set of paths using each edge of each structure set Pes[1,11,1] := 1 8 12; set Pes[4,11,2] := 2 9 27 36 50 58; set Pes[4,10,2] := 2 36 44; set Pes[8,10,3] := 3 33 45 53 61 63; set Pes[3,8,3] := 3 33 44 53 57; set Pes[1,2,1] := 3 7 13; set Pes[2,4,1] := 3 7 13 17 22 29; set Pes[4,10,4] := 4 18 23; set Pes[8,10,5] := 5 19 39 41 52 56 62 64; set Pes[3,8,6] := 6 20 31 38 42; set Pes[4,6,4] := 8 30 38 47 48; set Pes[4,10,5] := 10 24 28 41; set Pes[7,10,4] := 11 29 40 51 55 59; set Pes[6,7,4] := 11 29 40 47 51; set Pes[7,11,2] := 13 16 46 58; set Pes[4,7,4] := 14 47; set Pes[2,11,1] := 15 21 26; set Pes[7,10,2] := 16 34; set Pes[7,10,3] := 17 35 53 57; set Pes[3,7,3] := 17 35 53 57; set Pes[5,11,2] := 22 46; set Pes[4,5,2] := 25 33 54; set Pes[4,8,5] := 32 41 51 55 59; set Pes[5,7,2] := 34 46 54; set Pes[4,11,1] := 37 49; set Pes[3,4,6] := 42; set Pes[4,8,6] := 42; set Pes[4,11,6] := 43; set Pes[3,11,6] := 43; set Pes[8,9,3] := 57 61 63; set Pes[9,10,3] := 57 61 63; set Pes[8,9,5] := 59 62 64; set Pes[9,10,5] := 60 62 64; set H := (1,8) (4,48) (8,48) (13,27) (18,51) (24,55) (33,34) (41,62) (1,12) (4,51) (8,49) (13,29) (18,55) (24,56) (33,35) (41,64) (1,13) (4,55) (9,13) (13,36) (18,59) (24,59) (33,36) (44,45) (1,15) (4,59) (9,16) (13,37) (19,24) (24,60) (33,44) (44,53) (1,21) (5,10) (9,22) (13,46) (19,28) (25,27) (33,45) (44,57) (1,22) (5,19) (9,25) (13,49) (19,32) (25,33) (33,50) (45,53) (1,26) (5,24) (9,27) (13,50) (19,39) (25,50) (33,53) (45,61) (1,37) (5,28) (9,33) (13,58) (19,41) (25,54) (33,54) (45,63) (1,49) (5,32) (9,36) (14,18) (19,51) (25,58) (33,57) (46,54) (2,9) (5,39) (9,50) (14,23) (19,52) (26,37) (33,58) (46,58) (2,13) (5,41) (9,54) (14,29) (19,55) (26,49) (33,61) (47,48) (2,16) (5,51) (9,58) (14,30) (19,56) (27,33) (33,63) (47,51) (2,22) (5,52) (10,19) (14,38) (19,59) (27,36) (34,36) (50,54) (2,27) (5,55) (10,24) (14,47) (19,60) (27,50) (34,44) (50,58) (2,33) (5,56) (10,28) (14,48) (19,62) (27,54) (34,46) (51,52) (2,34) (5,59) (10,32) (15,21) (19,64) (27,58) (34,54) (51,55) (2,36) (5,60) (10,39) (15,22) (20,31) (28,32) (35,44) (51,56) (2,44) (5,62) (10,41) (15,26) (20,38) (28,39) (35,45) (51,59) (2,50) (5,64) (10,51) (15,37) (20,42) (28,41) (35,53) (51,60) (2,58) (6,20) (10,52) (15,49) (21,22) (28,51) (35,57) (52,55) (3,7) (6,31) (10,55) (16,22) (21,26) (28,52) (36,44) (52,56) (3,8) (6,38) (10,56) (16,27) (21,37) (28,55) (36,50) (52,59) (3,13) (6,42) (10,59) (16,33) (21,49) (28,56) (36,58) (52,60) (3,17) (7,8) (10,60) (16,34) (22,26) (28,59) (37,49) (52,62) (3,22) (7,13) (11,18) (16,36) (22,27) (28,60) (38,42) (52,64) (3,29) (7,17) (11,23) (16,44) (22,29) (29,30) (38,47) (53,57) (3,33) (7,22) (11,29) (16,46) (22,36) (29,37) (38,48) (53,61) (3,35) (7,29) (11,40) (16,50) (22,37) (29,38) (39,41) (53,63) (3,37) (7,37) (11,47) (16,58) (22,46) (29,40) (39,51) (54,58) (3,44) (7,49) (11,51) (17,22) (22,49) (29,47) (39,52) (55,56) (3,45) (8,12) (11,55) (17,29) (22,50) (29,48) (39,55) (55,59) (3,49) (8,13) (11,59) (17,33) (23,29) (29,49) (39,56) (55,60) (3,53) (8,14) (12,13) (17,35) (23,30) (29,51) (39,59) (56,59) (3,57) (8,15) (12,15) (17,37) (23,38) (29,55) (39,60) (56,60) (3,61) (8,17) (12,21) (17,44) (23,40) (29,59) (39,62) (56,62) (3,63) (8,18) (12,22) (17,45) (23,48) (30,38) (39,64) (56,64) (4,8) (8,21) (12,26) (17,49) (23,51) (30,47) (40,47) (57,61) (4,11) (8,22) (12,37) (17,53) (23,55) (30,48) (40,51) (57,63) (4,14) (8,23) (12,49) (17,57) (23,59) (31,38) (40,55) (59,60) (4,18) (8,26) (13,15) (18,23) (24,28) (31,42) (40,59) (59,62) (4,23) (8,29) (13,16) (18,29) (24,32) (32,39) (41,51) (59,64) (4,29) (8,30) (13,17) (18,30) (24,39) (32,41) (41,52) (60,62) (4,30) (8,37) (13,21) (18,38) (24,41) (32,51) (41,55) (60,64) (4,38) (8,38) (13,22) (18,40) (24,51) (32,55) (41,56) (61,63) (4,40) (8,47) (13,26) (18,48) (24,52) (32,59) (41,59) (62,64);