# Problem instance EUR01 with translation at the switches. # The set of nodes in the network set N := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18; # The set of links in the network set E := (1,3) (2,9) (3,12) (4,13) (5,16) (8,17) (11,12) (1,8) (2,10) (3,14) (4,15) (6,15) (9,15) (11,15) (1,9) (2,13) (3,15) (4,17) (7,14) (9,17) (14,17) (1,14) (3,6) (4,7) (4,18) (7,16) (10,13) (16,18) (1,15) (3,7) (4,9) (5,7) (7,17) (10,15) (17,18); # The set of modular sizes for structures and couplers set W := 4 8 16 20 40 80; # The set of OD pairs and # the number wavelengths required for each o-d pair param: D: r := 1 11 2 2 6 3 3 12 12 4 5 15 4 9 18 4 11 3 4 14 16 5 11 7 5 14 14 6 10 7 7 13 15 7 16 12 9 12 9 10 12 14 10 13 15 11 16 14 11 18 11 12 16 9 ; # The set of available structures set S := 1 2 3 4 5 6; # The edges in each structure set Es[1] := (1,3) (1,15) (3,6) (3,12) (3,15) (6,15) (11,12) (11,15); set Es[2] := (1,3) (1,8) (1,14) (3,7) (3,14) (7,14) (8,17) (14,17); set Es[3] := (4,7) (4,17) (4,18) (7,14) (14,17) (17,18); set Es[4] := (1,9) (1,15) (4,9) (4,15) (4,17) (9,15) (9,17); set Es[5] := (1,8) (1,15) (2,10) (4,13) (8,17) (10,15) (1,9) (2,9) (2,13) (4,17) (10,13); set Es[6] := (5,7) (5,16) (7,14) (7,16) (7,17) (14,17) (16,18) (17,18); # The set of available switches set C := 1 2 3 4 5 6 7; # The structure costs param a: 4 8 16 20 40 80 := 1 110 198 330 440 880 1650 2 120 216 360 480 960 1800 3 149 268 447 596 1192 2235 4 106 191 318 424 848 1590 5 112 202 336 448 896 1680 6 116 209 348 464 928 1740 ; # The switch costs param f: 4 8 16 20 40 80 := 1 17 29 49 68 131 255 2 23 39 67 92 177 345 3 10 17 29 40 77 150 4 41 70 119 164 316 615 5 59 100 171 236 454 885 6 16 27 46 64 123 240 7 75 128 218 300 577 1125 ; # The set of optical cycle set K := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20; # The set of optical cycles serving each demand pair set J[1,11] := 1; set J[2,6] := 2; set J[3,12] := 3; set J[4,5] := 4; set J[4,9] := 5 6; set J[4,11] := 7; set J[4,14] := 8 9; set J[5,11] := 10; set J[5,14] := 11; set J[6,10] := 12; set J[7,13] := 13; set J[7,16] := 14; set J[9,12] := 15; set J[10,12] := 16; set J[10,13] := 17; set J[11,16] := 18; set J[11,18] := 19; set J[12,16] := 20; # The set of paths set P := 1 6 11 16 21 26 31 36 41 46 51 56 61 66 2 7 12 17 22 27 32 37 42 47 52 57 62 67 3 8 13 18 23 28 33 38 43 48 53 58 63 68 4 9 14 19 24 29 34 39 44 49 54 59 64 5 10 15 20 25 30 35 40 45 50 55 60 65; # The set of paths making up each optical cycle set Pk[1] := 1; set Pk[2] := 2 3 4 5 6; set Pk[3] := 7; set Pk[4] := 8 9 10; set Pk[5] := 11; set Pk[6] := 12; set Pk[7] := 13 14 15 16; set Pk[8] := 17; set Pk[9] := 18 19 20 21; set Pk[10] := 22 23 24 25 26 27 28; set Pk[11] := 29; set Pk[12] := 30 31 32 33 34; set Pk[13] := 35 36 37; set Pk[14] := 38; set Pk[15] := 39 40 41 42; set Pk[16] := 43 44 45 46 47; set Pk[17] := 48; set Pk[18] := 49 50 51 52 53 54 55; set Pk[19] := 56 57 58 59 60 61; set Pk[20] := 62 63 64 65 66 67 68; # The set of paths using each switch set L[6] := 2 3 23 24 31 32 43 44 53 54 57 58 63 64; set L[2] := 3 4 15 16 18 19 24 25 30 31 39 40 44 45 52 53 56 57 62 63; set L[4] := 4 5 33 34 35 36 40 41 45 46; set L[1] := 5 6 14 15 19 20 27 28 32 33 41 42 46 47 49 50 59 60 65 66; set L[7] := 8 9 20 21 22 23 36 37 54 55 58 59 64 65; set L[5] := 9 10 25 26 51 52 67 68; set L[3] := 13 14 26 27 50 51 60 61 66 67; # The set of paths using each edge of each structure set Pes[1,3,1] := 1 19; set Pes[3,12,1] := 1 7 15 28 42 47 49 59 65; set Pes[11,12,1] := 1 7 15 28 40 45 49 59 62; set Pes[1,15,1] := 1 4 16 25 30 40 45 52 56 62; set Pes[11,15,1] := 1 7 16 25 40 45 52 56 62; set Pes[2,13,5] := 2 12 48; set Pes[4,13,5] := 2 12 32 37 43; set Pes[4,9,4] := 3 11 15 18 24 31 44 53 57 63; set Pes[1,9,4] := 3 15 18 24 31 39 44 53 57 63; set Pes[6,15,1] := 4 30; set Pes[2,9,5] := 4 12; set Pes[1,9,5] := 4 12 40; set Pes[1,3,2] := 5 33 35 41 46; set Pes[3,6,1] := 6 32; set Pes[3,15,1] := 7; set Pes[4,17,5] := 8 12 20 23 37 54 58 64; set Pes[17,18,6] := 9 22 29 55 59 65; set Pes[16,18,6] := 9 22 29 55 65; set Pes[5,16,6] := 9 22 29 38 52; set Pes[4,7,3] := 9 17 51 67; set Pes[5,7,6] := 10 25 29 38 52; set Pes[4,17,4] := 11; set Pes[9,17,4] := 11; set Pes[8,17,5] := 12; set Pes[1,8,5] := 12; set Pes[4,17,3] := 13 17 51 67; set Pes[14,17,2] := 14 27 50 60 66; set Pes[3,14,2] := 14 20 27 50 60 66; set Pes[14,17,3] := 17 26; set Pes[7,14,3] := 17 26; set Pes[14,17,6] := 21 29; set Pes[7,14,6] := 29; set Pes[10,13,5] := 32 36 43 48; set Pes[1,15,5] := 34 36 45; set Pes[10,15,5] := 34 36 45; set Pes[3,7,2] := 35; set Pes[7,17,6] := 36; set Pes[7,16,6] := 38 68; set Pes[2,10,5] := 48; set Pes[17,18,3] := 61; set H := (1,4) (4,56) (9,26) (15,18) (19,47) (25,30) (32,54) (42,49) (1,7) (4,62) (9,29) (15,19) (19,49) (25,38) (32,58) (42,59) (1,15) (5,14) (9,36) (15,24) (19,52) (25,40) (32,59) (42,65) (1,16) (5,20) (9,38) (15,25) (19,56) (25,45) (32,64) (43,48) (1,19) (5,27) (9,51) (15,28) (19,59) (25,52) (32,65) (43,54) (1,25) (5,33) (9,52) (15,30) (19,62) (25,56) (33,35) (43,58) (1,28) (5,35) (9,55) (15,31) (19,65) (25,62) (33,41) (43,64) (1,30) (5,41) (9,59) (15,32) (20,23) (25,68) (33,46) (44,53) (1,40) (5,46) (9,65) (15,39) (20,27) (26,51) (33,50) (44,57) (1,42) (5,50) (9,67) (15,40) (20,32) (26,61) (33,60) (44,63) (1,45) (5,60) (9,68) (15,42) (20,33) (26,67) (33,66) (45,49) (1,47) (5,66) (10,25) (15,44) (20,36) (27,33) (34,36) (45,52) (1,49) (6,15) (10,29) (15,45) (20,37) (27,41) (34,40) (45,56) (1,52) (6,19) (10,38) (15,47) (20,41) (27,46) (34,45) (45,59) (1,56) (6,28) (10,52) (15,49) (20,46) (27,50) (35,41) (45,62) (1,59) (6,32) (10,68) (15,52) (20,50) (27,60) (35,46) (46,50) (1,62) (6,42) (11,15) (15,53) (20,54) (27,66) (36,37) (46,60) (1,65) (6,47) (11,18) (15,56) (20,58) (28,32) (36,40) (46,66) (2,12) (6,49) (11,24) (15,57) (20,60) (28,40) (36,43) (47,49) (2,23) (6,59) (11,31) (15,59) (20,64) (28,42) (36,45) (47,59) (2,32) (6,65) (11,44) (15,62) (20,66) (28,45) (36,48) (47,65) (2,37) (7,15) (11,53) (15,63) (21,22) (28,47) (36,54) (49,59) (2,43) (7,16) (11,57) (15,65) (21,29) (28,49) (36,55) (49,62) (2,48) (7,25) (11,63) (16,19) (21,36) (28,59) (36,58) (49,65) (2,54) (7,28) (12,20) (16,25) (21,55) (28,62) (36,59) (50,60) (2,58) (7,40) (12,23) (16,30) (21,59) (28,65) (36,64) (50,66) (2,64) (7,42) (12,32) (16,40) (21,65) (29,38) (36,65) (51,61) (3,11) (7,45) (12,37) (16,45) (22,29) (29,52) (37,43) (51,67) (3,15) (7,47) (12,40) (16,52) (22,36) (29,55) (37,54) (52,56) (3,18) (7,49) (12,43) (16,56) (22,38) (29,59) (37,58) (52,62) (3,24) (7,52) (12,48) (16,62) (22,52) (29,65) (37,64) (52,68) (3,31) (7,56) (12,54) (17,26) (22,55) (30,40) (38,52) (53,57) (3,39) (7,59) (12,58) (17,51) (22,59) (30,45) (38,68) (53,63) (3,44) (7,62) (12,64) (17,67) (22,65) (30,52) (39,44) (54,58) (3,53) (7,65) (13,17) (18,24) (23,32) (30,56) (39,53) (54,64) (3,57) (8,12) (13,26) (18,31) (23,36) (30,62) (39,57) (55,59) (3,63) (8,20) (13,51) (18,39) (23,37) (31,39) (39,63) (55,65) (4,12) (8,23) (13,61) (18,44) (23,43) (31,44) (40,45) (56,62) (4,15) (8,36) (13,67) (18,53) (23,54) (31,53) (40,49) (57,63) (4,16) (8,37) (14,20) (18,57) (23,58) (31,57) (40,52) (58,64) (4,19) (8,54) (14,27) (18,63) (23,64) (31,63) (40,56) (59,62) (4,25) (8,58) (14,33) (19,25) (24,31) (32,36) (40,59) (59,65) (4,30) (8,64) (14,41) (19,28) (24,39) (32,37) (40,62) (60,66) (4,34) (9,10) (14,46) (19,30) (24,44) (32,42) (41,46) (61,67) (4,36) (9,17) (14,50) (19,32) (24,53) (32,43) (41,50) (4,40) (9,21) (14,60) (19,40) (24,57) (32,47) (41,60) (4,45) (9,22) (14,66) (19,42) (24,63) (32,48) (41,66) (4,52) (9,25) (15,16) (19,45) (25,29) (32,49) (42,47);